Durée de l'épreuve 1h. Aucun document autorisé.

Questions de Cours.

- 1. Quels sont, dans un groupe, les éléments d'ordre 1?
- 2. Si G et G' sont deux groupes finis de même ordre, sont-ils isomorphes?
- 3. Montrer que tout groupe fini d'ordre un nombre premier p est cyclique.

Exercice 1. Soit (G, \cdot) un groupe fini d'ordre n. Soit $a \in G$, on note o(a) l'ordre de a.

- 1. Soit f un endomorphisme de G. Montrer que f est un automorphisme de G si et seulement si $o(x) = o(f(x)), \forall x \in G$.
- 2. Soit $a, b \in G$, montrer que $o(bab^{-1}) = o(a)$ et o(ab) = o(ba).
- 3. Montrer que si a est l'unique élément d'ordre 2 de G alors a appartient au centre Z(G) de G.

Exercice 2.

- 1. Soit (G,\cdot) un groupe et H un sous-groupe de G. Soit R la relation d'équivalence définie sur G par $xRy \Leftrightarrow xy^{-1} \in H$. Montrer que si G est abélien, l'ensemble quotient G/R, noté G/H, muni de la loi $\bar{\cdot}$, définie par $\bar{x}\bar{\cdot}\bar{y}=\bar{x}\bar{y}$ est un groupe. Si on suppose de plus que G est d'ordre fini, donner, sans preuve, la relation liant l'ordre de G et l'ordre de G/H.
- 2. Parmi les groupes suivants, lesquels sont cycliques : $(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}, +)$, $(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}, +)$, $(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}, +)$? Justifier la réponse.
- 3. On considère le groupe additif abélien $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.
 - (a-) Soit les sous-groupes de G, $H_1 = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{2})\}$ et $H_2 = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{2})\}$.
 - (i-) Déterminer le groupe G/H_1 et montrer qu'il est cyclique.
 - (ii-) Déterminer le groupe G/H_2 . Montrer qu'il est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (iii-) Que peut-on conclure?
 - (b-) Donner deux sous-groupes, H et K, d'ordre 4 du groupe G tel que H est isomorphe à $(\mathbb{Z}/4\mathbb{Z}, +)$ et K est isomorphe à $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$. Sans déterminer les groupes G/H et G/K, montrer qu'ils sont isomorphes.
- 4. Soit G un groupe abélien et H, K deux sous-groupes de G. Si H est isomorphe à K, G/H est-il isomorphe à G/K? Qu'en est-il de la réciproque? (Indication : utiliser la 3-ème question).
- 5. Soit G un groupe cyclique d'ordre n et H, K deux sous-groupes de G. Montrer que H est isomorphe à K si et seulement si G/H est isomorphe à G/K.