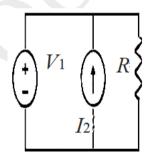
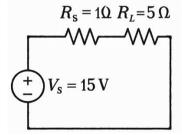


Exercice 1

- 1. Quelles sont les principales raisons d'utiliser la méthode d'analyse des circuits électriques en régime sinusoïdal ?
- 2. Énoncez les lois de Kirchhoff
- 3. Quel est l'énoncé du théorème de Millman?
- 4. Expliquez le théorème de superposition.
- 5. Quelle est la différence entre le modèle équivalent de Thévenin et celui de Norton ?
- 6. Qu'est-ce que la simplification de Kennelly et à quoi sert-elle ?


Exercice 2

Un circuit comporte deux générateurs de tension en parallèle : V_1 =12V en série avec une résidence R_1 =4 Ω et V_2 =6V en série avec R_2 =6 Ω . Calculez la tension V_{out} à la sortie.


Exercice 3

Dans un circuit avec une source de tension V_1 =10V et une source de courant I_2 =2A, calculez la tension V_{out} à la sortie d'une résistance R=5 Ω en utilisant le théorème de superposition.

Exercice 4

Trouvez le modèle équivalent de Thévenin pour un circuit avec une source de tension V_s =15V et une résistance R_s =10 Ω en série avec une résistance de charge R_L =5 Ω .

Exercice 5

Un circuit contient trois impédances : $Z_1=4+j3\Omega$, $Z_2=6+j8\Omega$ et $Z_3=2+j2\Omega$ en parallèle. Calculez l'impédance équivalente Z_{eq} en utilisant la méthode de Kennelly.

Exercice 6

La tension v(t), à travers un condensateur et le courant, i(t), dans ce condensateur adhèrent à la convention passive. Déterminer la capacité, quand la tension $v(t) = 12 \cos (500t - 45^{\circ}) \text{ V}$ et le courant est $i(t) = 3 \cos (500t + 45^{\circ}) \text{ mA}$.

Exercice 7

La valeur instantanée d'un courant alternatif est : $i = 15,5A \sin(100\pi t - \pi/6)$.

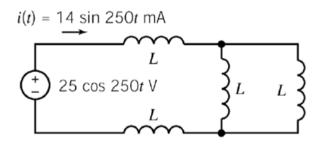
- 1. Quelle est la valeur de l'intensité maximale du courant ?
- 2. Quelle est la valeur efficace de l'intensité?
- 3. Quelle est la pulsation ? En déduire la valeur de la fréquence et celle de la période.
- 4. Calculer la valeur du courant à l'instant t = 0, à l'instant t = 5 ms et à l'instant t = 10 ms
- 5. Ce courant est appliqué à une résistance de 20Ω . Exprimer la tension u aux bornes de cette résistance.
- 6. Calculer la tension efficace.

Exercice 8

Soit le signal ci-contre :

- Pour
$$0 \le t \le T/2$$
:

$$v(t) = V \max \sin(\omega t)$$


- Pour
$$T/2 \le t \le T$$
:

$$v(t) = 0$$

- 1. Donner l'expression de la valeur moyenne du signal v(t)
- 2. Donner l'expression de la valeur efficace du signal v(t)

Exercice 9

Ce circuit contient quatre inductances identiques. Trouver la valeur de l'inductance L.