```
Algorithme du tri par sélection d'un tableau
```

```
Pour i allant de 1 à N-1 faire

indice_min ← i;

Pour j ← i+1 à N faire  //Chercher la plus petite valeur dans le sous tableau de droite

Si (T[j] < T[indice_min]) alors

indice_min ← j;

Finsi

Finpour j

Si ( i <> indice_min) alors //on a trouvé une valeur minimale ayant indice_min

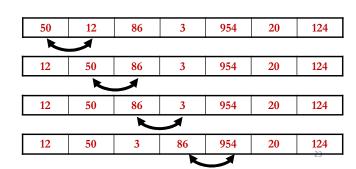
Aide ← T[indice_min];

T[indice_min] ← T[i];

T[i] ← Aide;

Finsi

Finpour i
```


Tri à bulle d'un tableau

- 1. Parcourir tout le tableau en comparant successivement les éléments du tableau deux à deux.
- 2. Permuter les deux éléments comparés s'ils ne sont pas dans l'ordre.
- 3. Cette opération est répétée plusieurs fois jusqu'à ce que le tableau soit entièrement parcouru sans réaliser aucune permutation.

Soit le tableau suivant :

Premier passage:

- On se positionne dans la 1^{ere} case :
 50>12 → On permute
- On se positionne dans la 2^{ième} case :
 50<86 → Pas de permutation
- On se positionne dans la 3^{ième} case :
 86>3 → On permute
- On se positionne dans la 4^{ième} case :
 86<954 → Pas de permutation

Tri à bulle d'un tableau

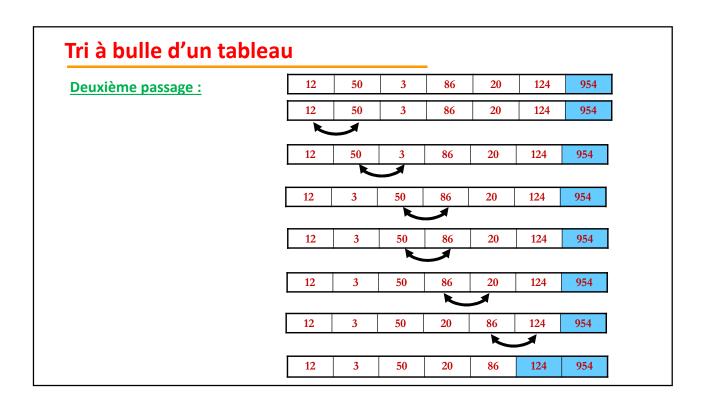
4. On se positionne dans la 4^{ième} case :
 86<954 → Pas de permutation

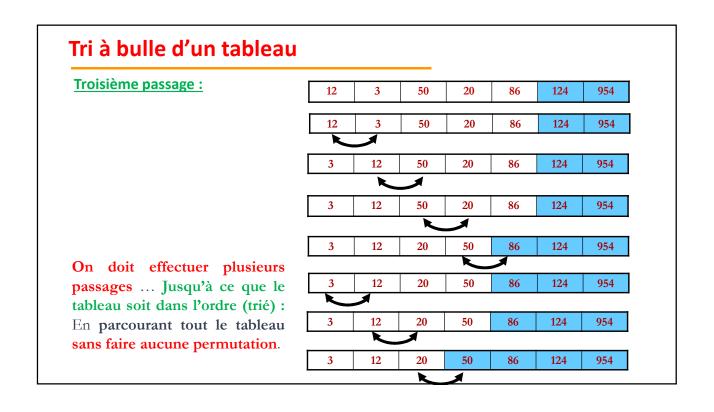
12 50 3 86 954 20 124

On se positionne dans la 5^{ième} case :
 954>20 → On permute

12 50 3 86 954 20 124

On se positionne dans la 6^{ième} case :
 954>124 → On permute


					1	
12	50	3	86	20	954	124
					/	1
12	50	3	86	20	124	954


Tri à bulle d'un tableau

Remarques:

	12	50	3	86	20	124	954
--	----	----	---	----	----	-----	-----

- A l'issue de ce premier passage, on remarque que le tableau n'est pas entièrement trié, mais la plus grande valeur a été placée dans la dernière case du tableau (colorée en bleu).
- 2. Il faut effectuer plusieurs passages en vérifiant à chaque passage si des permutations ont eu lieu.
- 3. Quand une **permutation au moins a eu lieu** lors d'au passage, **il faut en relancer un autre**
- 4. Il faut mettre en place un drapeau indiquant si une permutation a eu lieu ou non

Tri à bulle d'un tableau

```
terme_tri ← N-1;

Répéter

ordre ← vrai;

Pour i allant de 1 à terme_tri faire

Si (T[i] > T[i+1]) alors

Aide ← T[i];

T[i] ← T[i+1];

T[i+1] ← Aide;

ordre ← faux;

Finsi

Finpour

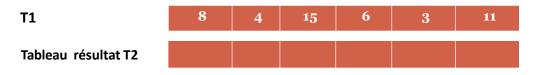
Si (ordre = faux) alors

terme_tri ← terme_tri-1;

Finsi

Jusqu'à (ordre = vrai)
```

28


Tri par extraction

Cette méthode utilise en plus du tableau à trier un deuxième tableau dans lequel on place les éléments triés :

- On cherche le plus **petit élément min** dans le premier tableau T1 et on le place au début du deuxième tableau T2.
- Ensuite on cherche le plus petit élément parmi ceux non encore sélectionnée du T1 et on le place dans T2 jusqu'à ce que tous les éléments soient recopiés dans T2.
- A chaque fois qu'un élément est sélectionné, il est **remplacé par une valeur spéciale** pour ne pas être sélectionné une deuxième fois.

Exemple:

Soit un tableau T1 suivant contient 6 entiers (notes d'étudiants, valeur spéciale = 21) :

<u>Itération 1 :</u>	Т1	8	4	15	6	3	11
	Tableau résultat T2	3					
	T1 (après iteration 1)	8	4	15	6	21	11
Itération 2 :							
iteration 2.	T1	8	4	15	6	21	11
	Tableau résultat T2	3	4				
	T1 (après iteration 2)	8	21	15	6	21	11
<u>Itération 3 :</u>	T1	8	21	15	6	21	11
	Tableau résultat T2	3	4	6			
	T1 (après iteration 3)	8	21	15	21	21	11

Itáration / .							
<u>Itération 4 :</u>	T1	8	21	15	21	21	11
	Tableau résultat T2	3	4	6	8		
	T1 (après iteration 4)	21	21	15	21	21	11
<u>Itération 5 :</u>	T1	21	21	15	21	21	11
	Tableau résultat T2	3	4	6	8	11	
	T1 (après iteration 5)	21	21	15	21	21	21
<u>Itération 6 :</u>	T1	21	21	15	21	21	21
	Tableau résultat T2	3	4	6	8	11	15
	T1 (après iteration 6)	21	21	21	21	21	21
 Tous les éléments de T1 sont remplacés par une valeur spéciale (21). Tous les éléments sont triés et recopiés dans le tableau résultat T2. 							

```
Tri par extraction
Algorithme triParExtraction;
  Var
      T1, T2: tableau[1..100] de réel;
      i, j, max, N, ind : entier;
  Début
         Répéter
                 Ecrire("saisir la dimension N du tableau");
                 Lire(N);
         Jusqu'à (N>=0 ET N<=100);
         Si (N=0) alors
                 Ecrire("le tableau est vide");
         Sinon
                 // Saisie des éléments du tableau
                 Pour i ← 1 à N faire
                        Ecrire("entrer l'élément T1 ", i); Lire(T1[i]);
                 FinPour i
                 // Saisie des éléments du tableau avant le tri
                Pour i ← 1 à N faire
                        Ecrire(T1[i]);
                 FinPour i
```

```
max ← 1000;
   Pour i ← 1 à N faire
         ind \leftarrow 1;
         Pour j ← 2 à N faire
              Si(T1[ind]>T1[j]) alors
                   ind \leftarrow j;
              Finsi
         FinPour j
                T2[i] \leftarrow T1[ind];
                T1[ind] \leftarrow max;
   FinPour i
   // affichage des éléments du tableau triés
  Pour i ← 1 à N faire
           Ecrire(T2[i]);
  FinPour i
Finsi
Fin
```

Recherche dichotomique dans un tableau

Recherche dichotomique :

Dans le cas où le tableau est ordonné, on peut améliorer l'efficacité de la recherche séquentielle en utilisant la méthode de recherche dichotomique

- <u>Principe</u>: diviser par 2 le nombre d'éléments dans lesquels on cherche la valeur x à chaque étape de la recherche. Pour cela on compare x avec T[milieu]:
 - Si x < T[milieu], il suffit de chercher x dans la 1ère moitié du tableau entre (T[0] et T[milieu-1])
 - Si x > T[milieu], il suffit de chercher x dans la 2ème moitié du tableau entre (T[milieu+1] et T[N-1])

Recherche dichotomique dans un tableau

```
\inf \leftarrow 0, \sup \leftarrow N-1, Trouvé \leftarrow Faux
TantQue ((inf <=sup) ET (Trouvé=Faux)) faire
    milieu←(inf+sup)/2
          Si (x=T[milieu]) alors
                    Trouvé ← Vrai
          Sinon Si (x>T[milieu]) alors
                    inf \leftarrow milieu + 1
                    Sinon
                               sup ← milieu - 1
                    FinSi
          FinSi
FinTantQue
Si (Trouvé) alors
    écrire ("x appartient au tableau")
Sinon
    écrire ("x n'appartient pas au tableau")
FinSi
```