

## Circuits électriques Parcours électronique



## Chapitre 2 : Méthode d'analyse des circuits électriques

> Lois de base en régime sinusoïdal

Théorème de Thévenin et de Norton

Simplification de Kennelly

Écriture des lois de Kirchhoff en régime sinusoïdal

Les lois de Kirchhoff restent valables dans l'ARQS.

Réécrivons-les en régime établi sinusoïdal, à l'aide de la notation complexe

règles simples du calcul algébrique sur les nombres complexes.

#### Loi des nœuds

Pour la même pulsation  $\omega$ 

termes en  $e^{j \omega t}$  se simplifient

$$\sum_{k} \in_{k} i_{k} = Re\left(\sum_{k} \in_{k} \hat{\imath}_{k}\right)$$

$$= Re\left(\sum_{\substack{k \text{ Pr. Omar EL OUTASSI} \\ \text{o.eloutassi@umi.ac.ma}}} \mathbf{e}^{\mathbf{j}\,\omega t}\right)$$

#### Loi des nœuds

termes en  $e^{j \omega t}$  se simplifient

Donc

$$Re(e^{j\omega t}\sum_{k}\in_{k}\hat{\imath}_{km})=0$$

$$\sum_{k} \in_{k} \hat{\imath}_{km} = 0$$

 $\in_k = 1$  si le courant  $i_k$  est orienté vers le nœud

 $\in_k = -1$  si le courant  $i_k$  est orienté vers le sens contraire du nœud.

#### LOIS DE DASE LIN NEGLIVIE SINOSOIDAL

#### Loi des mailles

La somme algébrique des tensions aux bornes des branches d'une maille décrite dans un sens arbitraire est nulle :

$$\sum_{k} \in_{k} u_{k} = Re\left(\sum_{k} \in_{k} \hat{u}_{k}\right)$$

$$= Re\left(\sum_{k} \in_{k} \hat{u}_{km} e^{j \omega t}\right)$$

$$= Re\left(e^{j \omega t} \sum_{k} \in_{k} \hat{u}_{km}\right)$$

$$= 0$$

#### Loi des mailles

10/18/2025

La somme algébrique des tensions aux bornes des branches d'une maille décrite dans un sens arbitraire est nulle :

$$\sum_{k} \in_{k} \hat{u}_{km} = 0$$

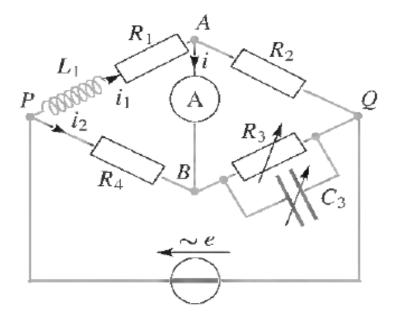
 $\in_k = 1$  si la tension  $u_k$  est dans sens que la maille

 $\in_k = -1$  si la tension  $u_k$  est dans le sens opposée de la maille.

## Application à la détermination d'impédances

En régime stationnaire

pont de Wheatstone permet de déterminer la résistance d'un résistor inconnu.



En régime sinusoïdal établi le montage est alors appelé pont de Maxwell

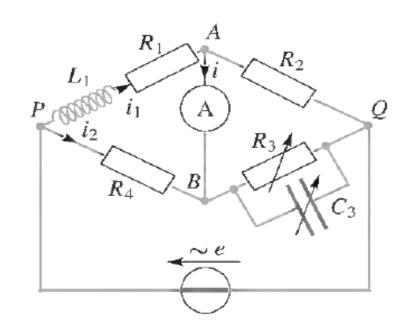
## Application à la détermination d'impédances

Les résistances  $R_2$  et  $R_4$  sont connues

 $R_3$  et  $C_3$  sont réglables

 $e(t) = e_m \cos(\omega t)$  entre les points P et Q

l'ampèremètre de résistance  $R_a$  indique l'intensité i du courant dans la branche AB



#### Application à la détermination d'impédances

La loi des maille

$$Z_{1}\hat{i}_{1} + R_{a}\hat{i} - R_{4}\hat{i}_{2} = 0$$

$$-e + Z_{2}(\hat{i}_{1} - \hat{i}) + Z_{1}\hat{i}_{1} = 0 \qquad \hat{i}_{1} = \frac{e + Z_{2}\hat{i}}{Z_{1} + Z_{2}}$$

$$-e + Z_{3}(\hat{i}_{1} + \hat{i}) + Z_{4}\hat{i}_{2} = 0 \qquad \hat{i}_{2} = \frac{e - Z_{3}\hat{i}}{Z_{3} + Z_{4}}$$

$$\hat{i} = \frac{eZ_{2}Z_{4}}{R_{a}(Z_{1} + Z_{2})(Z_{3} + Z_{4}) + Z_{1}Z_{2}(Z_{3} + Z_{4}) + Z_{2}Z_{3}(Z_{1} + Z_{2})}$$

Le pont est équilibré si l'ampèremètre n'est traversé par aucun courant

$$Z_1Z_3 = Z_2Z_4$$
 
$$(R_1+jL_1\omega) \times R_3/(1+jR_3C_3\omega) = R_2R_4$$
 
$$R_2R_4 = R_1R_3$$
 
$$L_1 = R_2R_4C_3$$
 
$$R_2R_4 + jR_3C_3R_2R_4 = R_1R_3 + jL_1\omega R_3$$
 Pr. Omar EL OUTASSI o.eloutassi@umi.ac.ma

10

#### Théorème de Millman

en régime sinusoïdal dans l'ARQS

on utilise les amplitudes complexes des tensions

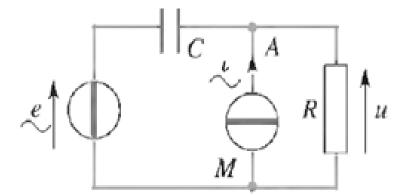
Au nœud A d'un circuit, la tension 
$$\hat{u}_{mA} = \frac{\sum_{k} (Y_k(\hat{u}_{mk} + \in_k \hat{e}_{km}) + \in'_k \hat{i}_{km})}{\sum_{k} Y_k}$$

Pour les f.e.m orientées vers le nœud  $A \in_k = 1$ 

Pour les courants dirigés vers le nœud  $A \in k = 1$ 

## **Exemple**

les générateurs de tension et de courant fournissent des signaux de même fréquence f, déphasé de  $\frac{\pi}{2}rad$ 



Soit 
$$e(t) = e_m \sin(\omega t) \longrightarrow \hat{e}(t) = u_m e^{j(\omega t)} = e_m e^{j\omega t}$$

$$\hat{i}(t) = i_m e^{j \omega t} e^{j\frac{\pi}{2}} = j i_m e^{j \omega t}$$

## **Exemple**

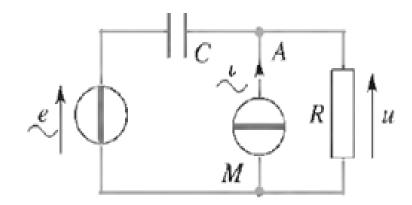
la tension u(t) en appliquant le théorème de Millman en A

$$\hat{u} = \frac{j\hat{e}C\omega + \hat{\iota}}{jC\omega + 1/R} = \frac{\hat{e}_mC\omega + \hat{\iota}_m}{C\omega - j/R} e^{j\omega t}$$

$$u_m = |\hat{u}| = \frac{e_m C\omega + i_m}{(C\omega)^2 + 1/R^2)^{1/2}}$$

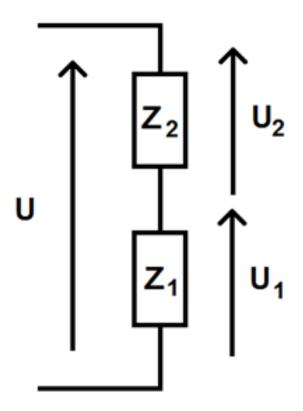
Soit 
$$u(t) = u_m \cos(\omega t + \varphi)$$

$$\varphi = \arctan(\frac{1}{RC\omega})$$



#### Diviseurs de tension et de courant

#### Diviseurs de tension

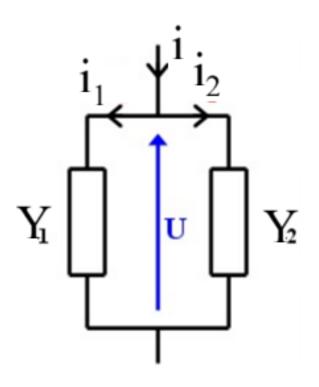


$$\hat{u}_2 = \frac{Z_2}{Z_1 + Z_2} \hat{u}$$

$$\hat{u}_1 = \frac{Z_1}{Z_1 + Z_2} \hat{u}$$

#### Diviseurs de tension et de courant

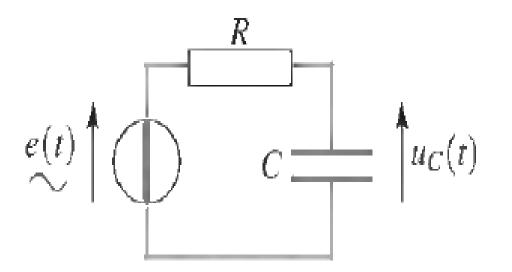
#### Diviseurs de courant



$$\hat{\imath}_1 = \frac{Y_1}{Y_1 + Y_2} \hat{\imath}$$

$$\hat{\imath}_2 = \frac{Y_2}{Y_1 + Y_2} \hat{\imath}$$

## Exemple:



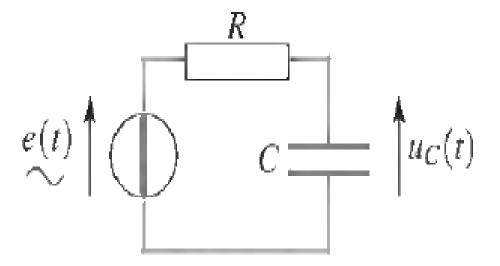
## En notation complexe

$$\hat{u}_C = \frac{Z_C}{Z_C + R} \hat{e}_m = \frac{1/jC}{\omega 1/jC\omega + R} \hat{e}_m$$

$$= \frac{1}{1 + jRC\omega} \hat{e}_m$$

$$= \frac{1}{1 + i\tau\omega} \hat{e}_m$$

## Exemple:



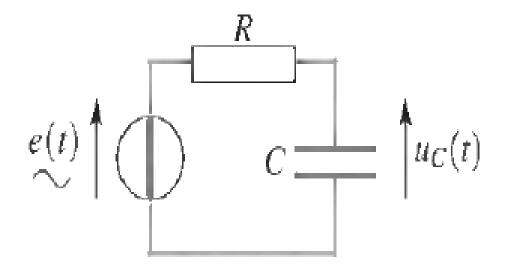
$$u_C = \left| \frac{1}{1 + j\tau\omega} \hat{e}_m \right| = \frac{1}{(1 + (\tau\omega)^2)^{1/2}} e_m$$

Soit 
$$\tau = RC = 500\Omega \times 2.2.10^{-6}F = 1.1ms$$

$$\varphi = \arg(\hat{u}_C) = \arg\left(\frac{1}{1+jRC\omega}\hat{e}_m\right) = -\arctan(\tau\omega)$$

0 (régime stationnaire) 
$$< \varphi < \frac{\pi}{2}$$
 (haute fréquence)

## Exemple:



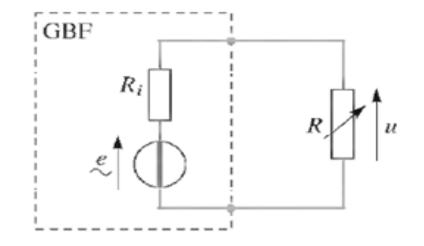
$$\begin{cases} u_{Cm} \approx e_m \ pour \ \tau\omega \ très \ faible \\ \\ u_{Cm} \approx 0 \ pour \ \tau\omega \ très \ grande \end{cases}$$

$$u_C(t) = u_{Cm} \cos(\omega t + \varphi)$$

## Application à la mesure de l'impédance interne d'un GBF

#### méthode de la tension moitié

Après avoir relevé la f.e.m  $e_m$  du GBF on branche sur celui-ci une résistance variable



que l'on ajuste jusqu'à ce que la tension u à ses bornes soit égale à  $e_m/2$ La résistance variable est alors égale à la résistance interne du GBF

$$u = \frac{R}{R + R_i} e_m = \frac{e_m}{2} \longrightarrow R = R_i$$

## Théorème de superposition

Ce théorème s'applique aux réseaux qui comportent plusieurs générateurs. Soit un circuit électrique composé de *n* sources indépendantes de tension et de courant:

$$S_{I}$$
,  $S_{2}$ , ...,  $S_{n}$ 

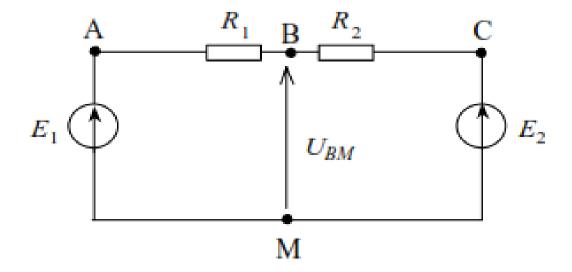
Calculons par exemple le courant  $I\kappa$  circulant dans la branche K.

Appelons  $I_{K1},I_{K2},...,I_{Kn}$  les valeurs de cette grandeur crée individuellement dans cette branche par chaque source agissant seule.

Les autres sources seront annulées.

$$\Rightarrow I_K = I_{K1} + I_{K2} + \cdots + I_{Kn}$$

## **Exemple**



En tenant compte des deux sources, nous obtenons :

$$U_{BM} = U_1 + U_2 = E_1 \frac{R_2}{R_1 + R_2} + E_2 \frac{R_1}{R_1 + R_2}$$

Théorème de Thévenin et de Norton

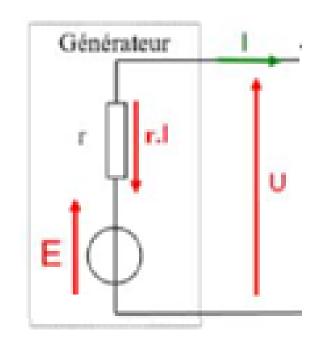
Théorème de Thévenin

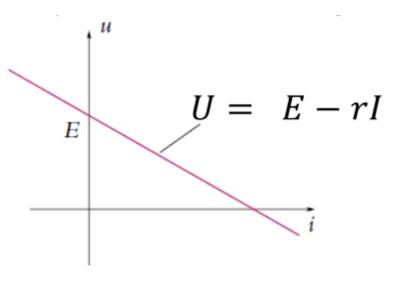
#### Générateur de tension réel

Loi des mailles

$$U - E + rI = 0$$

f.é.m résistance interne du générateur

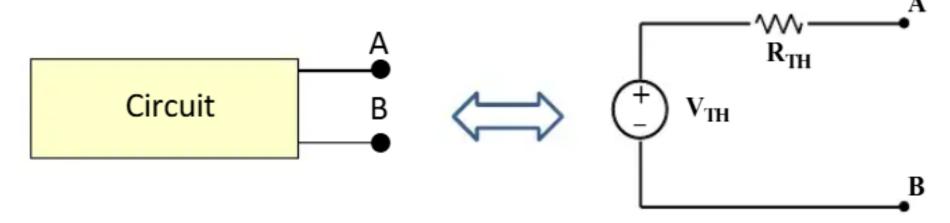




20

#### Théorème de Thévenin et de Norton

## Théorème de Thévenin

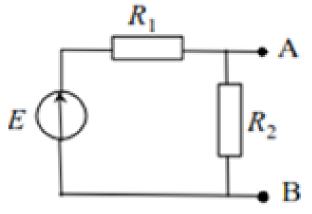


 $V_{TH}$  = tension mesurée entre A et B

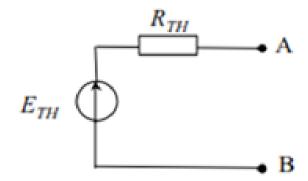
R<sub>TH</sub> = résistance mesurée entre A et B en l'absence de toute source idéale de tension ou de courant

## **Exemple**

Considérons un circuit électrique linéaire placé entre deux points A et B.

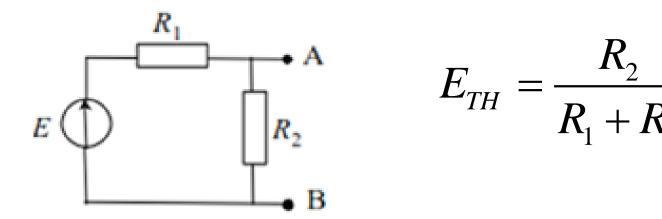


Remplacez ce circuit par un générateur équivalent de Thévenin de force électromotrice *ETH* et de résistance interne *RTH*.



## **Exemple**

La tension de Thévenin est la tension obtenue à vide entre A et B. Cette tension obtenue aux bornes de  $R_2$  se calcule en appliquant le théorème du pont diviseur.



La résistance  $R_{TH}$  est obtenue en passivant la source de tension E. Il suffit de remplacer la source E par un court-circuit.

$$R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$$

#### Théorème de Thévenin et de Norton

#### Théorème de Norton

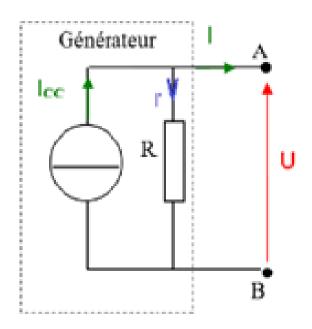
#### Générateur de courant réel

Loi des mailles

$$U - RI' = 0$$

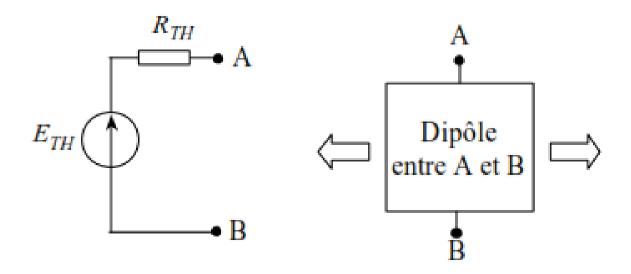
courant débité par le générateur

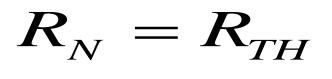
$$I = I_{CC} - I' = I_{CC} - \frac{U}{R}I$$

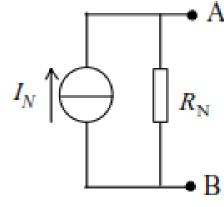


#### Théorème de Thévenin et de Norton

#### Théorème de Norton







$$I_N = \frac{E}{R_{TH}}$$

#### Simplification de Kennelly

Pour passer de la structure triangle (ABC)

à la structure étoile (OABC) nous procédons

déconnectons le point A, égalité des impédances entre B et C

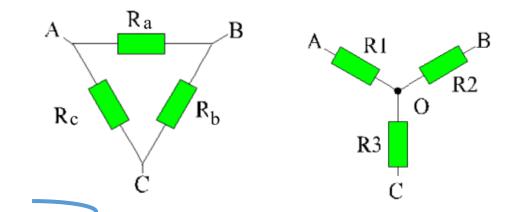
$$R_2 + R_3 = R_b / / (R_a + R_c) = \frac{R_b (R_a + R_c)}{R_a + R_b + R_c}$$

déconnectons le point B, égalité des impédances entre A et C

$$R_1 + R_3 = R_c / / (R_a + R_b) = \frac{R_c (R_a + R_b)}{R_a + R_b + R_c}$$

déconnectons le point C, égalité des impédances entre A et B

$$R_1 + R_2 = R_a / / (R_c + R_b) = \frac{R_a (R_c + R_b)}{R_a + R_b + R_c}$$



$$R_1 = \frac{R_a R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_a R_b}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_b R_c}{R_a + R_b + R_c}$$

26

#### **Simplification de Kennelly**

Pour la transformation inverse :

Relions B et C et nous écrivons alors :  $R_a//R_c = R_1 + R_2//R_3 = Z_a$ 

Relions C et A et nous écrivons alors :  $R_a//R_b = R_2 + R_1//R_3 = Z_b$ 

Relions B et A et nous écrivons alors :  $R_c//R_b = R_3 + R_1//R_2 = Z_c$ 



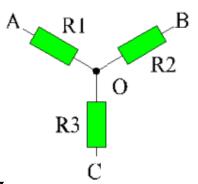
$$\frac{1}{Z_{a}} + \frac{1}{Z_{b}} - \frac{1}{Z_{c}} = \frac{1}{R_{a}} + \frac{1}{R_{c}} + \frac{1}{R_{a}} + \frac{1}{R_{b}} - \frac{1}{R_{c}} - \frac{1}{R_{b}} = \frac{2}{R_{a}} = \frac{2R_{2}}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}$$

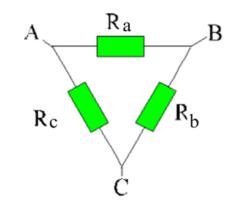
$$\frac{1}{Z_{a}} - \frac{1}{Z_{b}} + \frac{1}{Z_{c}}$$

$$-\frac{1}{Z_{a}} + \frac{1}{Z_{b}} + \frac{1}{Z_{c}}$$

$$R_{b} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{2}}$$

$$R_{a} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{3}}$$
Pr. Omar EL OUTASSI





o.eloutassi@umi.ac.ma

# FIN