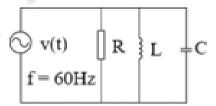


Exercice 1

- 1. Qu'est-ce qu'un circuit RLC série et quels sont ses composants principaux ?
- 2. Décrivez le diagramme de phase d'un circuit RLC série.
- 3. Comment calcule-t-on l'impédance d'un circuit RLC série ?
- 4. Qu'est-ce qu'un circuit RLC parallèle et comment se comporte-t-il en termes de courant et de phase ?
- 5. Qu'est-ce que l'admittance dans un circuit RLC parallèle ?
- 6. Quel est le facteur de puissance dans un circuit RLC et pourquoi est-il important ?

Exercice 2

Considérez un circuit RLC série avec une résistance $R=10\Omega$, une inductance L=0.1H, et une capacité $C=100\mu F$. Calculez l'impédance Z du circuit à une fréquence f=50Hz.



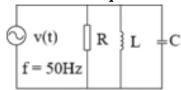
Exercice 3

Dessinez le diagramme de phase pour un circuit RLC série lorsque R, L, et C sont tous présents. Indiquez les angles de phase entre la tension et le courant.

Exercice 4

Dans un circuit RLC parallèle, si $R=20\Omega$, L=0.05H, et $C=200\mu F$, calculez l'admittance Y du circuit à une fréquence f=60Hz.

Exercice 5


Pour un circuit RLC parallèle, si le courant total est I=5A et la puissance active est P=100W, calculez le facteur de puissance FP.

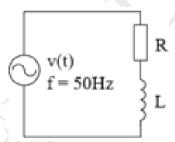
Exercice 6

Considérez un circuit RLC parallèle composé d'une résistance R=15 Ω , une inductance L=0.1H, et une capacité C=150 μF .

Parcours électronique S3 TD Série 5

- 1. Calculez l'admittance Y du circuit à une fréquence f=50Hz.
- 2. Déterminez le courant total I si la tension efficace V=120V est appliquée au circuit.
- 3. Calculez le facteur de puissance *PF* du circuit.

Exercice 7


Un circuit est alimenté par une tension

 $v = 230\cos(\omega t) V$ et un courant $i = 10\cos(\omega t - 30^\circ) A$

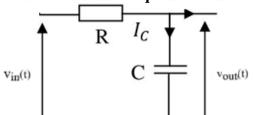
Calculez la puissance complexe S, la puissance active P, et la puissance réactive Q.

Exercice 8

Un circuit RL est alimenté par une source de tension $v = 100 \cos(\omega t) V$. La résistance est $R = 10 \Omega$, et l'inductance est L = 0.1 H. La fréquence est f = 50 Hz. Calculez la puissance complexe S.

Exercice 9

Un circuit RC est alimenté par $v = 50\cos(\omega t)V$. La résistance est $R = 20 \Omega$, et la capacité est $C = 100 \,\mu$ F. La fréquence est $f = 60 \,Hz$. Calculez S, P, et Q.


Exercice 10

Un filtre passe-bande série est alimenté par une source alternative $v=100\cos(\omega t)\,V$, avec Résistance $R=10\,\Omega$, Inductance $L=0.05\,H$, Capacité C=50 μ F, Fréquence de la source $f=200\,Hz$.

Parcours électronique S3 TD Série 5

2025-2026

Calculez:

- 1. L'impédance totale Z,
- 2. Le courant i,
- 3. La puissance complexe S, ainsi que P (puissance active) et Q (puissance réactive).

Exercice 11

Un filtre passe-bande parallèle est alimenté par une source alternative $v=50\cos(\omega t)V$, avec Résistance $R=20\Omega$, Inductance L=0.1H, Capacité C=100 μ F, Fréquence de la

Calculez S, P, et Q.