Examen de la session ordinaire - Juin 2023 (Durée 1 heure 30)

Année Universitaire 2022 / 2023 Filière: SMP, Semestre: 4

Module: Electricité 3

.....

-I-

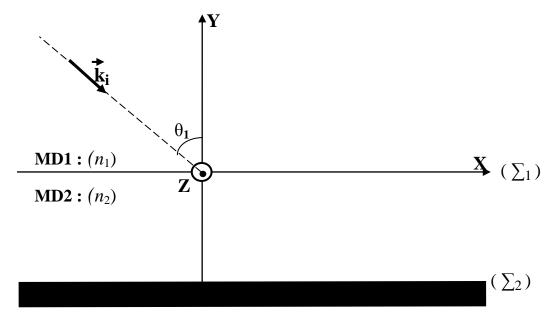
- 1) Monter que dans un milieu aimanté linéaire, homogène et isotrope l'absence de courant volumique réel entraine l'absence de courant volumique fictif et réciproquement.
- 2) Monter que dans le cas d'une onde électromagnétique plane il y a équipartition de l'énergie entre les formes électrique et magnétique.
- 3) Rappeler l'expression de la puissance électromagnétique transportée par une onde électromagnétique.

-II- Propagation d'Ondes Electromagnétiques (OEM) dans les milieux matériels :

On considère trois milieux matériels successifs tels que (voir figure) :

- Milieu 1 (MD1): diélectrique non absorbant, de perméabilité magnétique (μ_0) , de permittivité diélectrique relative (ε_{r1}) et d'indice de réfraction (n_1) .
- Milieu 2 (MD2): diélectrique non absorbant, de perméabilité magnétique (μ_0) , de permittivité diélectrique relative (ε_{r2}) et d'indice de réfraction (n_2) .
- Milieu 3: conducteur parfait.

Les milieux 1 et 2 sont séparés par une surface (\sum_1) plane confondue avec le plan XOZ d'un repère cartésien $\Re(O,X,Y,Z)$, ne contenant ni charges réelles $(\sigma=0)$, ni courant réel $(\vec{k}=\vec{0})$.


Les milieux 2 et 3 sont séparés par une surface (Σ_2) parallèle à la surface (Σ_1) , dépourvue également de charges réelles $(\sigma=0)$ et de courant réel $(\vec{k}=\vec{0})$.

On repère un point **M** de l'espace par ses coordonnées cartésiennes (x, y, z).

Une **OEM** incidente $(\vec{E}_i, \vec{B}_i, \vec{k}_i)$, plane monochromatique de pulsation ω et de vecteur d'onde \vec{k}_i , **polarisée parallèlement à la direction OZ**, se propageant dans le milieu (**MD1**), arrive à la surface (Σ_1) sous un angle d'incidence θ_1 , donnant naissance à :

- une onde $(\vec{E}_{r1},\vec{B}_{r1},\vec{k}_{r1})$ réfléchie dans le milieu (MD2) à la surface (\sum_1) ,
- une onde $(\vec{E}_t, \vec{B}_t, \vec{k}_t)$ transmise dans le milieu (MD2) sous un angle de réfraction θ_2
- une onde $(\vec{E}_{r2},\vec{B}_{r2},\vec{k}_{r2})$, réfléchie dans le milieu (MD2), à la surface (Σ_2) du milieu conducteur.

REMARQUE: On considère le cas où les milieux 1 et 2 sont tels que $(n_1 < n_2)$.

Conducteur

- 1) Rappeler la relation de structure de l'onde plane entre les grandeurs vectorielles.
- 2) Exprimer les vecteurs d'onde \vec{k}_1 , \vec{k}_{r1} , \vec{k}_t et \vec{k}_{r2} dans la base cartésienne $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$.

On posera: $k_i = k_{r1} = k_1$ et $k_t = k_{r2} = k_2$.

- 3) Dessiner la figure qui illustre cette propagation et représenter les champs électromagnétiques $(\vec{E}_i, \vec{B}_i, \vec{E}_{r1}, \vec{B}_{r1}, \vec{E}_t, \vec{B}_t, \vec{E}_{r2}, \vec{B}_{r2})$, en s'appuyant sur les propriétés des ondes électromagnétiques planes et les facteurs de réflexion et de transmission en amplitude aux surfaces de séparation (Σ_1) et (Σ_2) entre les différents milieux de propagation.
- 4) On désignera par :

 - $egin{array}{lll} \bullet B_{0i}, B_{0r1}, B_{0t} \ \mbox{et} \ B_{0r2} & \mbox{les} & \mbox{amplitudes} & \mbox{respectives} & \mbox{des} & \mbox{champs} & \mbox{magn\'etiques} \\ \vec{B}_i, \vec{B}_{r1}, \vec{B}_t \ \mbox{et} & \vec{B}_{r2}. \\ \end{array}$
 - a- Ecrire les relations de structures reliant E_{0i} et B_{0i} , E_{0r1} et B_{0r1} , E_{0t} et B_{0t} , E_{0r2} et B_{0r2}
 - b- Exprimer les champs électromagnétiques :

 $(\vec{E}_{i}(M,t),\vec{B}_{i}(M,t))$ de l'onde incidente,

 $\left(\vec{E}_{r1}(M,t),\vec{B}_{r1}(M,t)\right)$ de l'onde réfléchie dans le milieu (1),

 $(\vec{E}_t(M,t), \vec{B}_t(M,t))$ de l'onde transmise dans le milieu (2)

 $\left(\vec{E}_{r2}(M,t),\vec{B}_{r2}(M,t)\right)$ de l'onde réfléchie dans le milieu (2).

- 5) Vérifier que la composante tangentielle du champ électrique \vec{E} est continue à la surface (\sum_1)
- 6) Déterminer le vecteur de Poynting $\vec{\Re}_i$ de l'onde incidente $(\vec{E}_i,\vec{B}_i,\vec{k}_i)$. Conclure.
