Module: (MA₄) ALGEBRE 5

Programme

Chapitre I: Formes linéaires et espace dual.

Chapitre II: Formes bilinéaires symétriques et formes quadratiques.

Chapitre III: Décomposition de Gauss des formes quadratiques.

Chapitre IV: Espaces Préhilbertiens réels.

Chapitre V: Espaces Euclidiens.

Pr. Samir Bouchiba

Chapitre I: Formes linéaires et espace dual

Dans tout ce qui suit $K = \mathbb{R}$ ou \mathbb{C} .

1- Espace dual

Definition 1.1.

Soit *E* un espace vectoriel sur *K*. On appelle **forme linéaire** sur *E* toute application linéaire $u : E \longrightarrow K$ c'est à dire,

$$u(\alpha x + \beta y) = \alpha u(x) + \beta u(y), \forall x, y \in E, \forall \alpha, \beta \in K.$$

<u>L'ensemble</u> E^* des formes linéaires sur E est un espace vectoriel sur K.

 E^* s'appelle l'**espace dual** de E.

Exemple 1.2.

Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n. Alors $\operatorname{tr}: E \longrightarrow \mathbb{R}$, tel que

$$\operatorname{tr}(M = (a_{ij})_{1 \le i, j \le n}) = a_{11} + a_{22} + \dots + a_{nn}$$

est la trace de *M*, est une forme linéaire sur *E*.

Remarque.

Soit E un espace vectoriel de dimension n sur K et soit $B = \{e_1, e_2, \dots, e_n\}$ une base de E sur K. Soit $f : E \longrightarrow K$ une forme linéaire sur E. Alors la matrice de f relativement à la base B est

$$(f(e_1) f(e_2) \cdots f(e_n)).$$

Proposition 1.3.

Soit E un espace vectoriel de dimension n sur K et soit $B = \{e_1, e_2, \dots, e_n\}$ une base de E sur K. Pour $i = 1, 2, \dots, n$, on definit l'application $e_i^* : E \longrightarrow K$ tel que pour tout $x = x_1e_1 + x_2e_2 + \dots + x_ne_n$, on a $e_i^*(x) = x_i$. Alors,

- (1) $\forall i = 1, \dots, n, e_i^*$ est une forme linéaire sur E (c'est la ième projection).
- (2) $e_i^*(e_j) = \delta_{ij}$, où δ_{ij} est le symbole de Kronecker, i.e., $\delta_{ij} = 1$ si i = j et $\delta_{ij} = 0$ si $i \neq j$.
- (3) $B^* = \{e_1^*, e_2^*, \dots, e_n^*\}$ est une base de E^* qui s'appelle **la base duale de** B.
- (4) $\dim(E^*) = \dim(E) = n$.

Démonstration.

- (1) et (2) sont clairs.
- 3) Soient $\alpha_1, \dots, \alpha_n \in K$ tels que $\alpha_1 e_1^* + \alpha_2 e_2^* + \dots + \alpha_n e_n^* = 0$. On applique cette application à e_1 , on aura

$$(\alpha_1 e_1^* + \alpha_2 e_2^* + \dots + \alpha_n e_n^*)(e_1) = 0$$

et alors, $\alpha_1 e_1^*(e_1) + \alpha_2 e_2^*(e_1) + \cdots + \alpha_n e_n^*(e_1) = \alpha_1 = 0$. Le même travail on le fait pour montrer que $\alpha_2 = \cdots = \alpha_n = 0$. Ce qui veut dire que B^* est une famille libre. Soit maintenant $f \in E^*$ une forme linéaire. Soit $x = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n \in E$. Alors $f(x) = x_1 f(e_1) + x_2 f(e_2) + \cdots + x_n f(e_n)$. Comme $x_i = e_i^*(x)$, on obtient $f(x) = f(e_1)e_1^*(x) + f(e_2)e_2^*(x) + \cdots + f(e_n)e_n^*(x)$. Par suite, pour tout $x \in E$,

$$f(x) = (f(e_1)e_1^* + f(e_2)e_2^* + \dots + f(e_n)e_n^*)(x)$$

ce qui veut dire que

$$f = f(e_1)e_1^* + f(e_2)e_2^* + \dots + f(e_n)e_n^*$$

Par conséquent B^* est une famille génératrice et donc une base de E.

4) Il découle de (3).

Exemple 1.4.

Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n. Soit $B = \{E_{ij}\}_{1 \le i,j \le n}$ la base canonique de E avec E_{ij} est la matrice dont tous les coefficients sont tous nuls sauf le coefficient qui se trouve à la ième ligne et jème

colonne qui est égal à 1. Alors la forme linéaire trace s'écrit

$$\operatorname{tr} = E_{11}^* + E_{22}^* + \dots + E_{nn}^*.$$

Voici quelques propriétés des formes linéaires.

Proposition 1.5.

Soit E un espace vectoriel sur K et $x \in E$. Alors

$$u(x) = 0, \forall u \in E^* \Rightarrow x = 0.$$

Démonstration.

On montre la contraposée. Supposons que $x \neq 0$. Soit H un suppl'ementaire de Vect($\{x\}$) = Kx, d'où $E = Kx \oplus H$. Soit $u : E = Kx \oplus H \longrightarrow K$ l'application telle que

$$u(\alpha x + h) = \alpha, \forall \alpha \in K, \forall h \in H.$$

Alors, $u \in E^*$ et $u(x) = 1 \neq 0$. Par suite il existe une forme linéaire u de E telle que $u(x) = 1 \neq 0$.

Corollaire 1.6.

Soit E un espace vectoriel sur K. Soit $x \in E$ tel que $x \neq 0$. Alors il existe $u \in E^*$ telle que u(x) = 1.

2- Hyperplan

Definition 2.1.

Soit E un espace vectoriel sur K. Un **hyperplan** H de E est un sous espace vectoriel de E tel qu'il existe <u>une</u> droite vectorielle non nulle D telle que $E = H \oplus D$.

Remarque.

Soit E un espace vectoriel de dimension finie $n \ge 1$. Un

sous espace vectoriel H de E est un hyperplan si et seulement si dim(H) = n - 1.

Proposition 2.2.

Soit *E* un espace vectoriel sur *K*. Si *H* est un hyperplan de *E*, alors

$$E = Ka \oplus H, \forall a \notin H.$$

Démonstration.

Soit H un hyperplan de E et $a \in E \setminus H$. Soit $D = \text{Vect}\{d\}$ une droite vectorielle de E telle que $E = H \oplus D$. En premier lieu, notez que $Ka \cap H = \{0\}$. En effet, soit $x = \alpha a \in H$ avec $\alpha \in K$. Alors, on a soit $\alpha = 0$ et donc x = 0, soit $\alpha \neq 0$ et donc $a = \alpha^{-1}x \in H$ ce qui est absurde puisque $a \notin H$. Alors $Ka \oplus H$ est une somme directe telle que $Ka \oplus H \subseteq E = D \oplus H$. D'où $a = \alpha d + h$, avec $0 \neq \alpha \in K$ (puisque $a \notin H$) et $h \in H$. Alors $d = \frac{1}{\alpha} - \frac{1}{\alpha}h \in Ka \oplus H$. Par suite $D \subseteq Ka \oplus H$ et par conséquent, $E = D \oplus H \subseteq Ka \oplus H$. D'où $E = Ka \oplus H$.

Corollaire 2.3.

Soit E un espace vectoriel sur K et H un hyperplan de E. Soit $a \in E \setminus H$. Alors il existe $u \in E^*$ tel que la restriction u/H = 0 (c'est à dire u(h) = 0, $\forall h \in H$) et u(a) = 1.

Démonstration.

On a, d'après Proposition 2.2, $E = Ka \oplus H$. On considère $u \in E^*$ tel que $u(\alpha a + h) = \alpha$, $\forall \alpha \in K$, $\forall h \in H$. Alors, u(h) = 0, $\forall h \in H$ et u(a) = 1.

Proposition 2.4.

Soit *E* un espace vectoriel sur *K*. Alors

- 1) Un sous espace vectoriel H de E est un hyperplan si et seulement si il existe $u \in E^*$ tel que $u \neq 0$ et H = Ker(u).
- 2) Soit $u \in E^*$ tel que $u \neq 0$ et $\overline{H} = \text{Ker}(u)$ un hyperplan.

Alors l'égalité u(x) = 0 est appelée <u>une équation de H</u> et on a, pour $v \in E^*$,

 $H = \ker(v) \Leftrightarrow \exists \lambda \in K \setminus \{0\} : v = \lambda u (\{u, v\} \text{ est une famille liée}).$

Démonstration.

1) Soit H un hyperplan de E et D une droite vectorielle telle que $E = D \oplus H$. Soit $a \in D$ tel que $a \neq 0$. D'où $\exists u \in E^*$ tel que u(a) = 1 et u/H = 0. Par suite Ker(u) = H puisque $u(\alpha a + h) = \alpha, \forall \alpha \in K, \forall h \in H$. Inversement, montrons que, si $u \in E^*$ tel que $u \neq 0$, alors H = Ker(u) est un hyperplan. En effet, soit $0 \neq u : E \longrightarrow K$ une forme linéaire sur E et soit E = Ker(u). Premièrement notez que E = Ker(u) est surjective. Par suite E = Ker(u) est une somme directe. Soient E = Ker(u) et E = Ker(u) est une somme directe. Soient E = Ker(u) est une somme directe.

$$u(\alpha a) = \alpha = u(x).$$

D'où $x - \alpha a \in \text{Ker}(u) = H$. Par suite $x \in Ka \oplus H$. Par conséquent, $E = Ka \oplus H$ et par suite H est un hyperplan. 2) Si $\exists \lambda \in K \setminus \{0\}$ tel que $v = \lambda u$, alors Ker(u) = Ker(v) = H. Maintenant, supposons que H = (Ker(u)) = Ker(v) pour un certain $v \in E^*$. D'après Corollaire 2.3, il existe $a \in E \setminus H$ tel que u/H = 0 et u(a) = 1. Par suite $u(\alpha a + h) = \alpha, \forall \alpha \in K, \forall h \in H$. Soit $\lambda = v(a)$. D'où $\lambda \neq 0$ puisque $a \notin H$ (car sinon $\lambda = v(a) = 0 \Rightarrow a \in \text{Ker}(v) = H$ absurde). Par suite

$$v(\alpha a + h) = \lambda \alpha = \lambda u(\alpha a + h) = (\lambda u)(\alpha a + h), \forall \alpha \in K, \forall h \in H.$$

Par conséquent, comme $E = Ka \oplus H$, $v(x) = (\lambda u)(x)$, $\forall x \in E$, et ainsi $v = \lambda u$.

3-Equation d'un hyperplan

Soit E un espace vectoriel de dimension finie $n \ge 1$ et $B = \{e_1, e_2, \dots, e_n\}$ une base de E. Soit $u \in E^*$. D'où la

matrice de u relativement à B est $M(u,B) = (a_1 \ a_2 \cdots a_n)$ avec $a_i = u(e_i)$, $\forall i = 1, \dots, n$. Soit $x \in E$ avec $x = x_1e_1 + \dots + x_ne_n$, alors

$$u(x) = (a_1 \ a_2 \ \cdots a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

Proposition 3.1.

Soit E un espace vectoriel de dimension finie n et soit $B = \{e_1, \dots, e_n\}$ une base de E. L'equation cartésienne d'un hyperplan H est de la forme

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$$

avec $a_1, a_2, \dots, a_n \in K$ non tous nuls. Alors $H = \ker(u)$ avec $u \in E^*$ de matrice $(a_1 \ a_2 \ \cdots a_n)$.

Démonstration.

Soit H un sous espace vectoriel de E. Alors H est un hyperplan si et seulement si $\exists 0 \neq u \in E^*$ tel que H = Ker(u) si et seulement si $\exists 0 \neq u \in E^*$ tel que $H = \{x \in E : u(x) = 0\}$ si et seulement si $\exists 0 \neq u \in E^*$ tel que $\{x \in H \Leftrightarrow a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0\}$, où $\{a_1 \ a_2 \cdots a_n\}$ est la matrice de $\{u\}$.

4-Base duale et base préduale

Proposition-Définition 4.1.

Soient E un espace vectoriel sur K de dimension $n \ge 1$ et $B = \{e_1, e_2, \cdots, e_n\}$ une base de E. Pour tout $i \in \{1, 2, \cdots, n\}$, on définit $\underline{\text{le dual}}\ e_i^* \in E^*$ de e_i par $e_i^*(e_j) = \delta_{ij}, \forall j \in \{1, 2, \cdots, n\}$. Alors, $B^* = \{e_1^*, e_2^*, \cdots, e_n^*\}$ est une base de E^* appelée $\underline{\text{base duale}}$ de B. Aussi, la base B de E est appelée base préduale de B^* .

Corollary 2.10.

Soit E un espace vectoriel sur K de dimension n et soit $B = \{e_1, \dots, e_n\}$ une base de E. Soit $u \in E^*$. Alors

$$u = u(e_1)e_1^* + u(e_2)e_2^* + \dots + u(e_n)e_n^*.$$

Proposition 2.11.

Soit E un espace vectoriel sur K de dimension n. Soient $B = \{e_1, \dots, e_n\}$ une famille de E et $B^* = \{u_1, u_2, \dots, u_n\}$ une famille de E^* telles que

$$u_i(e_j) = \delta_{ij}, \forall i, j.$$

Alors

- 1) *B* est une base de *E*.
- 2) B^* est une base de E^* et B^* est la base duale de B.

Démonstration.

1) Soient $\alpha_1, \dots, \alpha_n \in K$ tels que $\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n = 0$. D'où, $\forall j \in \{1, \dots, n\}$,

$$u_j(\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n) = \alpha_1 u_j(e_1) + \alpha_2 u_j(e_2) + \dots + \alpha_n u_j(e_n)$$

= $\alpha_j = 0$.

Par suite *B* est une famille libre et par conséquent *B* est une base de *E*.

2) Elle provient de Proposition-Definition 2.9.

Proposition 2.12.

Soient E un espace vectoriel de dimension n et u_1, u_2, \dots, u_p une famille libre de E^* . Alors il existe p vecteurs x_1, x_2, \dots, x_p tels que $u_i(x_j) = \delta_{ij}, \forall i, j$.

Démonstration.

On complète $\{u_1, \dots, u_p\}$ en une base $\{u_1, \dots, u_n\}$ de E^* . Soit $f: E \longrightarrow K^n$ tel que $f(x) = (u_1(x), \dots, u_n(x))$. f est une application linéaire. Montrons que f est injective. Soit $x \in E$ tel que $f(x) = (0, \dots, 0)$. Supposons que $x \ne 0$. D'où, d'après

Corollaire 2.3, il existe $u \in E^*$ tel que u(x) = 1. Comme $\{u_1, \dots, u_n\}$ est une base de E^* , il existe $\alpha_1, \dots, \alpha_n \in K$ tels que $u = \alpha_1 u_1 + \dots + \alpha_n u_n$. On a $f(x) = (u_1(x), \dots, u_n(x)) = (0, \dots, 0)$, d'où $u_1(x) = \dots = u_n(x) = 0$ et par suite u(x) = 0 ce qui est absurde puisque u(x) = 1. Par suite x = 0 et ainsi $Ker(f) = \{0\}$. D'où f est injective. Maintenant, comme $dim(E) = dim(K^n) = n$, on obtient que f est bijective et par suite f est un isomorphisme d'espaces vectoriels. Soit $f \in \{1, 2, \dots, n\}$ et $\{0, \dots, 0, 1, 0, \dots, 0\} \in K^n$ avec le 1 est placé à la fième place. D'où il existe f est el que

$$f(x_i) = (u_1(x_i), \dots, u_n(x_i)) = (0, \dots, 0, 1, 0, \dots, 0).$$

Par suite $u_j(x_j) = 1$ et $u_i(x_j) = 0, \forall i \neq j$. Par conséquent $u_i(x_j) = \delta_{ij}, \forall i, j$.

Corollaire 2.13.

Soit E un espace vectoriel de dimension $n \ge 1$ sur K. Soit $L = \{u_1, \dots, u_n\}$ une base de E^* . Alors il existe une base $B = \{x_1, \dots, x_n\}$ de E telle que $B^* = L$ c'est à dire que E est la base préduale de E. Les vecteurs E0 sont déterminés par le système d'equations E1 sur E2.

Démonstration.

Elle provient de la combinaison de Proposition 2.11 et Proposition 2.12.

Exercice.

Soient E un \mathbb{R} -espace vectoriel de dimension 3 et $B = \{e_1, e_2, e_3\}$ une base de E. Soient $f_1, f_2, f_3 \in E^*$ telles que

$$\begin{cases} f_1 = 2e_1^* + e_2^* + e_3^* \\ f_2 = -e_1^* + 2e_3^* \\ f_3 = e_1^* + 3e_2^* \end{cases}$$

Montrer que $\{f_1, f_2, f_3\}$ est une base E^* et donner sa base préduale.