UNIVERSITE MOULAY ISMAIL FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE

Année académique 2023 / 2024 SMP, Semestre 4 <u>Module</u>: Electricité 3

Examen de la session ordinaire 2024

I-Questions du cours :

- 1) Expliquer la différence entre les trois types de magnétisme : Le diamagnétisme, le paramagnétisme et le ferromagnétisme.
- 2) Montrer que dans un milieu diélectrique parfait, l'absence de la charge électrique volumique réelle entraine l'absence de la charge volumique de polarisation et réciproquement.

II- Propagation des ondes électromagnétiques (OEM) dans les milieux matériels

Une OEM plane monochromatique incidente, se propage dans un milieu diélectrique non absorbant MD1 d'indice de réfraction n_1 , arrive sous un angle d'incidence θ_1 à la surface $(\Sigma_1 = \text{plan YOZ})$ qui sépare ce milieu d'un milieu très bon conducteur. L'onde réfléchie à la surface de ce conducteur arrive à la surface $(\Sigma_2 = \text{plan Y'O'Z'})$ d'un milieu diélectrique MD2 également non absorbant d'indice n_2 , donnant lieu à une onde réfléchie dans le milieu MD1 et une onde transmise dans le milieu MD2 sous un angle de transmission θ_2 (voir figure).

On désignera par :

Milieu 1 : milieu diélectrique (**MD1**) $(\varepsilon_1, \mu_0, n_1)$

Milieu 2 : milieu diélectrique (**MD2**) $(\varepsilon_2, \mu_0, n_2)$

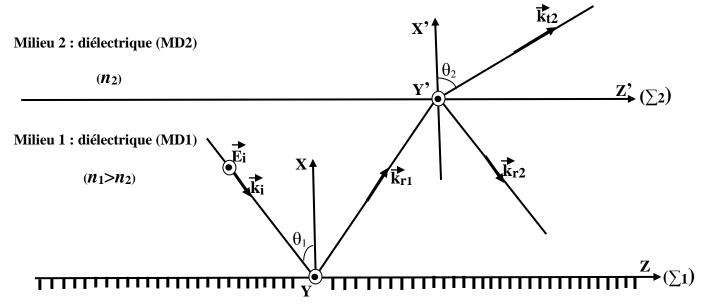
Milieu 3: milieu bon conducteur

On considère le cas $(n_1 > n_2)$

 $(\vec{E}_i,\vec{B}_i,\vec{k}_i)\,$: Onde incidence dans le MD1 de vecteur d'onde \vec{k}_i .

 $(\vec{E}_{r1},\vec{B}_{r2i},\vec{k}_{r1}): \text{Onde r\'efl\'echie \`a la surface} \, (\Sigma_1) \ \ \text{du milieu conducteur de vecteur d'onde } \vec{k}_{r1} \, .$

 $(\vec{E}_{r2},\vec{B}_{r2},\vec{k}_{r2})$: Onde réfléchie à la surface (Σ_2) qui sépare le **MD1** du **MD2** de vecteur d'onde \vec{k}_{r2} .


 $(\vec{E}_{t2}, \vec{B}_{t2}, \vec{k}_{t2})$: Onde transmise dans le **MD2** à travers la surface (\sum_2) de vecteur d'onde \vec{k}_{t2} .

 $E_{0i} \text{ et } B_{0i} \text{ : amplitudes respectives des champs } \vec{E}_i(M,t) \text{ et } \vec{B}_i(M,t) \text{ de l'onde incidente}.$

 E_{0r1} et B_{0r1} : amplitudes respectives des champs $\vec{E}_{r1}(M, t)$ et $\vec{B}_{r1}(M, t)$ de l'onde réfléchie à la surface (Σ_1) du conducteur.

 E_{0r2} et B_{0r2} : amplitudes respectives des champ \vec{E}_{r2} (M, t) et \vec{B}_{r2} (M, t) de l'onde réfléchie à l'interface (Σ_2) entre les milieux **MD1** et **MD2**.

 E_{0t2} et B_{0t2} : amplitudes des champs \vec{E}_{t2} (M, t) et \vec{B}_{t2} (M, t) de l'onde transmise dans le milieu MD2.

Milieu 3 : conducteur parfait

- 1) Exprimer les vecteurs d'onde \vec{k}_i , \vec{k}_{r1} , \vec{k}_{r2} et \vec{k}_{t2} des quatre ondes considérées :
- 2) Rappeler la relation de structure des ondes planes qui relie les champs $\vec{E}(M, t)$ et $\vec{B}(M, t)$:
- 3) Ecrire les relations de structure qui relient les amplitudes des champs $\vec{E}(M, t)$ et $\vec{B}(M, t)$ pour les quatre ondes considérées.
- 4) a- En tenant compte des propriétés des ondes planes, représenter sur la figure les vecteurs E
 i et B
 i de l'onde incidente.
 - b- Ecrire les expressions réelles des champs $\vec{E}_i(M,t)$ et $\vec{B}_i(M,t)$.
 - **c-** Quel est le type de polarisation de l'onde.
 - **d-** Préciser le mode fondamental de propagation de l'onde en justifiant votre réponse.
- 5) **a-** Ecrire l'expression réelle du champ $\vec{E}_{r1}(M,t)$ de l'onde réfléchie à la surface (Σ_1) de séparation entre le **MD1** et le Conducteur.
 - **b-** En utilisant la relation de passage pour le champ électrique \vec{E} , en un point M de la surface (Σ_1) , montrer que : $E_{0r1}=-E_{0i}$. Interpréter le résultat et Conclure.
 - **c-** Représenter sur la figure les vecteurs \vec{E}_{r1} et \vec{B}_{r1} de l'onde réfléchie à la surface (Σ_1) .
 - **d-** Déterminer l'expression du champ d'induction magnétique $\vec{B}_{r1}(M, t)$
- 6) a- En s'appuyant sur les propriétés des ondes planes et des relations entre les indices de réfraction n₁ et n₂, des milieux MD1 et MD2, représenter sur la figure les vecteurs E
 _{r2} et B
 _{r2} de l'onde réfléchie et E
 _{t2} et B
 _{t2} de l'onde transmise à travers la surface (Σ₂).
 - **b-** Ecrire les expressions des champs $\vec{E}_{t2}\left(M,t\right),\vec{B}_{t2}\left(M,t\right)$.
