Cours de Physique Statistique Avancée

Professeur Mabrouk Benhamou Faculté des Sciences à Meknès

Public cible Étudiants de Licence SMP Semestre 6

Année académique 2020

Chapitre 5

Gaz électronique à base température

Contenu du chapitre 5

- 1. But du chapitre.
- 2. Propriétés au zéro absolu.
- 3. Propriétés au-dessus du zéro absolu.

1. But du Chapitre

- Un gaz d'électrons libres est formé par les électrons des couches périphériques des atomes (métaux et les autres conducteurs).
- Il suffit d'exercer un champ électrique faible pour les extraire de leurs atomes, et l'on a apparition d'un courant électrique.
- Un gaz électronique est un gaz de Fermi, car les électrons ont un spin 1/2 (demi-entier).

- Un gaz d'électrons libres obéit alors à la Statistique de Fermi-Dirac. On peut donc utiliser l'arsenal décrit au chapitre précédent.
- L'objectif est d'<u>étudier</u> les <u>propriétés</u> <u>thermiques</u> d'un gaz d'électrons libres, à base température ($T < T_F$, où T_F est la température de Fermi).

2. Propriétés au zéro absolu

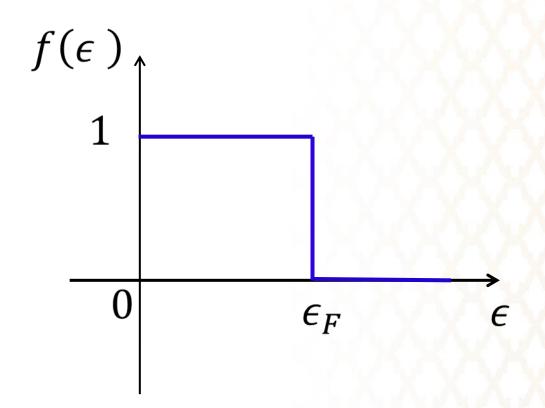
2.1. Facteur de Fermi.

• A T = 0 K, I'on a :

$$f(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)}+1} \to \begin{cases} 1, & \epsilon < \epsilon_F \\ 0, & \epsilon < \epsilon_F \end{cases}$$

• Au zéro absolu, le potentiel chimique μ s'identifie avec l'énergie de Fermi, ϵ_F . Le facteur de Fermi se réduit à une marche de longueur ϵ_F et de hauteur égale à 1.

• Donc, tous les états d'énergie inférieure à ϵ_F sont remplis par les N électrons, ceux d'énergie supérieure à ϵ_F sont vides. L'énergie de Fermi est l'énergie la plus haute à T=0 K.



2.2. Énergie de Fermi.

Expression:

• On part de la formule du nombre moyen de particules, avec $f(\epsilon) = 1$, si $\epsilon < \epsilon_F$, et $f(\epsilon) = 0$, $\epsilon > \epsilon_F$:

$$N = \int_0^{\epsilon_F} \mathcal{D}(\epsilon) d\epsilon = 2 \frac{\Omega}{\sqrt{2}\pi^2 \hbar^3} m^{3/2} \int_0^{\epsilon_F} \epsilon^{1/2} d\epsilon$$
$$N = \sqrt{2} \frac{\Omega}{\pi^2 \hbar^3} m^{3/2} \frac{2}{3} \epsilon_F^{3/2}$$

$$\epsilon_F = (3\pi^2)^{2/3} \frac{\hbar^2}{2m} \left(\frac{N}{\Omega}\right)^{2/3}$$

lci, m est la masse de l'électron.

- Comme il se doit, l'énergie de Fermi croît avec la densité des électrons libres.
- Cette expression montre que l'énergie de Fermi dépend de la <u>nature du cristal</u>, à travers la densité de ses électrons libres N/Ω (voir tableau).

Température de Fermi :

 Elle est donnée en égalant l'énergie de Fermi à l'énergie thermique :

$$T_F = \frac{\epsilon_F}{k_B} = \frac{1}{k_B} (3\pi^2)^{2/3} \frac{\hbar^2}{2m} \left(\frac{N}{\Omega}\right)^{2/3}$$

 A l'instar de l'énergie de Fermi, la température de Fermi <u>croît</u> avec la densité des électrons libres (voir tableau).

Vecteur d'onde de Fermi :

• Le vecteur d'onde de Fermi, \vec{k}_F , est donné à travers la relation : $\epsilon_F = \hbar^2 \vec{k}_F^2/2m$,

$$k_F = \frac{1}{\hbar} \sqrt{2m\epsilon_F}$$

- Le module du vecteur d'onde \vec{k}_F croît avec la densité des électrons libres (voir tableau).
- k_F est le rayon de la **sphère de Fermi** et tous les vecteurs d'onde $\{\vec{k}\}$ pointent à l'intérieur ou sur cette sphère : $||\vec{k}|| \le k_F$.

Impulsion de Fermi:

• L'impulsion de Fermi, $\vec{p}_F = \hbar \vec{k}_F$, est proportionnelle au vecteur d'onde de Fermi, \vec{k}_F . Son module est tel que :

$$p_F = \hbar k_F = \sqrt{2m\epsilon_F}$$

 Le module de l'impulsion <u>croît</u> avec la densité des électrons libres.

Vitesse de Fermi:

• La vitesse de Fermi, \vec{v}_F , s'exprime par sa relation avec l'énergie de Fermi : $\epsilon_F = m\vec{v}_F^2/2$. Son module est donnée par :

$$v_F = \sqrt{\epsilon_F/2m}$$

- Le module de la vitesse de Fermi <u>croît</u> avec la densité des électrons libres.
- Pour le cuivre, par exemple, $v_F \simeq 10^6$ m/s.
- $rac{r}{r}_F$ doit être comparée à la vitesse de la lumière dans le vide $c = 3 \times 10^8$ m/s :

$$\frac{v_F}{c} \simeq \frac{10^6}{3 \times 10^8} = \frac{1}{300} \ll 1$$

 v_F est 300 *fois* plus petite que c, et les électrons libres ne sont donc pas relativistes.

- Au zéro absolu, les électrons libres sont animés d'une vitesse moyenne, environ 10⁴ fois plus grande que la vitesse moyenne des molécules d'un gaz (azote), à température ambiante.
- Les électrons libres ont tendance à s'empiler sur les états d'énergie de plus en plus élevée (gaz complétement dégénéré).

• Le fait que les électrons libres ont une vitesse caractéristique très grande tire son origine du *Principe d'Exclusion de Pauli*.

Tableau indicatif:

Métal	$n \times 10^{22} \; (\mathrm{cm}^{-3})$	$\epsilon_F \; (\mathrm{eV})$	$T_F \times 10^4 \; (\mathrm{K})$	$k_F \times 10^8 \; ({\rm cm}^{-1})$	$v_F \times 10^8 \; (\mathrm{cm/s})$
Lithium	4.74	4.74	5.51	1.12	1.29
Sodium	2.54	3.24	3.77	0.92	1.07
Potassium	1.32	2.12	2.46	0.75	0.86
Rubidium	1.08	1.85	2.15	0.70	0.81
Césium	0.86	1.59	1.84	0.65	0.75
Cuivre	8.46	7.00	8.16	1.36	1.57
Argent	5.86	5.49	6.36	1.20	1.39
Or	8.90	5.53	6.42	1.21	1.40

2.3. Énergie interne de Fermi.

• On part de la formule de l'énergie interne, avec $f(\epsilon) = 1$, si $\epsilon < \epsilon_F$, et $f(\epsilon) = 0$, $\epsilon > \epsilon_F$:

$$U_F = \int_0^{\epsilon_F} \epsilon \mathcal{D}(\epsilon) d\epsilon = 2 \frac{\Omega}{\sqrt{2}\pi^2 \hbar^3} m^{3/2} \int_0^{\epsilon_F} \epsilon^{3/2} d\epsilon$$

$$U_F = \sqrt{2} \frac{\Omega}{\pi^2 \hbar^3} m^{3/2} \frac{2}{5} \epsilon_F^{5/2} = \frac{3}{5} N \epsilon_F$$

Les électrons libres n'occupent tous l'énergie de Fermi. Les 2/5 des électrons occupent les niveaux d'énergie inférieurs ($\epsilon < \epsilon_F$).

2.4. Grand potentiel de Fermi.

• On utilise la relation générale : $A_F = -2U_F/3$,

$$A_F = -\frac{2}{5}N\epsilon_F$$

2.5. Pression de Fermi.

• On utilise la relation générale : $P_F\Omega = 2U_F/3$,

$$P_F = \frac{1}{5} (3\pi^2)^{2/3} \frac{\hbar^2}{m} \left(\frac{N}{\Omega}\right)^{5/3}$$

C'est la <u>relation directe</u> entre la pression et la densité des électrons libres.

3. Propriétés au-dessus du zéro absolu

3.1. Développement de Sommerfeld.

- On s'intéresse aux propriétés thermiques d'un gaz d'électrons libres pour $T < T_F$.
- Les grandeurs physiques, comme le nombre moyen de particules et l'énergie interne, se présentent comme une constante multipliant l'intégrale :

$$I = \int_0^\infty \frac{\varphi(\epsilon)}{e^{\beta(\epsilon - \mu)} + 1} d\epsilon$$

Le calcul de cette dernière est donc crucial.

• La valeur approchée de cette intégrale, à basse température $(T < T_F)$, est donnée par le **Développement de Sommerfeld**, démontré, en détails, dans le Polycopié :

$$I \simeq \int_0^{\mu} \varphi(\epsilon) d\epsilon + \frac{\pi^2}{6} (k_B T)^2 \varphi'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 \varphi'''(\mu) + \cdots$$

3.2. Nombre moyen de particules.

L'on applique le Développement de Sommerfeld à la fonction :

$$\varphi(\epsilon) = \frac{\Omega}{\pi^2 \hbar^3} \sqrt{2} m^{3/2} \epsilon^{1/2}$$

$$N = \frac{\Omega}{\pi^2 \hbar^3} \sqrt{2} m^{3/2} \left\{ \frac{2}{3} \mu^{3/2} + \frac{\pi^2}{12} (k_B T)^2 \mu^{-1/2} + \cdots \right\}$$

D'au autre côté,
$$N = \frac{2}{3} \frac{\Omega}{\pi^2 \hbar^3} \sqrt{2} m^{3/2} \epsilon_F^{3/2}$$
,

$$\epsilon_F^{3/2} = \mu^{3/2} + \frac{\pi^2}{8} (k_B T)^2 \mu^{-1/2} + \cdots$$

$$\mu^{3/2} = \epsilon_F^{3/2} - \frac{\pi^2}{8} (k_B T)^2 \mu^{-1/2} + \cdots$$

A l'ordre deux en température T, l'on a :

$$\mu = \epsilon_F \left[1 - \frac{\pi^2}{12} (k_B T)^2 \epsilon_F^{-2} + \cdots \right]$$

Or $\epsilon_F = k_B T_F$, I'on obtient la **relation** fondamentale :

$$\mu = \epsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \cdots \right]$$

3.3. Énergie interne.

 L'on applique le Développement de Sommerfeld à la fonction :

$$\varphi(\epsilon) = \frac{\Omega}{\pi^2 \hbar^3} \sqrt{2} m^{3/2} \epsilon^{3/2}$$

et on utilise l'expression précédente du potentiel chimique :

$$U = \frac{3}{5}N\epsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \cdots \right]$$

3.4. Grand potentiel.

De la relation générale, A = -2U/3, l'on déduit :

$$A = -\frac{2}{5}N\epsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \cdots \right]$$

3.5. Entropie.

- Rappelons : $dA = -SdT Nd\mu Pd\Omega$.
- Partons de la relation,

$$S = -\left(\frac{\partial A}{\partial T}\right)_{\Omega,\mu}$$

$$S = \Omega\left(\frac{4\pi^3}{3} \frac{1}{h^3} (2m)^{3/2} k_B^{5/2} T_F^{1/2}\right) T$$

 L'entropie varie donc d'une manière <u>linéaire</u> en fonction de la température absolue, T.

3.6. Chaleur spécifique.

De la relation:

$$C_e = T \left(\frac{\partial S}{\partial T} \right)_{N,\Omega} = \left(\frac{\partial U}{\partial T} \right)_{N,\Omega}$$

$$C_e = \frac{\pi^2}{2} N k_B \frac{T}{T_F} = \gamma T$$

- La contribution des électrons libres à la chaleur spécifique <u>croît linéairement</u> en fonction de la température absolue, T.
- Rappelons que la chaleur spécifique provenant du réseau (voir Chapitre 9) varie comme :

 $C_r = aT^3$. Donc, à basse température, la chaleur spécifique totale est la somme de C_e et de C_r :

$$C = aT^3 + \gamma T$$

3.7. Équation d'état.

De la relation : $A = -P \Omega$, l'on déduit l'équation d'état du gaz d'électrons libres, comme système thermodynamique :

$$P\Omega = \frac{2}{5}N\epsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 + \cdots \right]$$

Noter que ϵ_F et T_F dépendent de N et Ω . L'apparition du signe + devant le terme correctif signifie que les électrons "se repoussent".

