<u>Chimie Minérale Descriptive : Module C245/S4 – BCG</u> <u>TD série n°1</u>

Exercice 1

Les valeurs des rayons atomiques et des énergies de première ionisation de quelques éléments sont données dans le tableau suivant :

Eléments	Li	Be	В	С	N	0	ш	Ne
r _{at} (pm)	163	109	82	65	55	47	41	36
EI ₁ (eV)	5,4	9,3	8,3	11,3	14,5	13,6	17,4	21,6

- a- Donner la configuration électronique de ces éléments.
- b- Que pouvez-vous en conclure?
- c- Déduire des configurations électroniques de ces éléments les ions les plus probables.
- d- Justifier l'évolution du rayon atomique de ces éléments.
- e- Tracer le graphe El₁ = f(Z) et interpréter son allure.

Exercice 2

Classer par ordre de rayon croissant : $_8O^2$, $_{10}Ne$ et $_{12}Mg^{2+}$, puis $_3Li^+$, $_4Be^{2+}$, $_5B^{3+}$ et $_{11}Na^+$.

Classer par ordre d'énergie d'ionisation croissante : 11Na⁺, 11Na, 8O et 10Ne.

Classer par ordre l'électronégativité croissante : 9F, 13Al et 8O puis 12Mg, 20Ca, 38Sr et 56Ba

Classer les éléments suivants dans l'ordre décroissant de leur conductivité électrique : Al, Si, P, puis Se, Te et Po.

Exercice 3

Quelles sont les valeurs de l'électronégativité de l'hydrogène dans les échelles de Mulliken et de Pauling ?

Données: AE(H) = 0.754 eV; EI(H) = 13.59 eV

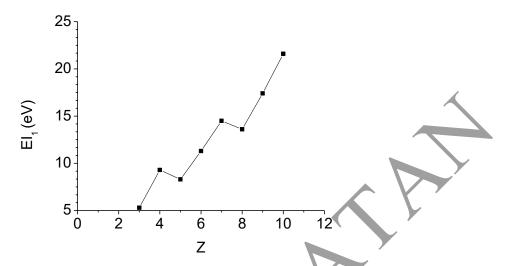
Molécules	HF	H ₂	F ₂
E ∟/kJ.mol ⁻¹	568,6	432	157

AE : Affinité électronique ; **EI** : Energie d'ionisation ; **E**_L : Energie de liaison

<u>Chimie Minérale Descriptive : Module C245 – BCG</u> <u>Corrigé de la série 1</u>

Exercice 1

a-


Eléments	Configuration électronique		
Li	1s ² 2s ¹ ou [He]2s ¹		
Ве	1s²2s² ou [He]2s²		
В	1s ² 2s ² 2p ¹ ou [He]2s ² 2p ¹		
С	1s ² 2s ² 2p ² ou [He]2s ² 2p ²		
N	1s ² 2s ² 2p ³ ou [He]2s ² 2p ³		
О	1s ² 2s ² 2p ⁴ ou [He]2s ² 2p ⁴		
F	1s ² 2s ² 2p ⁵ ou [He]2s ² 2p ⁵		
Ne	1s ² 2s ² 2p ⁶ ou [He]2s ² 2p ⁶		

b-Tous ces éléments possèdent le même nombre quantique principal $\mathbf{n} = \mathbf{2}$. Ils appartiennent donc tous à la $\mathbf{2}^{\text{ème}}$ **période**.

c- Chaque élément aura tendance à acquérir la configuration du gaz rare le plus proche, d'où :

Eléments	Configuration électronique	Ion le plus probable	
Li	1s ² 2s¹ ou [He]2s¹	Li⁺ (perte d'un e⁻)	
Be	1s ² 2s ² ou [He]2s ²	Be ²⁺ (perte de 2 e ⁻)	
В	1s ² 2s ² 2p ¹ ou [He]2s ² 2p ¹	B ³⁺ (perte de 3 e ⁻)	
С	1s ² 2s ² 2p ² ou [He]2s ² 2p ²	C ⁴⁺ ou C ⁴⁻ (perte ou gain de 4 e ⁻)	
N	1s²2s²2p³ ou [He]2s²2p³	N³- (gain de 3 e ⁻)	
0	1s ² 2s ² 2p ⁴ ou [He]2s ² 2p ⁴	O²- (gain de 2 e ⁻)	
F	1s ² 2s ² 2p ⁵ ou [He]2s ² 2p ⁵	F- (gain de 1 e-)	
Ne	1s ² 2s ² 2p ⁶ ou [He]2s ² 2p ⁶	Aucun (Gaz rare stable)	

□ d- Le long d'une période n est constant mais Z augmente et Z* (la charge nucléaire effective) augmente par conséquent l'attraction noyau/électrons augmente se qui se traduit par la diminution du rayon atomique.

Dans une **même période El₁ augmente avec Z** du fait de la plus grande attraction exercée par le noyau (r_{at} diminue et l'énergie varie comme l'inverse du rayon).

Deux anomalies sont cependant observées pour B et O qui conduisent respectivement à des structures électroniques avec une sous-couche s remplie et une sous couche p à moitié remplie plus stables.

Exercice 2

1- Les trois espèces (O^{2-} , Mg^{2+} , Ne) ont le même nombre d'électrons, c'est-à-dire dix. Sans faire intervenir de coefficient d'écran :

- Les <u>dix électrons</u> de l'ion oxyde O²⁻ sont attirés par les <u>huit protons</u> du noyau de l'atome d'oxygène.
- Les dix électrons sont retenus par douze protons dans l'ion Mg²⁺.
- Les <u>dix électrons</u> sont retenus par <u>dix protons</u> dans le néon.

$$D'où : r(Mg^{2+}) < r(Ne) < r(O^{2-})$$

₃Li⁺, ₄Be²⁺, ₅B³⁺: ions ayant le même nombre d'électrons attirés par trois, quatre ou cinq protons :

D'où :
$$r(B^{3+}) < r(Be^{2+}) < r(Li^{+})$$

Entre ₃Li⁺ et ₁₁Na⁺, le changement de période fait que ces ions sont isoélectroniques de ₂He et ₁₀Ne.

A priori,
$$r(Li^+) < r(Na^+)$$

2-
$$_{11}$$
Na ([Ne]3s¹) \longrightarrow e⁻ + $_{11}$ Na⁺ ([Ne]) EI1
 $_{11}$ Na⁺ ([Ne]) \longrightarrow e⁻ + $_{11}$ Na²⁺(1s²2s²2p⁵) EI2
 $_{8}$ O (1s²2s²2p⁴) \longrightarrow e⁻ + $_{8}$ O⁺ (1s²2s²2p³) EI3
 $_{10}$ Ne (1s²2s²2p⁶) \longrightarrow e⁻ + $_{10}$ Ne + (1s²2s²2p⁵) EI4

EI: Energie d'Ionisation

El2 > El4 : ${}_{11}$ Na⁺ est isoélectronique de ${}_{10}$ Ne : dix électrons attirés respectivement par **onze** et **dix** protons.

Il est facile d'ioniser un élément des alcalins et un peu plus difficile de désapparier deux électrons d'une sous-couche 2p :

$$EI(Na) < EI(O) < EI(Ne) < EI(Na^+)$$

3- En se basant sur l'évolution générale de l'électronégativité dans le tableau périodique, on obtient :

L'électronégativité des éléments croît quand on monte dans un groupe (Z diminue) et lorsque l'on se déplace de gauche à droite dans une période (Z augmente).

4- **Al** est un métal, **Si** est un semi-conducteur et **P** est un non métal. Par ordre de conductivité décroissante : **Al**, **Si** et **P**.

Sélénium (Se), tellure (Te) et polonium (Po) appartiennent au groupe VIA (groupe 16).

Po est un métal, Se est un non-métal et Te est un semi-conducteur.

Par ordre de conductivité décroissante : Po, Te et Se.

Exercice 3

- Calcul de E_M (Echelles de Mulliken) : Afin de relier les propriétés atomiques d'un atome à son électronégativité, Mulliken propose la formule suivante :

$$E_{\rm M}$$
 (eV atome⁻¹) = 1/2 x [EI₁(H) + AE₁(H)] x (1/3,15)

Application numérique :

$$E_{M} = (1/6,3) \times (0,754 + 13,59) = 2,28$$

Calcul de E_p (Echelles de Pauling) :
 Pauling définit la différence d'électronégativité des deux atomes A et B par la relation :

$$E_p(A) - E_p(B)$$
 (eV atome⁻¹)^{1/2} = 0.102 x $\sqrt{\Delta}$

$$\sqrt{\Delta} \text{ (kJ.mole}^{-1})^{1/2} = \sqrt{E(A-B)_g - \sqrt{E(A-A)_g \cdot E(B-B)_g}}$$

1 (eV atome⁻¹) = 96,48 (kJ.mole⁻¹)

Comme origine de l'échelle, Pauling choisit Ep(F) = 3,98.

Application numérique :

$$Ep(F) - Ep(H) = 0.102 \times (568.6 - (432 \times 157)^{1/2})^{1/2} = 1.79$$

$$Ep(H) = 3.98 - 1.79 = 2.19$$

On retrouve approximativement les mêmes valeurs.