Travaux Dirigés d'Algèbre 6 - S4 / Corrigé de la Série 2 — 2020-2021

(Proposé par Pr. Rami)

Exercice 1. Puisque 5 est premier, les générateurs de $\mathbb{Z}/5\mathbb{Z}$ sont $\bar{1}$, $\bar{2}$, $\bar{3}$ et $\bar{4}$. Soit donc $f \in Aut(\mathbb{Z}/5\mathbb{Z})$. Puisque f est bijective, on doit alors avoir :

$$Im(f) = \{mf(\bar{1}), m = 0, 1, 2, 3, 4\} = \langle f(\bar{1}) \rangle = \mathbb{Z}/5\mathbb{Z}$$

 $(f \text{ est déterminée par } f(\bar{1}))$. Donc $f(\bar{1}) = \bar{1}, \bar{2}, \bar{3}, \text{ ou } \bar{4}$. Ainsi, $Aut(\mathbb{Z}/5\mathbb{Z}) = \{f_1 = Id, f_2, f_3, f_4\}$ avec $f_k(\bar{1}) = \bar{k} = k\bar{1} = kId(\bar{1})$. En considère l'application :

$$\varphi: (Aut(\mathbb{Z}/5\mathbb{Z}), \circ) \to ((\mathbb{Z}/5\mathbb{Z})^*, \times)$$

$$f_k \mapsto \bar{k}$$

où $(\mathbb{Z}/5\mathbb{Z})^* = \{\bar{1}, \bar{2}, \bar{3}, \bar{4}\}$ désigne le groupe multiplicatif des inversibles de $\mathbb{Z}/5\mathbb{Z}$. On vérifie facilement que c'est un isomorphisme. Par suite $Aut(\mathbb{Z}/5\mathbb{Z}) \cong ((\mathbb{Z}/5\mathbb{Z})^*, \times) = (\langle \bar{2} \rangle, \times)$ qui est cyclique d'ordre 4.

Exercice 2. Supposons que G admet deux sous-groupes distincts H et K d'ordre p (premier). On sait alors, d'après le cours que $card(HK) = \frac{|H||K|}{|H\cap K|}$. Mais $H\cap K$ étant un sous-groupe de H (et de K), il est d'ordre 1 ou bien d'ordre p. Si $|H\cap K| = p$ alors $H\cap K = H = K$ (ils ont tous même ordre) ce qui est contraire à $H \neq K$ et par suite $|H\cap K| = 1$ et donc $card(HK) = p^2 > pq = |G|$. Ce qui est absurde (car $HK \subseteq G$). Par conséquent, G admet au plus un sous-groupe d'ordre p.

Pour la déduction, remarquons que si H est un sous-groupe de G d'ordre p, alors, $\forall x \in G, \ x^{-1}Hx$ est aussi un sous-groupe de G et il est aussi d'ordre p (il y a une bijection entre les deux). Par suite, d'après ce qui précède, on aura $\forall x \in G, \ x^{-1}Hx = H$ et donc H (s'il existe) sera distingué dans G.

Exercice 3.

- 1. Soit G un groupe et H un sous-groupe d'indice deux de G. On a alors $(G/H)_g = \{H, xH\}$ pour tout $x \notin H$ (car $\bar{e} = \bar{x} \Leftrightarrow x \in H$). De même $(G/H)_d = \{H, Hx\}$ pour tout $x \notin H$. Par suite, $\forall x \notin H$, on a $G = H \cup xH = H \cup Hx$ et $H \cap xH = H \cap Hx = \emptyset$ ce qui implique alors que $\forall x \notin H$, xH = Hx ($z \in xH \Leftrightarrow z \notin H \Leftrightarrow z \in Hx$). D'autre part, on a par définition, $\forall h \in H$, on hH = eH = He = Hh. En conclusion, on a $\forall y \in G$, yH = Hy et donc que H est un sous-groupe distingué de G.
- 2. Rappelons que $Z(G) = \{x \in G : \forall g \in G, gx = xg\}$. On a alors, $\forall g \in G, \forall x \in Z(G), gx = xg$ par suite $\forall g \in G, gZ(G) = \{gx : x \in Z(G)\} = \{xg : x \in Z(G)\} = \{Z(G)g : D'où Z(G) \leq G\}$. Si maintenant H est un sous-groupe de Z(G), il suffit de prendre $g \in H$ pour obtenir aussi que $H \subseteq G$.

- 3. Soit H un sous-groupe d'ordre deux distingué dans G. On a alors $H = \{e, h\}$ d'où, $\forall x \in G \ xH = \{x, xh\} = Hx = \{x, hx\}$. Par suite, $\forall x \in G, xh = hx$ et donc $H \subseteq Z(G)$.
- 4. Soit H un sous-groupe cyclique et distingué dans G et soit K un sous-groupe de H. Posons $H = \langle x \rangle$; comme tout sous-groupe d'un groupe cyclique est cyclique, $\exists k \geq 1: K = \langle x^k \rangle$. Ainsi, $\forall g \in G$,

$$H \subseteq G \Rightarrow gH = Hg \Rightarrow \exists x' \in H : gx = x'g \Rightarrow gx^k = (x')^k g \Rightarrow gK = Kg \Rightarrow K \subseteq G.$$

Exercice 4. Soit G un groupe commutatif d'ordre 10.

- 1. $|G|=10 \Rightarrow \forall x \in G \setminus \{e\}, \ o(x)=2, \ 5 \ ou10.$ Si G est cyclique engendré par $x \in G$, alors $o(x^2)=5$. Sinon, si tous les éléments de $G \setminus \{e\}$ sont d'ordre 2, alors G serait commutatif, ce qui est contraire à l'hypothèse. D'où $\exists x \in G : \ o(x)=5$.
- 2. D'après la question précédente, et comme 5 est premier, $H = \langle x \rangle$ est un sous-groupe d'ordre 5 de G et son indice est [G:H]=2 par suite d'après l'exercice (3), $H \leq G$. Enfin, puisque $H \leq G$, G/H est un groupe quotient et son ordre est [G:H]=2 et donc $G/H=\{\bar{e},\bar{x}\}$ de sorte que $\bar{x}^{-1}=\bar{x}$ ce qui entraı̂ne que \bar{x} est d'ordre 2.

Exercice 5. Soit G un groupe tel que pour tout entier n > 1 fixé, on a : $\forall x, y \in G$ $(xy)^n = x^n y^n$.

1. Montrons que $G^n = \{x^n : x \in G\}$ est un sous-groupe distingué de G. G^n est un sous-groupe de G car $G^n \subseteq G$, $e = e^n \in G^n$ et $\forall x^n, y^n \in G^n$, on $x^n y^n = (xy)^n \in G^n$ et $(x^n)^{-1} = (x^{-1})^n \in G^n$. D'autre part, $\forall q \in G$

$$gx^{n}g^{-1} = gx(g^{-1}g)x(g^{-1}g)x \dots x(g^{-1}g)xg^{-1}$$

= $(gxg^{-1})(gxg^{-1})\dots(gxg^{-1}) = (gxg^{-1})^{n} \in G^{n}.$

Par conséquent, $G^n \leq G$.

- 2. $(xy)^n = (xy)(xy) \dots (xy) = x(yx(yx)) \dots (yx)y = x(yx)^{n-1}y$ et puisque $(xy)^n = x^ny^n$, on en déduit alors que $x(yx)^{n-1}y = x^ny^n$, ainsi, par multiplication par x^{-1} à gauche et par y^{-1} à droite, on obtient $(yx)^{n-1} = x^{n-1}y^{n-1}$.
- 3. Montrons que $G^{n-1}=\{x^{n-1}: x\in G\}$ est distingué dans G. On montre de la même manière, pour G^n , que G^{n-1} est un sous-groupe de G sachant que la différence entre les deux formules $(xy)^n=x^ny^n$ et $(yx)^{n-1}=x^{n-1}y^{n-1}$ ne change en rien le raisonnement dans les deux cas car $xy\in G$ et $yx\in G$. De même, $\forall g\in G$

$$gx^{n-1}g^{-1} = gx(g^{-1}g)x(g^{-1}g)x \dots x(g^{-1}g)xg^{-1}$$

= $(gxg^{-1})(gxg^{-1})\dots(gxg^{-1}) = (gxg^{-1})^{n-1} \in G^{n-1}.$

Par conséquent, $G^{n-1} \triangleleft G$.

Exercice 6. Soit G un groupe et A une partie non vide de G. On pose

$$N_A = \{(g_1 a_1 g_1^{-1})(g_2 a_2 g_2^{-1}) \dots (g_n a_n g_n^{-1}) : n \in \mathbb{N}^* \ et \ \forall 1 \le i \le n; \ g_i \in G \ et \ a_i \in A \cup A^{-1}\}.$$

1. Montrons que $A \subseteq N_A \subseteq G$.

On a $A \subseteq N_A$ vient du fait que l'on peut prendre n = 1, $a_1 = a \in A$, $g_1 = e$; et donc $a = g_1 a_1 g_1^{-1} \in N_A$.

Montrons ensuite que N_A est un sous-groupe de G. On a clairement $\emptyset \neq N_A \subseteq G$. Soit maintenant

$$x = (g_1 a_1 g_1^{-1})(g_2 a_2 g_2^{-1}) \dots (g_n a_n g_n^{-1}) \in N_A$$

et

$$x' = (g'_1 a'_1 (g'_1)^{-1})(g'_2 a'_2 (g'_2)^{-1}) \dots (g'_m a"_m (g'_n)^{-1}) \in N_A$$

alors

$$xy = g_1^n a_1(g_1)^{-1}(g_2^n a_2(g_2)^{-1}) \dots (g_{n+m}^n a_n(g_{n+m})^{-1}) \in N_A$$

(avec $g_i^n = g_i, 1 \le i \le n$, $a_i^n = a_i, 1 \le i \le n$ et $g_{n+i}^n = g_i'$, $a_{n+i}^n = a_i', 1 \le i \le m$). Ensuite on a

$$x^{-1} = (g_n^{-1}a_n^{-1}g_n)\dots(g_1^{-1}a_1^{-1}g_1) = (h_1b_1(h_1)^{-1})\dots(h_nb_n(h_n)^{-1})$$

avec $h_i = (g_{n-i+1})^{-1} \in G$, $b_i = (a_{n-i+1})^{-1} \in A \cup A^{-1}$, $1 \le i \le n$. Par conséquent, N_A est un sous-groupe de G.

Soit maintenant $g \in G$ et $x = (g_1 a_1 g_1^{-1})(g_2 a_2 g_2^{-1}) \dots (g_n a_n g_n^{-1}) \in N_A$. On peut écrire

$$gxg^{-1} = ((gg_1)a_1(gg_1)^{-1})((gg_1)a_1(gg_1)^{-1})\dots((gg_1)a_1(gg_1)^{-1})$$

sachant qu'on a inséré $e=g^1g$ entre deux termes consécutifs de x. On a donc $gxg^{-1} \in N_A$ et par suite $N_A \leq G$.

2. Montrons enfin que N_A est le plus petit sous-groupe distingué de G contenant A. On a déjâ vu que $A \subseteq N_A$. Soit donc $K \unlhd G$ tel que $A \subseteq K$. On a alors : K sous-groupe, entraîne que $A \cup A^{-1} \subseteq K$, puis, puisque $K \unlhd G$, alors pour tout $x = (g_1a_1g_1^{-1})(g_2a_2g_2^{-1})\dots(g_na_ng_n^{-1}) \in N_A$, ses facteurs $g_ia_ig_i^{-1} \in K$; $1 \le i \le n$ et par suite $x \in K$. D'où $K \subseteq N_A$.

Exercice 7. Soit G un groupe, H un sous-groupe de Z(G) tel que G/H est cyclique. Montrons alors que G est abélien. Notons au début que d'après l'exercice 3), $H \subseteq G$ donc G/H est bien un groupe quotient.

Soient donc $x, y \in G$ deux éléments quelconques. Comme $H \subseteq Z(G)$, on a : si $x \in H$ ou $y \in H$, alors xy = yx. Supposons donc que $x \notin H$ et $y \notin H$. Il en résulte que $\bar{x} \neq \bar{e} = H$ et $\bar{y} \neq \bar{e} = H$ dans G/H. Maintenant G/H cyclique, entraîne qu'il existe $a \in G$ tel que

 $G/H=<\bar{a}>$ et donc $\bar{x}=(\bar{a})^k$ et $\bar{y}=(\bar{a})^l$ $(k,l\geq 1)$ et donc $\exists h,h'\in H$ tels que $x=a^kh$ et $y=a^lh'.$ On obtient alors :

$$xy = a^k h a^l h' = h a^k a^l h' = h a^l a^k h' = h' a^l h a^k = yx.$$

Ainsi, on a $\forall x, y \in G$, xy = yx et par conséquent G est commutatif.

Exercice 8. Soit H^* , H, K^* et K quatre sous-groupes d'un groupe G. On suppose que $H^* \subseteq H$ et $K^* \subseteq K$.

- 1. Montrons que $F = (H \cap K^*)(K \cap H^*) \leq H \cap K$. Premièrement, puisque $H \cap K^*$, $K \cap H^*$ et $H \cap K$ sont des sous-groupes de G et que $H \cap K^* \subseteq H \cap K$ et $K \cap H^* \subseteq K \cap H = H \cap K$, alors $H \cap K^*$ et $K \cap H^*$ sont des sous-groupes de $H \cap K$. Pour montrer que $F \leq H \cap K$, il suffit de montrer que $(H \cap K^*) \leq H \cap K$ et $(K \cap H^*) \leq H \cap K$.
 - Soit donc $g \in H \cap K$ et $x \in H \cap K^*$, on a alors $gx \in gK^*$ et $g \in K$ entraı̂ne qu'il existe $x' \in K^*$ tel que gx = x'g. Or, $g \in H$ et $x \in H$ implique que $x' = gxg^{-1} \in H$ et par suite, $x' \in H \cap K^*$. D'où $\forall g \in H \cap K$, $g(H \cap K^*) = (H \cap K^*)g$ et donc $H \cap K^* \subseteq H \cap K$. On montre de même que $K \cap H^* \subseteq H \cap K$ et on conclut ainsi que $F \subseteq H \cap K$.
- 2. Soit $f: H^*(H \cap K) \to (H \cap K)/F$ définie par $f(h^*x) = xF$.
 - (a) Notons au début que f est bien définie et est un homomorphisme de groupes. Ensuite, $h^*x \in Ker(f) \Leftrightarrow xF = F \Leftrightarrow x \in F \Leftrightarrow \exists ab \in F : h^*x = h^*ab$. Or, F étant un groupe, en écrivant $F = (K \cap H^*)(H \cap K^*)$, on a alors ab = b'a' avec $a' \in K \cap H^*$ et $b' \in H \cap K^*$ et par suite, $h^*x = (h^*a')b' \in H^*(H \cap K^*)$ car $h^*a' \in H^*$. D'où, $Ker(f) \subseteq H^*(H \cap K^*)$. Inversement, $\forall h^*x \in H^*(H \cap K^*)$, on a $f(h^*x) = xF = F$ car $x = xe \in F$ et donc $Ker(f) = H^*(H \cap K^*)$.
 - (b) Il suffit de noter que f est surjective et utiliser le premier théorème d'isomorphisme qui donne l'isomorphisme :

$$H^*(H \cap K)/H^*(H \cap K^*) \cong (H \cap K)/F.$$

(c) En remarquant la symétrie imposée dans la définition de F, on voit qu'il suffit de prendre $g: K^*(K \cap H^*) \to (H \cap K)/F$ définie par $g(k^*x) = xF$ et d'en déduire (de la même manière) que :

$$K^*(H \cap K)/K^*(H^* \cap K) \cong (H \cap K)/F.$$

Il en résulte l'isomorphisme :

$$H^*(H \cap K)/H^*(H \cap K^*) \cong K^*(H \cap K)/K^*(H^* \cap K).$$

Exercice 9. Un groupe G est dit résoluble s'il possède une suite de sous-groupes

$$(1) \quad G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n = \{e\}.$$

telle que $\forall 0 \leq i \leq n-1, G_{i+1} \leq G_i$ et G_i/G_{i+1} est abélien.

- 1. Soit G un groupe abélien. En posant $G_0 = G$ et $G_1 = \{e\}$, on déduit que G est résoluble. En particulier, tout groupe cyclique est abélien, il est donc résoluble.
- 2. Soit $f: G \to G'$ un homomorphisme de groupes tel que G soit résoluble muni de la suite (1). Il est clair que chaque $f(G_i)$ est un un sous-groupe de f(G) et que $f(G_{i+1}) \subseteq f(G_i)$.

Montrons que $f(G_{i+1}) \leq f(G_i)$. Soit $y = f(x) \in f(G_i)$ et $z = f(x') \in f(G_{i+1})$, c. à. d. $yz \in yf(G_{i+1})$. On a yz = f(x)f(x') = f(xx'). Or, $xx' \in xG_{i+1} = G_{i+1}x \Rightarrow \exists x'' \in G_{i+1}$, xx' = x''x et donc $yz = f(x''x) = f(x'')f(x) \in f(G_{i+1})y$. On en déduit que $yf(G_{i+1}) \subseteq f(G_{i+1})y$, $\forall y \in f(G_i)$ et donc $f(G_{i+1}) \leq f(G_i)$.

Considérons maintenant $q \circ f_{|G_i|}: G_i \to f(G_i) \to f(G_i)/f(G_{i+1})$ définie par $: q \circ f_{|G_i|}(x) = \overline{f(x)}$. C'est la composée de deux homomorphismes surjectifs de groupes et on a clairement $f(G_{i+1}) \subseteq Ker(q \circ f_{|G_i|})$. Par suite, d'après le premier théorème d'isomorphisme $q \circ f_{|G_i|}$ se factorise en $q \circ f_{|G_i|} = \overline{f} \circ p$ avec $p : G_i \to G_i/G_{i+1}$ et $\overline{f}: G_i/G_{i+1} \to f(G_i)/f(G_{i+1})$. On a donc $\forall x \in G_i, \overline{f(x)} = \overline{f(\bar{x})}$.

D'autre part, soit $\bar{y}, \bar{y'} \in f(G_i)/f(G_{i+1})$. On a $\bar{y}\bar{y'} = \bar{y}\bar{y'}$ et si y = f(x) et y' = f(x') alors $\bar{y}\bar{y'} = \bar{f}(\bar{x}\bar{x'}) = \bar{f}(\bar{x}\bar{x'}) = \bar{f}(\bar{x}'\bar{x})$ car G_i/G_{i+1} est abélien. Par suite $\bar{y}\bar{y'} = \bar{y'}\bar{y}$ ce qui entraı̂ne que $f(G_i)/f(G_{i+1})$ est aussi abélien. En conclusion, f(G) est résoluble lorsqu'il est muni de la suite

$$f(G) = G'_0 \supseteq G'_1 = f(G_1) \supseteq G'_2 = f(G_2) \supseteq \ldots \supseteq G'_n = \{e\}.$$

En particulier, si G est résoluble, alors tout groupe G/H quotient est image directe de l'homomorphisme $p: G \to G/H$ et donc il est aussi résoluble.

3. Soit $f: G \to G'$ un homomorphisme injectif de groupes. Montrons que si G' est résoluble, alors G est résoluble. On suppose donc que G' est muni de la suite

$$G' = G'_0 \supseteq G'_1 \supseteq G'_2 = f(G_2) \supseteq \ldots \supseteq G'_n = \{e'\}$$

telle que $\forall 0 \leq i \leq n-1$, $G'_{i+1} \leq G'_i$ et G'_i/G'_{i+1} est abélien. On considère alors la suite (sachant que (toujours) $G = f^{-1}(G')$ et que, puisque f est injective, $\{e\} = f^{-1}(\{e'\})$):

$$G = G_0 \supseteq G_1 = f^{-1}(G_1) \supseteq G_2 = f^{-1}(G_2) \supseteq \ldots \supseteq G_n = \{e\}.$$

On sait que $f^{-1}(G'_{i+1})$ est un sous-groupe de $f^{-1}(G'_i)$ (car G'_{i+1} est un sous-groupe de G'_i), pour montrer qu'il en est distingué, si $x \in f^{-1}(G'_i) \Leftrightarrow f(x) \in G'_i$, alors $xf^{-1}(G'_{i+1}) = x\{x' \in G: f(x') \in G'_{i+1}\} = \{xx' : f(x) \in G'_i, f(x') \in G'_{i+1}\}.$ Par suite, comme $G'_{i+1} \leq G'_i, f(x)f(x') \in f(x)G'_{i+1} = G'_{i+1}f(x) \Rightarrow \exists y \in G'_{i+1}: f(x)f(x') = yf(x).$ Mais $f(x)f(x') = yf(x) \Rightarrow y = f(x)f(x')f(x^{-1}) = f(xx'x^{-1}) \Rightarrow xx'x^{-1} \in f^{-1}(G'_{i+1}) \Rightarrow xx' \in f^{-1}(G'_{i+1})x.$ D'où $xf^{-1}(G'_{i+1}) \subseteq f^{-1}(G'_{i+1})x, \forall x \in f^{-1}(G'_i).$

Il reste à montrer que $f^{-1}(G'_i)/f^{-1}(G'_{i+1})$ est abélien. Soient donc $x, x' \in f^{-1}(G'_i)$ ce qui équivaut à $f(x), f(x') \in G'_i$.

Comme G'_i/G'_{i+1} est abélien, on a, (modulo G'_{i+1}),

$$\overline{f(x)f(x')} = \overline{f(x')f(x)} \Rightarrow \overline{f(xx')} = \overline{f(x'x)}$$

et par suite

$$f(xx')(f(x'x))^{-1} = f(xx'x^{-1}x'^{-1}) \in G'_{i+1} \Rightarrow xx'x^{-1}x'^{-1} \in G_{i+1} \Rightarrow \bar{x}\bar{x'} = \bar{x'}\bar{x}$$

et par conséquent $f^{-1}(G_i')/f^{-1}(G_{i+1}')$ est abélien.

En conclusion, $f^{-1}(G')$ est aussi résoluble et c'est le cas en particulier de tout sousgroupe H d'un groupe résoluble G car alors $H = \iota^{-1}(H)$ où $\iota : H \hookrightarrow G$ désigne l'inclusion de H dans G.

4. Montrons que le groupe symétrique S_3 est résoluble. Pour cela, notons que $|S_3|$ = 3×2 . Ainsi, d'après l'exercice 2, S_3 admet au plus un sous-groupe d'ordre 3. Dans le cas, il existe effectivement et c'est A_3 et on sait que $A_3 \subseteq S_3$ (car $A_3 = Ker(\varepsilon)$), en plus S_3/A_3 est d'ordre 2 donc il est cyclique et par suite abélien. Il suffit donc de considérer la suite

$$G_0 = \mathcal{S}_3 \supseteq \mathcal{A}_3 \supseteq \{e\}$$

pour conclure.