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General introduction 
The Advanced Biomedical Signal and Image Processing module, a key component of your 

Master’s degree program at the UMI Science Faculty, Meknes. This course aims to equip you 

with the essential knowledge and skills required to navigate the rapidly evolving fields of 

biomedical signal and image processing. As technology continues to advance, analyzing and 

interpreting complex biomedical data becomes increasingly critical for healthcare 

professionals and researchers alike. The module is structured into three sections: 

Section 1: Introduction to Digital Signal and Image Processing in which, we investigate the 

fundamental concepts of digital signal and image processing. You will learn about various 

types of signals, particularly biomedical signals, and explore techniques such as Fourier 

analysis, which is vital for understanding frequency components in signals. We will also cover 

image filtering, enhancement, and restoration, equipping you with tools to improve image 

quality. Additionally, you will gain insights into use detection, segmentation methods, wavelet 

transforms, and other advanced processing techniques, including clustering and classification, 

which are essential for effective data analysis. 

Section 2: Processing of Biomedical Signals in which we aim on the specific processing 

techniques used for various biomedical signals. You will explore the electrical activities of 

cells and how these signals appear in various biomedical contexts, including 

electrocardiograms (ECGs), electroencephalograms (EEGs), and electromyograms 

(EMGs).Understanding these signals is crucial for diagnosing and monitoring various health 

conditions. During this section, you will learn with practical knowledge and analytical skills. 

Section 3: Processing of Biomedical Images, this final part of the module addresses the 

principles and techniques involved in biomedical imaging. You will explore various imaging 

modalities, including computed tomography (CT), X-ray imaging, magnetic resonance 

imaging (MRI), ultrasound imaging, and Nuclear medicine. Each technique offers unique 

insights into biological processes and anatomical structures, and mastering these methods will 

enhance your ability to interpret and utilize imaging data effectively. 

Through this module, you will develop a robust foundation in both theoretical and practical 

aspects of biomedical signal and image processing. By the end of the course, you will be well 

prepared to apply these skills in research or clinical settings, contributing to advancements in 

medical technology and patient care.  
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Section 1: Introduction to Digital Signal and Image Processing 

In this first part of the module, we will establish a solid foundation in digital signal and image 

processing, particularly focusing on their applications in the biomedical field. You will begin 

by exploring the concept of signals and the complexities of biomedical signal processing, 

which form the backbone of interpreting physiological data. 

Next, we will delve into Fourier analysis, a powerful mathematical tool that enables you to 

analyze the frequency components of signals, revealing their behavior and characteristics. 

Building on this foundation, we will examine various techniques for image filtering, 

enhancement, and restoration, essential for improving image quality and facilitating accurate 

analysis. 

Additionally, you will learn about edge detection and segmentation methods that help isolate 

and identify important features within images, critical steps in many biomedical imaging 

applications. We will also cover wavelet transforms, which provide a versatile approach to 

signal and image analysis, allowing for multi-resolution representation. 

Finally, we will explore advanced signal and image processing methods, including clustering 

and classification techniques. These methods enable you to organize and interpret data 

effectively, enhancing your ability to draw meaningful conclusions from complex biomedical 

datasets. By the end of this section, you will gain a comprehensive understanding of the 

essential concepts and techniques that underpin digital signal and image processing in the 

biomedical context. 
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Chapter 1: Introduction to signals and systems 

A. Signal 

1. Definitions 

A signal is a function that conveys information about a physical phenomenon. We represent a 

signal as a mathematical function of one or more independent variables, such as time (for temporal 

signals) or space (for spatial signals). Such as: electrical signals, sound waves, biomedical signals 

(Electroencephalography (EEG) and electrocardiography (ECG)( and digital data. 

A system is a process or device that takes one or more signals as input, processes them, and 

produces one or more output signals. We classify systems as linear or nonlinear, time-invariant or 

time-variant, and continuous-time or discrete-time. Such as: amplifiers, filters, communication 

systems, and biomedical devices. 

2. Digital signal processing in biomedical engineering 

2.1. Definition: 

Digital Signal Processing (DSP) in biomedical engineering involves the analysis, transformation, 

and interpretation of biomedical signals using digital techniques. These signals, such as ECG 

(Electrocardiogram), EEG (Electroencephalogram), and EMG (Electromyogram), we collect those 

signals from the human body and proceed for medical diagnosis, monitoring, and research. Digital 

signal processing plays a crucial role in improving the accuracy and efficiency of biomedical 

diagnostics and patient monitoring. 

2.2. Key aspects of biomedical DSP: 

Signal acquisition & preprocessing: Converting analog biomedical signals into digital form 

using Analog-to-Digital Conversion (ADC) and removing noise or artifacts. 

Filtering & enhancement: Using digital filters (low-pass, high-pass, band-pass, notch filters) to 

eliminate unwanted noise and extract relevant signal components. 

Feature extraction: Identifying key characteristics from biomedical signals, such as heart rate 

variability in ECG or brain wave patterns in EEG. 

Signal classification & interpretation: Using machine learning, AI, and pattern recognition to 

classify biomedical conditions based on processed signals. 

Applications in medical devices: Implementation in wearable health monitors, diagnostic 

equipment, and telemedicine solutions. 

3. Communication and control systems 

Communication systems involve the transmission, reception, and processing of information, such 

as: 
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Wireless communication: Mobile networks (4G, 5G), Wi-Fi, and Bluetooth. 

Satellite communication: GPS, weather forecasting, and global broadcasting. 

Optical fiber communication: High-speed internet using fiber-optic cables. 

Biomedical communication: Wireless transmission of patient health data from wearable devices. 

Control systems used to regulate and manage processes in various applications such as: 

Automatic temperature control: HVAC systems regulating room temperature. 

Industrial automation: Robotics and conveyor belt systems in manufacturing. 

Biomedical control systems: Pacemakers regulating heartbeats and insulin pumps managing 

blood sugar levels. 

Autonomous vehicles: Self-driving cars using sensors and control algorithms. 

Both communication and control systems are essential in modern technology, enabling 

automation, efficiency, and connectivity across various industries. 

4. Classification of signals 

We classify signals based on different criteria. Understanding these classifications helps in 

analyzing and processing signals effectively in various applications, especially in biomedical 

engineering 

4.1. Continuity: 

Continuous-time signals: Defined for all time values (e.g., ECG, EEG signals). 

Discrete-time signals: Defined only at specific time intervals (e.g., digital audio signals). 

4.2. Determinism: 

Deterministic signals: Completely defined by a mathematical function (e.g., sine wave). 

Random (stochastic) signals: Have unpredictable variations (e.g., noise in biomedical signals). 

4.3. Periodicity: 

Periodic signals: Repeat over a fixed interval (e.g., heart rate waveform). 

Aperiodic signals: Do not repeat in a fixed pattern (e.g., speech signals). 

4.4. Symmetry: 

Even Signals: Symmetric about the y-axis (e.g., cosine wave). 

Odd Signals: Symmetric about the origin (e.g., sine wave). 

4.5. Energy and power: 

Energy Signals: Have finite energy but zero power (e.g., pulses). 
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Power Signals: Have finite power but infinite energy (e.g., sine waves). 

4.6. Analog or digital nature: 

Analog Signals: Continuous in amplitude and time (e.g., biological signals). 

Digital Signals: Discrete in amplitude and time (e.g., digital ECG data). 

5. Operations on signals 

Various mathematical operations can be performed on signals to modify or analyze them. These 

operations are essential in signal processing, particularly in biomedical applications like ECG, 

EEG, and EMG analysis. 

5.1. Basic Arithmetic Operations: 

Addition: 𝑦(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡)  (Combining two signals). 

Subtraction: 𝑦(𝑡) = 𝑥1(𝑡) − 𝑥2(𝑡) (Finding the difference between signals). 

Multiplication: 𝑦(𝑡) = 𝑥1(𝑡) ∗ 𝑥2(𝑡)   (Modulation in communication systems). 

Scaling: 𝑦(𝑡) = 𝐴𝑥(𝑡)  (Amplification or attenuation of a signal). 

5.2. Time-Domain Operations 

Time Shifting: 𝑦(𝑡) = 𝑥(𝑡 − 𝑇) (Delaying or advancing a signal in time). 

Time Scaling: 𝑦(𝑡) = 𝑥(𝑎𝑡) (Compressing or expanding a signal in time). 

 If 𝑎 > 1, the signal is compressed. 

 If 0 < 𝑎 < 1, the signal is stretched. 

Time Reversal (Mirroring): 𝑦(𝑡) = 𝑥(−𝑡) (Flipping a signal around the vertical axis). 

5.3. Convolution (Continuous and Discrete) 

Used to analyze system response and filter signals. 

Continuous-Time Convolution: 𝑦(𝑡) = ∫ 𝑥1(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
 

Discrete-Time Convolution 𝑦[𝑛] = ∑ 𝑥1[𝑘]ℎ[𝑛 − 𝑘]∞
𝑘=−∞  

5.4. Correlation (Signal similarity) 

Measures similarity between two signals over time. 

Used in pattern recognition and biomedical signal analysis (e.g., comparing ECG patterns). 

5.5. Differentiation and integration: 

Differentiation: Enhances high-frequency components (e.g., detecting sharp changes in ECG). 

Integration: Smoothens a signal (useful in noise reduction). 
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These operations are fundamental in signal processing, allowing for effective analysis, filtering, 

and interpretation in various engineering and biomedical applications. 

6. Elementary signals: exponential, sinusoidal, and others 

Elementary signals serve as the building blocks in signal processing and system analysis. Some of 

the most fundamental signals include: 

6.1. Unit impulse (Dirac delta) signal δ(t) 

Defined as an infinitely short and high pulse with an area of 1. 

Used in system analysis as an input to determine system response. 

Mathematically: 𝛿(𝑡) = {
∞, 𝑡 = 0
0, 𝑡 ≠ 0

, with ∫ 𝛿(𝑡)𝑑𝑡
∞

−∞
= 1 

6.2. Unit Step signal 

 𝒖(𝒕) 

A step function that turns "on" at 𝑡 = 0. 

Used to model sudden changes in systems. 

Mathematically: 𝑢(𝑡) = {
1, 𝑡 ≥ 0
0, 𝑡 ≤ 0

 

6.3. Exponential Signal 

 𝑥(𝑡) = 𝑒𝛼𝑡 

Describes growth (𝛼 > 0) or decay (𝛼 < 0). 

Complex exponentials are used in Fourier and Laplace transforms. 

General form: 𝑥(𝑡) = 𝑒(𝜎+𝑗𝜔)𝑡 = 𝑒𝜎𝑡𝑒𝑗𝜔) where 𝜎 determines the amplitude decay/growth and 𝜔 

represents the oscillation frequency. 

6.4. Sinusoidal 

 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜑) or 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜑) 

Represents periodic signals commonly found in electrical and biomedical systems. 

Key parameters: 

 𝐴 amplitude 

 𝜔 = 2𝜋𝑓 angular frequency 

 𝜑 phase shift 

6.5. Ramp signal 

 𝑟(𝑡) = 𝑡𝑢(𝑡) 
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A continuously increasing function used in system analysis. 

Mathematically: 𝑟(𝑡) = {
𝑡, 𝑡 ≥ 0
0, 𝑡 ≤ 0

 

 6.6. Rectangular pulse 

Used in digital signals and control systems. 

A pulse with a specific width and amplitude. 

6.7. Triangular Signal 

Commonly used in modulation and waveform synthesis. 

Forms a symmetric triangular shape over a given time period. 

These elementary signals are essential for understanding more complex signal behaviors in 

communication systems, biomedical signal processing, and control engineering. 

B. System 

1. Definition 

A system is a set of interrelated components that work together towards a common purpose. In 

various fields, particularly in biomedical, engineering, and scientific domains, systems are studied 

in terms of their structure, behavior, and interaction over time. In these contexts, a system typically 

involves a collection of variables and elements whose interactions determine the overall function 

and performance of the system. 

2. Classification of Systems 

Systems can be classified based on different criteria. In the context of linear and non-linear 

systems, and their time-dependent behavior, the classifications are as follows: 

2.1. Linear Systems: 

A linear system is one in which the relationship between the input and output is directly 

proportional, and the system's behavior follows the principles of superposition and scaling. This 

means that: 

 The output is a weighted sum of the inputs. 

 If you input a sum of signals into the system, the output will be the sum of the individual 

outputs from those signals. 

 Mathematically: A system is linear if it satisfies the conditions of additivity and 

homogeneity (scaling). 

Examples 

 Electrical circuits with resistors, capacitors, and inductors. 
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 Linear differential equations describing system behavior over time. 

Analysis of Linear Systems: Linear systems are easier to analyze because their behavior can be 

predicted using standard mathematical techniques, like Laplace transforms, Fourier analysis, and 

matrix operations. 

2.2. Non-Linear Systems: 

A non-linear system is one where the relationship between input and output is not proportional. 

In non-linear systems, small changes in input can result in large or unpredictable changes in output. 

This makes the system behavior more complex and difficult to analyze. 

Characteristics: 

 The system does not obey the principles of superposition. 

 Often exhibits behaviors like bifurcations, chaos, and complex patterns. 

Examples: 

 Population dynamics (e.g., predator-prey models). 

 Neural networks in the brain. 

 Fluid dynamics. 

We need more advanced techniques to analyze non-linear systems such as numerical methods 

(e.g., simulation, iterative techniques), chaos theory, and non-linear differential equations. Their 

solutions are typically more difficult to predict, and small variations in initial conditions can lead 

to vastly different outcomes (sensitive dependence on initial conditions). 

2.3. Time-Dependent Systems (Variable in Time): 

A system is time-dependent if its behavior changes with time. Such systems can be either linear 

or non-linear but their key characteristic is the dependence on time, meaning that their outputs are 

not constant but vary as time progresses. 

Examples: 

 Biological systems, like circadian rhythms, which change over the course of the day. 

 Chemical reaction rates that depend on time and concentration. 

 Economic models where variables like supply and demand change over time. 

Analysis of time-dependent systems: 

 Time-series analysis can be used to understand patterns and predict future behavior 

based on historical data. 

 In differential equations, time-dependent systems are often modeled using ordinary or 

partial differential equations (ODEs or PDEs), which describe how the system evolves 

over time. 
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3. System modeling: 

Modeling involves the creation of mathematical or computational representations of a system in 

order to analyze and predict its behavior. Models can be used to study both linear and non-linear 

systems and can take the form of equations, diagrams, or simulations. 

3.1. Mathematical models 

These models use equations (e.g., algebraic, differential) to describe the relationships between the 

system’s variables. 

Linear Models: Can be represented with simple linear equations. 

Non-linear Models: Use non-linear equations that may involve quadratic terms, exponents, or 

trigonometric functions. 

Examples: 

 Linear Model: 𝑦 = 𝑚𝑥 + 𝑏  

 Non-Linear Model: 𝑦 =  𝑎𝑥2  +  𝑏𝑥 +  𝑐 or more complex models such as 𝑦 =  𝑒𝑥  

3.2. Simulations 

Simulations involve using computational tools to model and analyze the behavior of a system. 

These are particularly useful for complex, non-linear, or time-dependent systems that cannot be 

easily solved analytically. 

Numerical simulations are often used to approximate the solutions to non-linear differential 

equations. 

Monte Carlo simulations may be employed to model probabilistic systems. 

3.3. System Identification: 

System identification refers to the process of creating a model based on observed data. This process 

can be applied to both linear and non-linear systems, where real-world data is used to estimate the 

parameters of the system and validate the model’s accuracy. 

4. Analysis Techniques for Systems: 

4.1. Linear systems analysis: 

Transfer Functions: Used to represent linear systems in the frequency domain. 

Laplace Transform: Used to analyze time-domain systems in the complex frequency domain. 

Eigenvalues and Eigenvectors: Used to determine the stability of the system. 

Fourier Transform: Helps in analyzing the frequency response of systems. 

4.2. Non-Linear Systems Analysis: 
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Lyapunov Stability: Used to analyze the stability of non-linear systems. 

Bifurcation Analysis: Examines how the system's qualitative behavior changes as a parameter is 

varied. 

Chaos Theory: Studies the behavior of dynamic systems that are highly sensitive to initial 

conditions, making long-term prediction impossible in some cases. 

Time-Dependent Analysis: 

Differential Equations: Both ordinary differential equations (ODEs) and partial differential 

equations (PDEs) are used to model how systems evolve over time. 

Time-Series Analysis: Techniques like autoregressive models, moving averages, and spectral 

analysis are used to understand and predict time-dependent systems. 

5. Impulse response 

5.1. Definition 

The impulse response of a system is its output when the system is subjected to an impulse 

function (also called the Dirac delta function, denoted as δ(t)\delta(t)δ(t)) as input. 

Mathematically, the impulse response is the system's reaction to this idealized, instantaneous input. 

In the context of linear time-invariant (LTI) systems, the impulse response, h(t)h(t)h(t), 

characterizes the system completely, meaning that the behavior of the system for any arbitrary 

input can be determined using this response. 

For a continuous-time system, the impulse response is the output 𝑦(𝑡) when the input 𝑥(𝑡) is 𝛿(𝑡)  

i.e. 𝑦(𝑡) = ℎ(𝑡) when 𝑥(𝑡) = 𝛿(𝑡) 

In discrete-time systems, the impulse response ℎ[𝑛] is the output when the input is 𝛿[𝑛], the 

discrete delta function. 

5.2. Convolution integral: 

The convolution integral is a mathematical operation used to determine the output of a linear 

time-invariant (LTI) system when the input signal is known. It describes the process of combining 

two functions to form a third. The output of the system is the convolution of the input signal with 

the system's impulse response. 

For continuous-time systems, the convolution integral is defined as: 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
   

Here: 

𝑦(𝑡) is the output, 

𝑥(𝑡) is the input signal, 
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ℎ(𝑡) is the impulse response, 

𝜏 is the integration variable, and 

(𝑥 ∗ ℎ)(𝑡) denotes the convolution of 𝑥(𝑡) and ℎ(𝑡). 

5.3. Convolution sum 

The convolution sum is the discrete-time equivalent of the convolution integral. It is used to 

calculate the output of a discrete-time system when the input and the system's impulse response 

are known. 

For a discrete-time LTI system, the output 𝑦[𝑛] is given by the convolution sum: 

𝑦[𝑛] = ∑ 𝑥[𝑘]

∞

𝑘=−∞

ℎ[𝑛 − 𝑘] 

Here: 

𝑦[𝑛] is the output at discrete time n, 

𝑥[𝑘] is the input at time k, 

ℎ[𝑛 − 𝑘] is the shifted impulse response at time 𝑛 − 𝑘, 

The summation runs over all values of 𝑘. 

5.4. Convolution integral calculation 

5.4.1. Graphical method (for continuous systems) 

The graphical method for calculating the convolution integral is often called the "flip and slide" 

method. It involves the following steps: 

Flip the Impulse Response: In the convolution integral, ℎ(𝑡 − 𝜏) involves a time shift, so first 

flip the impulse response function ℎ(𝑡)h(t) around the vertical axis. 

Shift the Impulse Response: Shift the flipped impulse response by different values of  𝑡 (i.e., for 

each value of 𝑡). 

Multiply and Integrate: For each value of 𝑡, multiply the shifted impulse response by the input 

signal 𝑥(𝜏), and then integrate the result over 𝜏. 

Graphically, this means visually interpreting the overlapping area between x(τ)x(\tau)x(τ) and the 

flipped, shifted ℎ(𝑡 − 𝜏) as the convolution integral at that point 

5.4.2. Analytical Method (for Continuous and Discrete Systems) 

The analytical method involves directly performing the mathematical integration or summation 

of the product of the input and the shifted impulse response. 
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For Continuous-Time Systems: Use the convolution integral formula 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
∞

−∞
, and perform the integration step by step. 

For Discrete-Time Systems: Use the convolution sum formula 

 𝑦[𝑛] = ∑ 𝑥[𝑘]∞
𝑘=−∞ ℎ[𝑛 − 𝑘] and compute the sum for the specific range of 𝑛 and 𝑘. 

Both methods require knowledge of the input signal 𝑥(𝑡) (or 𝑥[𝑛]) and the system’s impulse 

response ℎ(𝑡) (or ℎ[𝑛]). 

5.5. Example calculation of the convolution integral 

5.5.1. Graphical example (for continuous systems) 

Suppose 𝑥(𝑡) is a rectangular pulse function, and ℎ(𝑡) is a simple exponential decay. The process 

involves flipping ℎ(𝑡), shifting it over different time intervals, and multiplying it with the input 

signal to find the overlapping area at each point. The integral would then calculate the exact area 

under the curve of the product, giving the output 𝑦(𝑡). 

5.5.2. Analytical example (for continuous systems) 

If 𝑥(𝑡) = 𝑒−𝑡 for 𝑡 ≥ 0 and h(t)=1 for 𝑡 ≥ 0, the convolution integral is: 

𝑦(𝑡) = ∫ 𝑒−𝜏𝑥𝑑𝜏
𝑡

0

= 1 − 𝑒−𝑡 

5,53. Discrete Example 

For a discrete-time input 𝑥[𝑛] = {1,2,3} and impulse response ℎ[𝑛] = {1,1,1}, the convolution 

sum is: 

𝑦[0] = 𝑥[0]ℎ[0] = 1 × 1 = 1 

𝑦[1] = 𝑥[0]ℎ[1] + 𝑥[1]ℎ[0] = 1 × 1 + 2 × 1 = 3  

𝑦[2] = 𝑥[0]ℎ[2] + 𝑥[1]ℎ[1] + 𝑥[2]ℎ[0] = 1 × 1 + 2 × 1 + 3 × 1 = 6  

So, the output sequence is 𝑦[𝑛] = {1,3,6}. 

Conclusion: 

In biomedical and other scientific fields, understanding the behavior of systems is essential, 

whether they are linear or non-linear and time-dependent or time-independent. The impulse 

response of a system plays a crucial role in this understanding, as it allows us to analyze how the 

system reacts to various inputs. The convolution integral (or sum) serves as a powerful tool for 

calculating the output of a linear time-invariant (LTI) system in response to any given input. 
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To analyze these systems effectively, we employ various mathematical and computational 

techniques, including differential equations, system identification, and numerical simulations. 

Both graphical and analytical methods for computing convolutions exist, with the graphical 

method often providing a more intuitive understanding, while the analytical method offers greater 

precision. By modeling and analyzing both linear and non-linear systems, we can gain insights 

into their behavior, predict future states, and develop solutions to real-world problems in the 

biomedical field and beyond. 
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Chapter 2: Fourier analysis of continuous-time signals 

Introduction 

Fourier analysis is a mathematical technique used to break down a continuous-time signal into 

its constituent sinusoids (sine and cosine functions) of various frequencies. This technique is 

fundamental in signal processing, communication systems, and many other fields of engineering 

and physics. Fourier analysis helps in understanding the frequency content of a signal, allowing us 

to analyze, modify, and synthesize signals more easily. 

1. Fourier transform (FT) 

The Fourier Transform (FT) is a mathematical operation that transforms a time-domain signal 

(continuous-time signal) into its frequency-domain representation. This transformation expresses 

the signal as a sum of sinusoids of different frequencies, amplitudes, and phases. 

The continuous-time Fourier transform (CTFT) of a signal x(t)x(t)x(t) is given by: 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 

Where:  

𝑋(𝑓) is the frequency-domain representation of the signal 

𝑥(𝑡) is the continuous-time signal in the domain 

𝑓  is the frequency variable 

𝑗 is the imaginary unit 

The Fourier transform essentially converts a signal from the time domain (which represents how 

the signal evolves over time) to the frequency domain (which represents how the signal is 

composed of different frequencies). 

2. Inverse Fourier transform 

The Inverse Fourier Transform allows us to reconstruct the original time-domain signal from its 

frequency-domain representation. It is given by: 

𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑡𝑓𝑑𝑓
∞

−∞

 

This equation tells us that by summing all the sinusoids (each corresponding to a different 

frequency) in the frequency domain, we can obtain the original time-domain signal. 

3. Properties of the Fourier transform 

Some important properties of the Fourier transform include: 
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Linearity: If 𝑥1(𝑡) and 𝑥2(𝑡) are two signals, then the Fourier transform of 

 𝑎𝑥1(𝑡) + 𝑏𝑥2(𝑡)+bx2(t) is 𝑎𝑋1(𝑓) + 𝑏𝑋2(𝑓). 

Time shifting: If the signal is shifted by 𝑡0 in time, the Fourier transform is multiplied by 𝑒−𝑗2𝜋𝑓𝑡0. 

Frequency shifting: If the signal is multiplied by 𝑒𝑗2𝜋𝑡𝑓0  in the time domain, the Fourier transform 

is shifted by 𝑓0 in the frequency domain. 

Convolution: The Fourier transform of the convolution of two signals is the product of their 

Fourier transforms. 

Parseval's Theorem: The total energy of a signal in the time domain is equal to the total energy 

in the frequency domain. 

4. Fourier series (Periodic signals) 

For periodic signals, Fourier series is used instead of the Fourier transform. A Fourier series 

represents a periodic signal as a sum of sines and cosines (or complex exponentials). If 𝑥(𝑡) is a 

periodic signal with period 𝑇, its Fourier series representation is:  

𝑥(𝑡) = ∑ 𝐶𝑛𝑒
𝑗2𝜋𝑛𝑓0𝑡

∞

𝑛=−∞

 

Where: 

𝐶𝑛 =
1

𝑇
∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑛𝑓0𝑡𝑑𝑡

𝑇

0
 are the Fourier coefficients (complex numbers) that represent the 

amplitude and phase of the 𝑛-th harmonic. 

𝑓0 =
1

𝑇
 is the fundamental frequency. 

The sum runs over all harmonics of the signal. 

The Fourier series is particularly useful for analyzing periodic signals, as it allows us to express 

the signal in terms of its frequency components. 

5. Applications of Fourier analysis 

Fourier analysis has broad applications in several areas, including: 

Signal Processing: Used to filter, compress, and analyze signals. For example, audio signals can 

be transformed into the frequency domain to filter out unwanted noise. 

Communications: In communications, Fourier transforms are used to modulate and demodulate 

signals, enabling efficient data transmission. 

Spectral Analysis: Fourier analysis is used to analyze the frequency content of signals, such as 

identifying the dominant frequencies in a speech signal or a music waveform. 
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Image Processing: Fourier transforms are used to analyze and manipulate images in the frequency 

domain, helping in tasks like image compression or enhancement. 

6. Example of Fourier Transform 

Consider the simple example of a rectangular pulse signal 𝑥(𝑡) that is nonzero between 𝑡 =

−
𝑇

2
  and 𝑡 = 𝑇/2: 

𝑥(𝑡) = {
1, 𝑖𝑓 ∣ 𝑡 ∣≤ 𝑇/2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

To compute the Fourier transform of this signal, we would use the formula: 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 

Since the signal is a rectangular pulse, the Fourier transform will result in a sinc function in the 

frequency domain: 

𝑋(𝑓) = 𝑇 ⋅ 𝑠𝑖𝑛𝑐(𝑓𝑇) 

Where 𝑠𝑖𝑛𝑐(𝑥) =
𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
. This result shows how the time-domain signal (a rectangular pulse) 

corresponds to a sinc-shaped spectrum in the frequency domain. 

7. Representation of signals in terms of orthogonal basis 

functions: 

In signal processing and functional analysis, a signal can be represented as a linear combination 

of basis functions. If the basis functions are orthogonal, the coefficients in the expansion can be 

easily computed and the signal's representation becomes very efficient. 

7.1. Orthogonal Basis Functions: 

Orthogonal basis functions are a set of functions that are mutually perpendicular, meaning the 

inner product (or integral) of any two distinct basis functions is zero. In mathematical terms, two 

functions 𝜙1(𝑡)  and 𝜙2(𝑡)  are orthogonal if: 

∫ 𝜙1(𝑡)𝜙2(𝑡) 𝑑𝑡
∞

−∞
= 0 for 𝜙1(𝑡)   ≠ 𝜙2(𝑡)   

These basis functions can be used to express any signal within a given space as a sum of these 

orthogonal functions. The most well-known example of orthogonal basis functions is the Fourier 

series, where sines and cosines form the orthogonal basis for periodic signals. 

7.2. Representation of a signal: 

For a signal 𝑥(𝑡), it can be expressed in terms of a set of orthogonal basis functions {𝜙𝑛(𝑡)} as: 
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𝑥(𝑡) = ∑ 𝐶𝑛𝜙𝑛(𝑡)

∞

𝑛=0

 

Where: 

𝐶𝑛 are the coefficients to be determined. 

𝜙𝑛(𝑡) are the orthogonal basis functions. 

In practice, these basis functions are often chosen such that they have specific properties, such as 

being periodic (like the sine and cosine functions in Fourier series) or being defined over a specific 

domain. 

7.3. Computing the coefficients: 

The coefficients 𝐶𝑛 represent the contribution of each basis function to the signal. For orthogonal 

bases, the coefficients can be computed using the inner product of the signal  𝑥(𝑡) and each basis 

function 𝜙𝑛(𝑡). 

For continuous signals, the coefficient 𝐶𝑛 is given by: 𝐶𝑛 =
∫ 𝑥(𝑡)𝜙𝑛(𝑡)𝑑𝑡
∞

−∞

∫ 𝜙𝑛
2(𝑡)𝑑𝑡

∞

−∞

 

If the basis functions are normalized, the denominator becomes 1, simplifying the formula to:  

𝐶𝑛 = ∫ 𝑥(𝑡)𝜙𝑛(𝑡)𝑑𝑡
∞

−∞

 

For discrete signals, the sum replaces the integral:  

𝐶𝑛 = ∑ 𝑥[𝑛]𝜙𝑛[𝑛]

𝑁−1

𝑛=0

 

7.4. Minimal Quadratic Error (Least Squares Approach): 

When trying to approximate a signal x(t)x(t)x(t) using a finite number of basis functions, there will 

typically be some error because the signal is infinite-dimensional, and we cannot represent it with 

just a finite set of basis functions. The goal is to minimize this error, and the method commonly 

used is called the least squares approximation. 

The least squares method minimizes the error between the signal and its approximation by 

finding the best-fit coefficients. The error is typically defined as the squared error (or residual) 

between the original signal 𝑥(𝑡) and its approximation 𝑥̂(𝑡): 

𝐸 = ∫ (𝑥(𝑡) − 𝑥̂(𝑡))2
∞

−∞

𝑑𝑡 
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Where 𝑥̂(𝑡) is usually expressed in terms of the chosen basis functions as:  

𝑥̂(𝑡)  = ∑ 𝐶𝑛𝜙𝑛(𝑡)

𝑁−1

𝑛=0

 

To minimize the error, the coefficients 𝐶𝑛 are found by solving for the values that minimize the 

integral of the squared error: 

𝐸 = ∫ (𝑥(𝑡) − ∑ 𝐶𝑛𝜙𝑛(𝑡)

𝑁−1

𝑛=0

)

2
∞

−∞

𝑑𝑡 

This minimization is usually done by taking the derivative of the error with respect to each 

coefficient 𝐶𝑛 and setting it equal to zero. The result is a set of normal equations that can be 

solved to find the optimal coefficients 𝐶𝑛  for the approximation. 

7.5. Solution to the least squares problem: 

The solution to the least squares problem can be represented as a system of equations: 

∑ 𝐶𝑛 (∫ 𝜙𝑚(𝑡)𝜙𝑛(𝑡)
∞

−∞

𝑑𝑡) = ∫ 𝑥(𝑡)𝜙𝑚(𝑡)
∞

−∞

𝑑𝑡

𝑁−1

𝑛=0

 

This system is often written in matrix form as: 

𝐴𝑐 = 𝑏 

Where: 

𝐴 is a matrix whose elements are the inner products of the basis functions 𝜙𝑛(𝑡) 

𝑐 is the column vector of coefficients 𝐶𝑛, 

𝑏 is the column vector of inner products between 𝑥(𝑡) and 𝜙𝑚(𝑡) 

In practical applications, this system can be solved using numerical methods such as Gaussian 

elimination or matrix inversion. 

7.6. Example: 

If we want to approximate a signal 𝑥(𝑡)  using a set of Fourier basis functions (sines and cosines), 

we can compute the Fourier coefficients 𝐶𝑛 using the Fourier series approach. These coefficients 

are obtained by calculating the inner product between 𝑥(𝑡) and the corresponding sine or cosine 

function. 

For instance, for a continuous-time periodic signal x(t)x(t)x(t), the Fourier coefficients are: 
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𝐶𝑛 =
1

𝑇
∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑛𝑓0𝑡𝑑𝑡

𝑇

0

 

This approach provides an approximation of x(t)x(t)x(t) using a finite number of Fourier 

components, and the error can be minimized in the least squares sense by selecting the appropriate 

number of terms in the series. 

8. Fourier series representation: sinusoidal and exponential 

forms 

The Fourier series allows us to represent a periodic signal as a sum of sinusoidal or exponential 

functions. There are two main representations: 

8.1. Trigonometric (sinusoidal) form 

A periodic function 𝑥(𝑡)with period 𝑇 is useful for real-valued periodic signals in practical 

applications, such as electrical engineering and signal processing is expressed as a sum of sines 

and cosines:  

𝑥(𝑡) = 𝑎0 ∑[𝑎𝑛𝑐𝑜𝑠(𝑛𝜔0𝑡) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝜔0𝑡)]

∞

𝑛=1

 

Where: 

𝜔0 =
2𝜋

𝑇
 is the fundamental angular frequency 

𝑎0 =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑇

0
 is the DC component frequency, (DC stands for dot product) 

𝑎𝑛 =
2

𝑇
∫ 𝑥(𝑡)𝑐𝑜𝑠(𝑛𝜔0𝑡)𝑑𝑡

𝑇

0
 and 𝑏𝑛 =

2

𝑇
∫ 𝑥(𝑡)𝑠𝑖𝑛(𝑛𝜔0𝑡)𝑑𝑡

𝑇

0
 are the Fourier coefficients 

8.2. Exponential (complex) form 

The Fourier series can also be expressed using complex exponentials: 

𝑥(𝑡) = ∑ 𝐶𝑛𝑒
𝑗𝑛𝜔0𝑡

∞

𝑛=−∞

 

where 𝐶𝑛 =
1

𝑇
∫ 𝑥(𝑡)

𝑇

0
𝑒−𝑗𝑛𝜔0𝑡  is the Fourier coefficients. 

𝑒𝑗𝑛𝜔0𝑡 represents sinusoidal oscillations in complex form. 

The coefficients 𝐶𝑛 contain both amplitude and phase information. 
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The exponential form is particularly useful for mathematical analysis and signal processing, as it 

simplifies differentiation and integration in frequency-domain analysis. 

Comparison of the Two Forms 

Representation Formula Used for 

Sinusoidal Form 
𝑥(𝑡) = 𝑎0 ∑[𝑎𝑛𝑐𝑜𝑠(𝑛𝜔0𝑡) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝜔0𝑡)]

∞

𝑛=1

 
Real-valued periodic 

signals 

Exponential 

Form 𝑥(𝑡) = ∑ 𝐶𝑛𝑒𝑗𝑛𝜔0𝑡

∞

𝑛=−∞

 
Mathematical and 

frequency analysis 

Both forms are equivalent and can be converted from one to another 

8.3. Complex Fourier spectrum 

The Complex Fourier Spectrum refers to the representation of a signal in the frequency domain 

using the Fourier Transform or Fourier Series in exponential form. It describes the amplitude and 

phase of the frequency components that make up a signal. 

8.3.1. Definition 

A signal x(t)x(t)x(t) can be expressed in terms of its frequency components using the Fourier 

Transform: 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 

where:  

𝑋(𝑓) is the complex Fourier spectrum of the signal, it contains both magnitude and phase 

The inverse Fourier transform is 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 

8.3.2. Interpretation of the complex Fourier spectrum 

The spectrum 𝑋(𝑓) is complex, meaning it has both real and imaginary parts. 

It can be written as: 𝑋(𝑓) =∣ 𝑋(𝑓) ∣ 𝑒𝑗𝑎𝑟𝑔(𝑋(𝑓)) 

where: 

∣ 𝑋(𝑓) ∣ is the magnitude spectrum, showing the strength of each frequency. 

𝑎𝑟𝑔(𝑋(𝑓) is the phase spectrum, showing the phase shift at each frequency. 

8.3.3. Example: Fourier transform of a sinusoidal signal 

If 𝑥(𝑡) = 𝐴𝑐𝑜𝑠 (2𝜋𝑓0𝑡), its Fourier Transform is: 𝑋(𝑓) =
𝐴

2
[𝛿(𝑓 − 𝑓0) + 𝛿(𝑓 + 𝑓0)] 
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The magnitude spectrum shows two spikes at ±𝑓0. 

The phase spectrum indicates the phase shift of each component. 

8.3.4. Visualization of the complex spectrum 

The Fourier spectrum is typically visualized as two plots: 

Magnitude spectrum ∣ 𝑋(𝑓) ∣ – Shows the intensity of frequency components. 

Phase spectrum 𝑎𝑟𝑔(𝑋(𝑓) – Shows the phase shift of each frequency component. 

9. Power spectral density (PSD) 

The Power spectral density (PSD) represents how the power of a signal is distributed across 

different frequencies. It provides insights into the frequency components of a signal and is 

commonly used in signal processing, communications, and biomedical engineering (e.g., 

Electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG) 

analysis). 

9.1. Definition 

The Power Spectral Density (PSD) of a signal 𝑥(𝑡) is defined as: 

𝑆𝑥(𝑓) = lim
𝑇→+∞

1

𝑇
|𝑋𝑇(𝑓)|2 

Where:  

𝑋𝑇(𝑓) is the Fourier transform of the signal over a period time T 

𝑆𝑥(𝑓) gives the power per unit frequency in 𝑊 𝐻𝑧⁄  or 𝑑𝐵 𝐻𝑧⁄  

For a discrete-time signal 𝑥[𝑛], the PSD is often estimated using the periodogram or the Welch 

method. 

9.2. Relationship with the autocorrelation function 

The Wiener-Khinchin theorem states that the PSD is the Fourier transform of the autocorrelation 

function 𝑅𝑥(𝜏): 

𝑆𝑥(𝑓) = ∫ 𝑅𝑥(𝜏)
∞

−∞

𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 = ∫ 𝐸[𝑥(𝑡)𝑥(𝑡 + 𝜏)]
∞

−∞

𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 

This means that PSD provides frequency-domain information about signal variations over time. 
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9.3. Applications of PSD 

 Biomedical Engineering: Analyzing EEG (brain signals), ECG (heart signals), and EMG 

(muscle signals). 

 Communications: Studying noise and bandwidth of signals in wireless networks. 

 Vibration Analysis: Monitoring mechanical systems to detect faults. 

9.4. PSD Estimation methods 

To estimate PSD, common techniques include: 

 Periodogram: Direct computation of squared Fourier transform. 

 Welch's method: Averages multiple periodograms for a smoother estimate. 

 Burg method: Uses autoregressive (AR) modeling. 

9.5. MATLAB example: estimating PSD 

You can use MATLAB to compute and visualize the PSD of a signal: 

fs = 1000; % Sampling frequency (Hz) 

t = 0:1/fs:1-1/fs; % Time vector 

x = sin(2*pi*50*t) + 0.5*randn(size(t)); % Signal (50 Hz sine wave + noise) 

 

% Compute PSD using Welch's method 

[pxx, f] = pwelch(x, hamming(256), 128, 256, fs); 

 

% Plot PSD 

figure; 

plot(f, 10*log10(pxx)); % Convert to dB scale 

xlabel('Frequency (Hz)'); 

ylabel('Power/Frequency (dB/Hz)'); 

title('Power Spectral Density (PSD)'); 

grid on; 

10. Convergence of Fourier series, Gibbs phenomenon, and 

Fourier transform properties 

10.1. Convergence of Fourier series 

A Fourier series represents a periodic function as a sum of sine and cosine functions. The 

convergence of the series depends on the function's properties. 

Dirichlet conditions for convergence 
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A Fourier series converges to a function 𝑓(𝑥) if: 

𝑓(𝑥) is absolutely integrable over one period: ∫ |𝑓(𝑥)|𝑑𝑥
𝜋

−𝜋
< ∞ 

𝑓(𝑥) has a finite number of discontinuities in any finite interval. 

𝑓(𝑥) has a finite number of maxima and minima in any finite interval. 

If these conditions hold, the Fourier series converges pointwise to 𝑓(𝑥) except at discontinuities, 

where it converges to the average of the left-hand and right-hand limits. 

10.2. Gibbs Phenomenon 

The Gibbs phenomenon occurs when a Fourier series approximates a function with a discontinuity. 

Near the discontinuity, the Fourier series overshoots the true function, creating oscillations that do 

not disappear as more terms are added. 

Key Characteristics: 

 The overshoot is about 9% of the jump size, regardless of how many terms are included. 

 Increasing the number of terms reduces the width of the oscillations but does not 

eliminate the overshoot. 

 It is significant in signal processing, where truncation of Fourier series affects accuracy. 

MATLAB example of Gibbs phenomenon: 

x = linspace(-pi, pi, 1000);  

f = sign(sin(x)); % Square wave signal 

N = 10; % Number of Fourier terms 

 

y = zeros(size(x));  

for k = 1:N 

    y = y + (1/(2*k-1)) * sin((2*k-1)*x);  

end 

y = (4/pi) * y; % Fourier series approximation 

 

plot(x, f, 'k', 'LineWidth', 2); hold on; 

plot(x, y, 'r', 'LineWidth', 1.5); 

xlabel('x'); ylabel('Function Value'); 

legend('Original Square Wave', 'Fourier Approximation'); 

title('Gibbs Phenomenon'); 

grid on; 
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10.3. Fourier transform properties 

The Fourier transform (FT) converts a signal from the time domain to the frequency domain and 

is defined as: 𝐹(𝑓) = ∫ 𝑓(𝑡)
∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

Properties of Fourier Transform: 

Linearity: 𝐹[𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡)] = 𝑎𝐹1(𝑓) + 𝑏𝐹2(𝑓) 

Time Shifting: 𝐹[𝑓(𝑡 − 𝑡0)] = 𝑒−𝑗2𝜋𝑓𝑡0𝐹(𝑓) 

Frequency Shifting: 𝐹[𝑒𝑗2𝜋𝑡𝑓0𝑓(𝑡)] = 𝐹(𝑓 − 𝑓0) 

Scaling Property: 𝐹[𝑓(𝑎𝑡)] =
1

|𝑎|
𝐹 (

𝑓

𝑎
) 

Parseval's Theorem ∫ |𝑓(𝑡)|2
∞

−∞
𝑑𝑡 = ∫ |𝐹(𝑓)|2

∞

−∞
𝑑𝑓 

Convolution Theorem: 𝐹[𝑓1(𝑡) ∗ 𝑓2(𝑡)] = 𝐹1(𝑓)𝐹2(𝑓): Convolution in time domain is 

multiplication in frequency domain 

11. Fourier transform of singular functions 

A singular function is a function that exhibits discontinuities, impulses, or other non-smooth 

behaviors. Some important singular functions in signal processing include the Dirac delta function, 

step function, and other piecewise discontinuous functions. 

11.1. Fourier Transform of the Dirac Delta Function 𝜹(𝒕) 

The Dirac delta function 𝛿(𝑡) is defined as: 𝛿(𝑡) = {
∞, 𝑡 = 0
0, 𝑡 ≠ 0

 with the property: ∫ 𝛿(𝑡)
∞

−∞
𝑑𝑡 = 1 

Fourier transform of 𝜹(𝒕) 

𝐹⌈𝛿(𝑡)⌉ = ∫ 𝛿(𝑡)
∞

−∞

𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

Using the sifting property of the delta function: 𝐹⌈𝛿(𝑡)⌉ = 1 

This means the Fourier Transform of δ(t)\delta(t)δ(t) is a constant across all frequencies. 

Fourier Transform of 𝜹(𝒕 − 𝒕𝟎) (Shifted Delta Function) 

𝐹⌈𝛿(𝑡 − 𝒕𝟎)⌉ = 𝑒−𝑗2𝜋𝑓𝒕𝟎 which represents a phase shift in the frequency domain. 

11.2. Fourier transform of the unit step Function 𝒖(𝒕) 

The Heaviside step function is defined as: 𝑢(𝑡) = {
1 𝑡 ≥ 0
0, 𝑡 < 0

 

Fourier transform of 𝒖(𝒕) 
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𝐹⌈𝑢(𝑡)⌉ = ∫ 𝑒−𝑗2𝜋𝑓𝑡∞

0
𝑑𝑡 =

1

𝑗2𝜋𝑓
+

1

2
𝛿(𝑓) which shows that the Fourier transform of the unit step 

function consists of a principal value 
1

𝑗2𝜋𝑓
 and DC component 

1

2
𝛿(𝑓) 

 

11.3. Fourier Transform of the Sign Function 𝒔𝒈𝒏(𝒕) 

The sign function is defined as: 𝑢(𝑡) = {
1, 𝑡 > 0
0, 𝑡 = 0
−1, 𝑡 < 0

 

Fourier transform of 𝑠𝑔𝑛(𝑡) 

Using the integral definition of the Fourier transform: 𝐹⌈𝑠𝑔𝑛(𝑡)⌉ = ∫ 𝑠𝑔𝑛(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
𝑑𝑡 =

2

𝑗2𝜋𝑓
=

1

𝑗𝜋𝑓
 which is purely imaginary and represents a Hilbert transform in the frequency domain. 

11.4. Summary of Fourier transforms of singular functions 

Function 𝒇(𝒕) 𝛿(𝑡) 𝜹(𝒕 − 𝒕𝟎) 𝑢(𝑡) 𝑠𝑔𝑛(𝑡) 

Fourier 

Transform 𝑭(𝒇) 

1 𝑒−𝑗2𝜋𝑓𝒕𝟎 1

𝑗2𝜋𝑓
+

1

2
𝛿(𝑓) 

1

𝑗𝜋𝑓
 

12. Energy spectral density (ESD) 

The Energy spectral density (ESD) describes how the energy of a signal is distributed across 

different frequencies. It is particularly useful for analyzing finite-energy signals (also called energy 

signals), which have a total energy given by: 

𝐸 = ∫ |𝑥(𝑡)|2𝑑𝑡
∞

−∞

 

12.1. Definition 

The Energy spectral density is defined as the squared magnitude of the Fourier transform of a 

signal 𝑥(𝑡): 

𝑆𝐸(𝑓) = |𝑥(𝑓)|2 where 𝑋(𝑓) is the Fourier transform of 𝑥(𝑡):  

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 

Thus, the total energy of the signal can be expressed in terms of the Energy Spectral Density: 
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𝐸 = ∫ 𝑆𝐸(𝑓)𝑑𝑓
∞

−∞

 

This follows from Parseval’s theorem, which states that the energy computed in the time domain 

is equal to the energy computed in the frequency domain. 

12.2. Key properties of energy spectral density 

Non-Negative: 𝑆𝐸(𝑓) ≥ 0, ∀ 𝑓, since it is the squared magnitude of the Fourier Transform. 

The integral of the energy spectral density over all frequencies gives the total signal energy:  𝐸 =

∫ 𝑆𝐸(𝑓)𝑑𝑓
∞

−∞
 

For real-valued signals, the energy spectral density is symmetric: 𝑆𝐸(𝑓) = 𝑆𝐸(−𝑓) 

12.3. Example: energy spectral density of a rectangular pulse 

Consider a rectangular pulse signal: 𝑥(𝑡) = {
1, |𝑡| ≤ 𝑇 2⁄

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Its Fourier transform is: 𝑋(𝑓) = 𝑇𝑠𝑖𝑛𝑐(𝑇𝑓) 

Thus, the Energy spectral density is: 𝑆𝐸(𝑓) = |𝑋(𝑓)|2 = |𝑇|2𝑠𝑖𝑛𝑐2(𝑇𝑓) 

This shows that the energy is concentrated around low frequencies. 

12.4. Comparison with power spectral density (PSD) 

Energy Spectral Density (ESD) applies to energy signals (finite energy, zero average power). 

Power Spectral Density (PSD) applies to power signals (infinite energy, finite average power). 

For a stationary signal 𝑥(𝑡) with infinite energy, we use the Power Spectral Density (PSD), which 

is related to the autocorrelation function via the Wiener-Khinchin theorem. 

13. Fourier series of discrete-time signals: complex exponentials and 

harmonic relations 

13.1. Introduction to discrete-time Fourier series (DTFS) 

The Fourier Series representation for discrete-time periodic signals expresses a periodic signal as 

a sum of complex exponentials that are harmonically related. 

For a discrete-time periodic signal 𝑥[𝑛] with period 𝑁, the discrete-time Fourier series (DTFS) is 

given by:  𝑥[𝑛] = ∑ 𝐶𝑘𝑒
𝑗
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑘=0  where the Fourier coefficients 𝐶𝑘 =
1

𝑁
∑ 𝑥[𝑛]𝑒−𝑗

2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0  

determine how much of each complex exponential component contributes to the original signal. 
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13.2. Steps for Determining DTFS of a Discrete-Time Signal 

Identify the period 𝑁: Ensure that the given signal is periodic with a period NNN. 

Compute the Fourier coefficients 𝐶𝑘: Use the formula to find the coefficients by summing over 

one period. 

Reconstruct the signal: Using the inverse DTFS formula, sum the frequency components to 

obtain 𝑥[𝑛]. 

Analyze the frequency spectrum: The coefficients 𝐶𝑘  describe how much of each frequency 

component is present in the signal. 

13.3. Properties of the DTFS 

Periodicity of Coefficients: The Fourier coefficients 𝐶𝑘are periodic with period 𝑁, 

meaning 𝐶𝑘+𝑁 = 𝐶𝑘. 

Orthogonality of Basis Functions: The exponentials 𝑒𝑗
2𝜋

𝑁
𝑘𝑛 form an orthogonal basis, allowing 

the signal to be decomposed uniquely into these components. 

Parseval’s Theorem: The total energy of the signal is preserved in the frequency domain: 

13.4. Examples: DTFS of a simple discrete-time signal 

Example 1 

Consider a periodic signal: 𝑥[𝑛] = 𝑒𝑗
2𝜋

𝑁
𝑛

 which is itself a harmonic complex exponential. The 

Fourier series coefficients for this signal are: 𝐶𝑘 = {
1, 𝑘 = 1
0, 𝑘 ≠ 1

 indicating that the signal consists of 

only one frequency component. 

Example 2  

Consider a periodic signal: 𝑥[𝑛] = 1,   0 ≤ 𝑛 < 𝑁   For this signal, the Fourier coefficients are 

calculated as: 𝐶𝑘 =
1

𝑁
∑ 𝑒−𝑗

2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0 which results in a sinc-like frequency spectrum. 

13.5. Harmonic relation of complex exponentials 

The fundamental frequency of a discrete-time periodic signal with period 𝑁 is: 𝜔0 =
2𝜋

𝑁
 

Each term in the Fourier series expansion corresponds to a harmonic of the fundamental frequency: 

𝑒𝑗𝑘𝜔0𝑛 = 𝑒𝑗
2𝜋

𝑁
𝑘𝑛 where 𝑘 is an integer representing different frequency components (harmonics) 

in the signal. 
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14. Discrete-time Fourier transform (DTFT) 

The Discrete-Time Fourier Transform (DTFT) is used to analyze the frequency content of discrete-

time signals. Unlike the Discrete Fourier Series (DFS), which is used for periodic signals, the 

DTFT applies to aperiodic signals and provides a continuous frequency spectrum. 

14.1. Definition  

For a discrete-time signal 𝑥[𝑛], the DTFT is defined as: 

𝑋(𝑒−𝑗𝜔𝑛) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

  

Where: 

𝑋(𝑒−𝑗𝜔𝑛) is the frequency representation of 𝑥[𝑛] as a complex-valued function of frequency 

𝜔 is the normalized angular frequency in radians, with −𝜋 ≤ 𝜔 ≤ 𝜋 

The summation extends over all discrete time indices 𝑛. 

14.2. Inverse DTFT 

To recover 𝑥[𝑛] from its DTFT, the inverse DTFT is given by: 

𝑥[𝑛]  =
1

2𝜋
∫ 𝑋(𝑒𝑗𝜔)𝑋(𝑒𝑗𝜔𝑛)

𝜋

−𝜋
𝑑𝜔  

Which reconstructs the original time-domain signal from its frequency representation. 

14.3. Properties of the DTFT 

Some key properties of the DTFT include: 

Linearity: 𝑎𝑥1[𝑛] + 𝑏𝑥2[𝑛] ↔ 𝑎𝑋1(𝑒
𝑗𝜔) + 𝑏𝑋2(𝑒

𝑗𝜔) 

Time Shifting: 𝑥[𝑛 − 𝑛0] ↔ 𝑋(𝑒−𝑗𝜔𝑛0)𝑋(𝑒𝑗𝜔) 

Frequency Shifting: 𝑒𝑗𝜔𝑛0𝑥[𝑛] ↔  𝑋(𝑒𝑗(𝜔−𝜔0)) 

Convolution Property: : 𝑥1[𝑛] ∗ 𝑏𝑥2[𝑛] ↔ 𝑋1(𝑒
𝑗𝜔)𝑋2(𝑒

𝑗𝜔) 

Parseval’s Theorem (Energy conservation): ∑ |𝑥[𝑛]|2∞
𝑛=−∞ =

1

2𝜋
∫ |𝑋(𝑒𝑗𝜔)|

2
𝑑𝜔

𝜋

−𝜋
 

14.4. Example: DTFT of a finite-length signal 

Consider the discrete-time signal: 𝑥[𝑛] = {1,2,3,4}, 0 ≤ 𝑛 ≤ 3 

Its DTFT is: 𝑋(𝑒𝑗𝜔) = 1 + 2𝑒−𝑗𝜔 + 3𝑒−𝑗2𝜔 + 4𝑒−𝑗3𝜔 which describes how the frequency 

components are distributed in the signal. 
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14.5. Relationship to Other Transforms 

DTFT vs. DFT: The Discrete Fourier Transform (DFT) is a sampled version of the DTFT, used 

for numerical computations. 

DTFT vs. Z-Transform: The DTFT is a special case of the Z-Transform when evaluated on the 

unit circle  𝑧 = 𝑒𝑗𝜔. 

15. Fourier Transform of periodic signals 

For periodic signals, the Fourier Transform does not exist in the conventional sense because 

periodic signals have an infinite duration. Instead, periodic signals are represented using the 

Fourier Series, and their Fourier Transform leads to a discrete spectrum. 

15.1. Representation of a periodic signal 

A continuous-time periodic signal 𝑥(𝑡) with fundamental period 𝑇0 can be expressed using the 

Fourier Series as: 𝑥(𝑡) = ∑ 𝐶𝑘𝑒
𝑗𝑘𝜔0𝑡∞

𝑘=−∞  

where: 

𝜔0 =
2𝜋

𝑇0
 is the fundamental angular frequency. 

𝐶𝑘 =
1

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑇

0
 are the Fourier series coefficients 

15.2. Fourier transform of a periodic signal 

The Fourier Transform of a periodic signal consists of impulses (Dirac delta functions) at the 

harmonics of the fundamental frequency 𝜔0: 𝑋(𝜔) = 2𝜋 ∑ 𝐶𝑘𝛿(𝜔 − 𝑘𝜔0)
∞
𝑘=−∞  

where: 

𝛿(𝜔 − 𝑘𝜔0) represents impulses at discrete frequencies 𝑘𝜔0. 

The amplitude of each impulse is proportional to 𝐶𝑘. 

This shows that a periodic signal in the time domain corresponds to a discrete set of frequency 

components (harmonics) in the frequency domain. 

15.3. Example: Fourier transform of a square wave 

Consider a square wave signal 𝑥(𝑡) with period 𝑇0 and duty cycle of 50%. Its Fourier series 

representation is: 𝑥(𝑡) = ∑
sin (𝑘𝜋 2⁄ )

𝑘𝜋 2⁄
𝑒𝑗𝑘𝜔0𝑡∞

𝑘=−∞  

Its Fourier transform consists of impulses at multiples of 𝜔0, weighted by the coefficients 𝐶𝑘. 
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Notes 

The Fourier Transform of a periodic signal is a sum of delta functions at the harmonic 

frequencies. 

The spacing between spectral lines is determined by the fundamental frequency 𝜔0. 

The magnitude of each spectral component is given by the Fourier series coefficients 𝐶𝑘. 

16. Laplace transform 

The Laplace transform of a function 𝑓(𝑡), denoted 𝐿{𝑓(𝑡)}, is defined as: 

𝐿{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

where: 

𝑡 ≥ 0 (assuming 𝑓(𝑡) is defined for 𝑡 ≥ 0 , 

𝑠 = 𝜎 + 𝑗𝜔 (a complex number, where 𝜎  and 𝜔 are real, and 𝑗 is the imaginary unit). 

16.1. Region of convergence (ROC) 

The Region of convergence (ROC) is the set of values of 𝑠 for which the Laplace transform integral 

converges. This region depends on the nature of the function 𝑓(𝑡). For example: 

For exponentially decaying functions, the ROC is a left half-plane in the complex plane. 

For impulsive functions, the ROC could be the entire real line or a central region in the complex 

plane. 

16.2. Unilateral Laplace transform 

The Unilateral Laplace transform is a specific version of the Laplace Transform, where the 

function 𝑓(𝑡) is defined only for 𝑡 ≥ 0. This simplifies the transform, as it involves only the 

positive time axis (for ≥ 0 ) and does not require consideration of negative values of 𝑡. 

16.2. Relationship between the Laplace transform and the Fourier 

transform 

The Fourier transform is a special case of the Laplace Transform, where the complex variable 𝑠 is 

purely imaginary. Specifically, when 𝑠 = 𝑗𝜔, the Laplace transform becomes the Fourier 

transform. 

Formally: 

𝐿{𝑓(𝑡)} ∣𝑠=𝑗𝜔= 𝐹{𝑓(𝑡)} 
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This means that: 

𝐹{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 

In the case of the Laplace transform, the integral is taken over [0, ∞), while the Fourier ransform 

typically integrates over (−∞,∞). 

16.3. Differences between the Laplace transform and the Fourier 

transform: 

Integration domain: The Laplace transform integrates from 0 𝑡𝑜 ∞, whereas the Fourier 

transform integrates over the entire real line (−∞,∞). 

Complex parameter: The Laplace transform uses a complex parameter 𝑠 = 𝜎 + 𝑗𝜔 s, while the 

Fourier transform uses, meaning the variable is purely imaginary in the case of Fourier. 

Applications: The Laplace Transform is more general and is particularly useful for solving 

differential equations with initial conditions. The Fourier Transform is more specific to analyzing 

stationary and periodic signals. 

In summary, the Laplace Transform is more general, while the Fourier Transform is a specific 

form of the Laplace Transform, used mainly for analyzing signals and systems in the frequency 

domain. 

17. Z-Transform 

The Z-Transform is a powerful tool used in signal processing and control systems to analyze 

discrete-time signals and systems. It is defined as: 

𝑍{𝑥[𝑛]} = 𝑋(𝑧) = ∑ 𝑥[𝑛]𝑧−𝑛

∞

𝑛=0

 

where: 

𝑥[𝑛] is the discrete-time signal (a sequence of values), 

𝑧 is a complex variable, and z=rejθz = r e^{j\theta}z=rejθ (polar form), 

𝑛 is the discrete-time index (typically starting from 𝑛 = 0). 

17.1. Region of convergence (ROC) 

The Region of convergence (ROC) is the set of values of 𝑧 for which the Z-Transform converges. 

It depends on the nature of the sequence 𝑥[𝑛]. The ROC is crucial for analyzing the stability and 

behavior of systems. Some examples: 
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If 𝑥[𝑛] is absolutely summable, the ROC may include a circle centered at the origin in the complex 

plane. 

If 𝑥[𝑛] is a decaying exponential, the ROC may be an annular region (a ring-shaped area in the 

complex plane). 

The ROC provides insights into the stability of discrete-time systems, and different sequences have 

different regions of convergence. 

17.2. Inverse Z-Transform 

The Inverse Z-Transform is used to recover the original time-domain sequence 𝑥[𝑛] from its Z-

Transform 𝑋(𝑧). It can be computed using several methods: 

Partial Fraction Expansion: This method involves decomposing 𝑋(𝑧) into simpler fractions, 

which can then be inverted using known inverse Z-Transforms. 

Contour Integration: This approach uses complex integration around a closed contour in the 

complex plane to recover 𝑥[𝑛]. 

Power Series Expansion: This method involves expanding 𝑋(𝑧) as a power series and 

determining the coefficients of the series. 

17.3. Division method 

The Division method (or long division) is a technique for finding the inverse Z-Transform. It 

involves dividing the Z-Transform 𝑋(𝑧) by a known function to express 𝑋(𝑧) in a form that is 

easier to invert. This method is particularly useful when 𝑋(𝑧) has a rational form (i.e., a ratio of 

polynomials in 𝑧). 

Steps for the division method: 

Express 𝑋(𝑧) as a ratio of polynomials (𝑧) =
𝑃(𝑧)

𝑄(𝑧)
. 

Perform polynomial long division on 𝑃(𝑧) and 𝑄(𝑧). 

Once the division is done, use known inverse Z-Transforms for the resulting terms to find 𝑥[𝑛]. 

17.4. Relation between Z-Transform and Laplace transform 

The Z-Transform and the Laplace transform are closely related, as both are used to analyze signals 

and systems in the complex plane. The Z-Transform is primarily used for discrete-time signals, 

while the Laplace Transform is used for continuous-time signals. The key relationship is: 

The Z-Transform is often considered as the discrete-time counterpart of the Laplace Transform. 

If 𝑠 = 𝑗𝜔 (purely imaginary), the Laplace Transform reduces to the Fourier transform. 
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For discrete systems, the Z-Transform can be thought of as the discrete counterpart to the Laplace 

Transform, and they are connected through the concept of sampling: the Z-Transform arises by 

discretizing the continuous-time Laplace Transform using the sampling period. 

More specifically, for a discrete-time system, the Z-Transform of a signal can be derived from the 

Laplace Transform by discretizing the Laplace Transform, replacing the continuous-time variable 

sss with the discrete-time variable zzz. The Z-Transform is the discrete analog of the Laplace 

Transform, and the relationship between them is important for transitioning between discrete and 

continuous domains. 

Conclusion 

Fourier analysis serves as a powerful tool for understanding and manipulating signals by 

transforming them from the time domain to the frequency domain. This transformation enables us 

to gain valuable insights into the frequency content of signals, which proves useful in various 

applications, including signal processing, communications, and spectral analysis. Techniques such 

as the Fourier transform and Fourier series allow us to express both periodic and non-periodic 

signals in terms of their frequency components. Additionally, representing signals using 

orthogonal basis functions enhances our ability to analyze and approximate them efficiently. 

Computing the coefficients of these basis functions is crucial, and when a signal cannot be 

perfectly represented by a finite set of basis functions, the least squares method offers a way to 

minimize the error between the actual signal and its approximation. This approach is widely 

applicable in signal processing, data compression, and other fields requiring effective signal 

approximation and reconstruction. Together, these methods and techniques provide a 

comprehensive framework for analyzing and manipulating signals across various domains. In 

addition The Z-Transform is used for discrete-time signals and systems, with a Region of 

Convergence (ROC) that plays a significant role in analyzing system behavior. The Inverse Z-

Transform allows recovery of the time-domain sequence using techniques like partial fraction 

expansion or long division. The Z-Transform is closely related to the Laplace Transform, acting 

as its discrete-time counterpart. 

  



 

43 

 

Chapter 3: Image Filtering, enhancement, and restoration 

1. Image Filtering 

1.1. Gaussian Filter 

Definition 

The Gaussian filter is a widely used filter in image processing for reducing noise and smoothing 

images. It is defined mathematically as: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2  

where: 

G(x,y) is the value of the Gaussian filter at coordinates (x,y). 

σ is the standard deviation of the Gaussian distribution, which controls the amount of smoothing. 

The term 2𝜋𝜎2 normalizes the filter so that the sum of all coefficients equals 1. 

1.2. Properties 

Smoothing: The Gaussian filter smooths an image by averaging pixel values with their neighbors 

in a weighted manner, where pixels closer to the center have a higher weight. 

Isotropic: The filter is isotropic, meaning it has the same effect in all directions. 

Controlled Blurring: The degree of blurring can be controlled by adjusting σ. A larger σ results 

in more smoothing. 

1.3. Example 

Applying a Gaussian Filter: 

Consider a 5x5 kernel for a Gaussian filter with σ=1: 

[
0.0613 0.1247 0.0613
0.1247 0.2486 0.1247
0.0613 0.1247 0.0613

]  

When this kernel is convolved with an image, each pixel in the output image is computed as the 

weighted sum of the neighboring pixels based on the kernel values. This results in a smoother 

image with reduced noise.  

To visualize the effect of a Gaussian filter, consider a noisy image. After applying the filter, the 

image appears smoother, and the noise is less pronounced. 
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2. Image enhancement 

2.1. Contrast stretching 

Contrast stretching is a technique used to enhance the contrast of an image by expanding the range 

of intensity values. The transformation can be expressed mathematically as: 

 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
× (𝐿 − 1) 

where: 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) is the enhanced pixel value at coordinates (x,y). 

𝐼(𝑥, 𝑦) is the original pixel value at coordinates (x,y). 

𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and maximum pixel values in the original image. 

L is the number of intensity levels (e.g., 256 for an 8-bit image). 

2.2. Steps for contrast stretching 

Find minimum and maximum: Determine 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥  from the original image. 

Apply transformation: Use the contrast stretching formula to compute the new pixel values. 

Resulting image: The resulting image will have its pixel values spread across the full range, 

enhancing the visual contrast. 

2.3. Example 

Let’s consider an image with pixel values ranging from 50 to 200. 

Set 𝐼𝑚𝑖𝑛 = 50 and 𝐼𝑚𝑎𝑥 = 200. 

For a pixel value 𝐼(𝑥, 𝑦) = 100: 

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑(𝑥, 𝑦) =
100 − 50

200 − 100
× (255 − 1) ≈ 84.67 

This transformation adjusts the pixel value from 100 to approximately 85, effectively stretching 

the contrast. We can note that: 

Before Contrast Stretching: The image may appear dull and lacking detail. 

After Contrast Stretching: The image shows improved contrast, making features more 

distinguishable. 
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By applying the Gaussian filter and contrast stretching techniques, images can be significantly 

enhanced for better visual quality and analysis. These methods are foundational in various 

applications, including medical imaging, photography, and computer vision. 

3. Image restoration 

Deconvolution (Wiener Filter): The Wiener filter is defined as: 

𝐻(𝑢, 𝑣) =
𝑆∗(𝑢, 𝑣)

|𝑆(𝑢, 𝑣)|2 + 𝐾
 

where 𝐻 is the filter, 𝑆∗ is the complex conjugate of the signal, and K is a constant that represents 

noise. 

Example: If an image is blurred due to motion, applying the Wiener filter can restore the sharpness 

by reversing the effects of the blur. 

4. Edge detection and segmentation of images 

4.1. Edge detection 

Canny Edge Detector: The Canny method involves several steps, including gradient calculation: 

𝐺(𝑥, 𝑦) = √𝐼𝑥
2 + 𝐼𝑦

2
 

where Ix and Iy are the gradients in the x and y directions. 

Example: Using the Canny edge detector on a photograph will highlight the edges of objects 

within the image, making them more pronounced. 

4.2. Image Segmentation 

Thresholding: The basic thresholding operation can be expressed as: 

𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑥, 𝑦) = {
1 𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where T is the threshold value. 

Example: In segmenting a grayscale image of a fruit, setting a threshold can help isolate the fruit 

from the background based on intensity. 



 

46 

 

5. Wavelet transform 

5.1. Continuous Wavelet Transform (CWT) 

𝑊(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜓∗(𝑎𝑡 − 𝑏)
∞

−∞

𝑑𝑡 

where W(a,b) is the wavelet coefficient, f(t) is the signal, ψ is the wavelet function, a is the scale, 

and b is the translation. 

Example: The wavelet transform can be used for image compression by representing an image in 

terms of its wavelet coefficients, allowing for efficient storage. 

6. Other Signal and Image Processing Methods 

6.1. Fourier Transform 

Discrete Fourier Transform (DFT): 

 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑛=0

 

where X(k) is the DFT of the signal x(n). 

Example: Applying the DFT to an image allows for frequency analysis, helping to identify 

periodic patterns or noise. 

6.2. Morphological Operations 

Dilation: The dilation operation can be defined as: 

 

(𝐴 ⊕ 𝐵)(𝑥, 𝑦) = 𝑚𝑎𝑥(𝑖,𝑗)∈𝐵𝐴(𝑥 − 𝑖, 𝑦 − 𝑗) 

where A is the image and B is the structuring element. 

Example: Dilation can be used to expand the boundaries of objects in a binary image, useful in 

shape analysis. 

6.3. Principal Component Analysis (PCA) 

PCA Transformation: 

𝑍 = 𝑋𝑊 
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where Z is the transformed data, X is the original data, and W is the matrix of eigenvectors. 

Example: PCA can reduce the dimensionality of image data while preserving variance, making it 

easier to analyze high-dimensional images. 

7. Clustering and Classification 

7.1. Clustering 

K-means Clustering: The objective function can be defined as: 

𝐽 = ∑ ∑ ∥ 𝑥𝑗
(𝑖)

− 𝜇
𝑖
∥2

𝑛

𝑗=1

𝑘

𝑖=1
 

where k is the number of clusters,  𝑥𝑗
(𝑖)

is the data point, and 𝜇𝑖  is the centroid of cluster i. 

Example: K-means can be applied to segment an image into different color regions based on pixel 

intensity. 

7.2. Classification 

Support Vector Machine (SVM): The decision boundary can be expressed as: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 

where w is the weight vector, x is the input feature vector, and b is the bias. 

Example: SVM can classify images of handwritten digits by finding the optimal hyperplane that 

separates different digit classes. 
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Section 2 : Processing of biomedical signals 

1. Electric Activities of the Cell 

The electric activities of cells, particularly in neurons and muscle cells, are fundamental for 

understanding physiological functions and how signals are transmitted within the body. These 

activities can be measured using various techniques, such as patch-clamp recordings, which allow 

for the study of ionic currents in individual cells. 

1.1. Resting Potential 

The resting potential is the voltage difference across the cell membrane when the cell is in a non-

active state, typically around −70 mV−70mV. This potential is maintained by the selective 

permeability of the cell membrane and the action of ion pumps, primarily the sodium-potassium 

pump (Na⁺/K⁺ ATPase), which actively transports potassium ions into the cell and sodium ions 

out. 

1.2. Action Potential 

An action potential is a rapid, transient change in membrane potential that occurs when a neuron 

is stimulated. The Hodgkin-Huxley model describes the dynamics of action potentials in neurons. 

The equation governing the membrane potential V can be expressed as: 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑖𝑛 − 𝐼𝐾 − 𝐼𝑁𝑎 − 𝐼𝐿 

 

where: 

Cm = membrane capacitance, 

V = membrane potential, 

Iin = input current, 

IK = potassium current, 

INa = sodium current, 

IL = leakage current. 

Example: When a neuron is stimulated, sodium channels open, allowing Na⁺ ions to flow into the 

cell, causing depolarization. If the depolarization reaches a threshold, an action potential is 

generated, propagating along the axon to transmit information. 
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2. Electrocardiogram (ECG) 

An electrocardiogram (ECG) is a recording of the electrical activity of the heart over time, which 

is crucial for diagnosing various cardiac conditions. It provides insights into heart rhythm, size, 

and the presence of ischemic damage. 

2.1. ECG Waveforms: 

The ECG consists of several key components: 

P wave: Represents atrial depolarization. 

QRS complex: Represents ventricular depolarization. 

T wave: Represents ventricular repolarization. 

Intervals and Segments: 

The PR interval, QT interval, and ST segment are critical for assessing heart function and detecting 

abnormalities. 

The relationship between the heart's electrical activity and the ECG signal can be modeled as: 

𝐸𝐶𝐺(𝑡) = 𝐴 ⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝜙) 

where: 

A = amplitude (reflecting the strength of electrical activity), 

f = frequency (related to heart rate), 

ϕ = phase shift (reflecting timing). 

Example: An ECG can be used to detect arrhythmias, myocardial infarction, or other heart 

conditions based on the shape and timing of the P, QRS, and T waves. For instance, a prolonged 

QT interval may indicate a risk of life-threatening arrhythmias. 

3. Electroencephalogram (EEG) 

An electroencephalogram (EEG) measures the electrical activity of the brain and is primarily used 

to diagnose neurological conditions such as epilepsy, sleep disorders, and brain tumors. 

3.1. Brain Waves 

EEG records different types of brain waves, each associated with different states of consciousness: 

Delta waves (0.5-4 Hz): Associated with deep sleep. 

Theta waves (4-8 Hz): Associated with light sleep and relaxation. 

Alpha waves (8-12 Hz): Associated with a relaxed, calm state, often seen when a person is awake 

but relaxed. 
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Beta waves (12-30 Hz): Associated with active thinking, problem-solving, and concentration. 

The EEG signal can be represented as: 

𝐸𝐸𝐺(𝑡) = ∑ 𝐴𝑖

𝑚

𝑗=1
⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡 + 𝜙𝑖) 

where: 

Ai = amplitude of the ith frequency component, 

fi = frequency of the ith component, 

ϕi = phase shift of the ith component. 

Example: EEG is commonly used to diagnose epilepsy by identifying abnormal brain wave 

patterns during seizures. For instance, a spike-and-wave pattern is characteristic of generalized 

epilepsy. 

4. Electromyogram (EMG) 

An electromyogram (EMG) measures the electrical activity of muscles and is used to diagnose 

neuromuscular disorders, muscle diseases, and nerve damage. 

4.1. Motor Unit Action Potential (MUAP): 

The electrical signal generated by a motor unit during muscle contraction. EMG can be surface 

(non-invasive) or intramuscular (invasive) depending on the depth of the measurement. 

The EMG signal can be modeled as: 

𝐸𝑀𝐺(𝑡) = ∑ 𝐴𝑗

𝑚

𝑗=1
⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑗𝑡 + 𝜙𝑗) 

where: 

𝐴𝑗= amplitude of the jth muscle fiber, 

fj = frequency of the jth muscle fiber activity, 

ϕj = phase shift of the jth fiber. 

Example: EMG can be used to assess conditions like muscular dystrophy or nerve compression 

syndromes by analyzing the electrical activity of muscles during contractions. For example, a 

reduced amplitude of the MUAPs may indicate muscle weakness or neuropathy. 

5. Other Biomedical Signals 

This category encompasses various other signals used in biomedical applications, including: 
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5.1. Blood Pressure Waveforms: 

Blood pressure is typically measured using sphygmomanometers or arterial catheters. The pressure 

can be modeled as: 

𝑃(𝑡) = 𝑃0 + 𝐴 ⋅ 𝑒
−𝑡
𝜏 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝜙) 

where: 

P0 = baseline pressure, 

A = amplitude, 

τ = time constant (reflecting the damping of the waveform), 

f = frequency (related to heart rate). 

Example: Continuous blood pressure monitoring is vital in critical care settings to assess patient 

status and guide treatment. 

5.2. Pulse Oximetry: 

Pulse oximetry measures the oxygen saturation of hemoglobin in blood. It works by shining red 

and infrared light through a translucent part of the body (like a fingertip) and measuring the ratio 

of light absorption, which reflects the oxygen saturation level. 

5.3. Respiratory Signals: 

Respiratory signals are monitored using spirometry, which can be modeled as: 

𝑉(𝑡) = 𝑉𝑚𝑎𝑥 ⋅ 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝜙) 

where: 

Vmax = maximum volume (peak tidal volume), 

f = frequency of breathing, 

ϕ = phase shift. 

Example: Monitoring respiratory rate and volume is essential in assessing lung function and 

detecting conditions like asthma or chronic obstructive pulmonary disease (COPD) 
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Section 3 : Processing of biomedical images 

General Introduction  

As you near the completion of your master's studies in biomedical engineering, particularly in the 

specialization of Biomedical Imaging Systems, it is essential to grasp the significant impact that 

medical imaging technologies have on contemporary healthcare. These advanced techniques are 

fundamental in generating visual representations of the internal structures of the human body. They 

are pivotal in clinical analysis, medical interventions, and the visualization of organ and tissue 

functions, thereby fundamentally transforming the ways in which healthcare professionals 

diagnose and treat diseases. 

Medical imaging technologies enable physicians to "see" within the body without the need for 

invasive surgical procedures. This non-invasive capability is vital for several reasons: 

1. Role of medical imaging technologies 

Medical imaging technologies empower physicians to "see" inside the body without resorting to 

invasive surgical procedures. This non-invasive capability is crucial for several reasons: 

 Accurate diagnosis: by providing detailed images of internal structures, medical imaging 

allows for precise identification of diseases and conditions. This accuracy is critical in 

determining the appropriate course of treatment. 

 Effective treatment planning: with clear visualizations of affected areas, healthcare 

providers can devise tailored treatment plans that address the specific needs of each 

patient. This personalized approach enhances the likelihood of successful outcomes. 

 Ongoing disease monitoring: medical imaging facilitates the continuous assessment of a 

patient’s condition over time. This is particularly important for chronic diseases, where 

regular monitoring can inform adjustments to treatment strategies. 

 Preventive medicine: Early diagnosis through imaging technologies can lead to timely 

interventions, significantly improving patient outcomes. By detecting diseases at an 

earlier stage, healthcare providers can implement preventive measures that may mitigate 

the severity of illnesses. 

2. Imaging modalities 

Understanding the various imaging modalities is essential for your future roles in the biomedical 

field. Here are some of the most widely used imaging techniques, along with their applications: 

 X-ray: this traditional imaging modality uses ionizing radiation to create images 

primarily of bones and certain soft tissues. Healthcare professionals commonly use x-rays 

to diagnose fractures, infections, and other skeletal conditions. 

 Computed tomography (CT): CT scans represent a more advanced form of x-ray 

technology. They generate cross-sectional images of the body by combining multiple x-

ray images processed by a computer. Ct scans are particularly useful for diagnosing 

complex conditions in the abdomen, chest, and pelvis. 
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 Magnetic resonance imaging (MRI): MRI utilizes powerful magnets and radio waves to 

create highly detailed images of soft tissues. This modality is especially effective for 

visualizing the brain, spinal cord, muscles, and joints, making it invaluable in neurology 

and orthopedics. 

 Ultrasound: by employing high-frequency sound waves, ultrasound imaging produces 

real-time images of soft tissues. It is widely used in obstetrics to monitor fetal 

development and in cardiology to assess heart function and structure. 

 Nuclear medicine: techniques such as positron emission tomography (pet) and single 

photon emission computed tomography (SPECT) involve administering small amounts of 

radioactive materials to visualize metabolic processes within the body. These modalities 

are particularly useful for diagnosing cancers, heart diseases, and neurological disorders. 

 Optical imaging: this innovative technique utilizes light, typically in the near-infrared 

spectrum, to image tissues. Optical imaging has promising applications in brain and skin 

imaging, allowing for detailed assessments of tissue health and function. 

3. Definition of medical imaging 

Medical imaging refers to the techniques and processes used to create visual representations of the 

interior of the body for clinical analysis and medical intervention. It encompasses a wide range of 

technologies that visualize the structure and function of organs and tissues, aiding in the diagnosis, 

treatment, and monitoring of various medical conditions. 

4. Importance in medicine 

Medical imaging plays a crucial role in modern healthcare by providing critical insights that are 

essential for effective diagnosis and treatment. It allows healthcare professionals to: 

 Diagnose conditions: Detect and diagnose a wide array of medical conditions, from 

fractures and infections to tumors and vascular diseases. 

 Guide interventions: Assist in planning and guiding surgical and non-surgical 

interventions with precision, reducing the risk of complications. 

 Monitor disease progression: Track the progression of diseases and evaluate the 

effectiveness of treatments, facilitating timely adjustments to therapy. 

 Preventative care: Enable early detection of diseases, which can lead to more effective 

and less invasive treatment options. 

5. Historical context 

The field of medical imaging has evolved significantly since its inception, driven by technological 

advancements and scientific discoveries: 

 X-rays (1895): Wilhelm Conrad Roentgen's discovery of X-rays marked the beginning of 

medical imaging, allowing the visualization of bones and certain internal organs. 

 Ultrasound (1940s-1950s): The development of ultrasound technology provided a non-

invasive method for visualizing soft tissues, particularly useful in obstetrics and 

cardiology. 
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 Computed tomography (1970s): The advent of CT scanning introduced cross-sectional 

imaging, enhancing the ability to detect and characterize complex conditions. 

 Magnetic resonance imaging (1980s): MRI revolutionized imaging by offering high-

resolution images of soft tissues without ionizing radiation, expanding diagnostic 

capabilities in neurology, orthopedics, and oncology. 

 Nuclear medicine (1950s-present): Techniques like PET and SPECT allow healthcare 

professionals to perform functional imaging that visualizes physiological processes at the 

molecular level. 

 Recent advances: Ongoing innovations, such as functional MRI, hybrid imaging 

techniques (e.g., PET/CT, PET/MRI), and the integration of artificial intelligence, 

continue to push the boundaries of medical imaging. 

6. Key Equations in Medical Imaging 

Understanding key equations that govern medical imaging technologies is essential for grasping 

their principles. Here are some fundamental equations relevant to various imaging modalities: 

7.1. X-ray Imaging 

The intensity 𝐼 of an X-ray beam after passing through a material is described by the exponential 

attenuation law: 

𝐼 = 𝐼0𝑒
−𝜇𝑥 

where: 

I0 = initial intensity of the X-ray beam, 

μ = linear attenuation coefficient of the material, 

x = thickness of the material. 

7.2. Computed tomography (CT) 

In CT imaging, the Radon transform is used to reconstruct images from projections: 

𝑓(𝑥, 𝑦)∫ 𝑔(𝑠, 𝜃)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑠)𝑑𝑠
∞

−∞

 

where: 

f(x,y) = image function, 

g(s,θ) = projection data, 

δ = Dirac delta function. 

7.3. Magnetic resonance imaging (MRI) 
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The signal S in MRI can be described by the equation: 

𝑆 = 𝑀0. 𝑒−𝑡/𝑇2. (1 − 𝑒−𝑡/𝑇1) 

where: 

M0 = equilibrium magnetization, 

T1 = longitudinal relaxation time, 

T2 = transverse relaxation time, 

t = time after the RF pulse. 

7.4. Ultrasound imaging 

The speed of sound c in a medium is given by: 

c=λf 

where: 

λ = wavelength, 

f = frequency. 

7.5. Nuclear medicine 

In PET imaging, the relationship between the detected counts C and the activity A of the 

radioactive tracer is: 

C=ϵA 

where: 

ϵ = detection efficiency. 

7. Conclusion 

As you delve deeper into these imaging modalities in the biomedical imaging system course, 

consider not only their technological foundations but also their clinical applications and the 

ongoing innovations that continuously shape the field of biomedical engineering. Understanding 

these technologies and their underlying equations will empower you to contribute meaningfully to 

advancements in healthcare, ultimately improving patient care and outcomes. Embrace this 

opportunity to explore the fascinating world of medical imaging, where science and technology 

converge to enhance lives.  
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Chapter 1:  X-ray 

1. Introduction 

X-ray imaging serves as an essential area of study for biomedical engineering students, presenting 

a unique intersection of engineering principles, medical applications, and cutting-edge technology. 

By exploring the mechanics behind X-ray imaging, students gain valuable insights into how 

professionals design, optimize, and utilize these systems in clinical settings. This hands-on 

understanding empowers students to engage actively with the technology and its applications, 

preparing them for impactful careers in healthcare.As future engineers, students can explore the 

development of advanced imaging technologies, such as digital radiography and computed 

tomography (CT), which leverage sophisticated algorithms and software to enhance image quality 

and diagnostic capabilities. 

Moreover, the role of biomedical engineers in improving patient safety and imaging efficiency is 

critical. Students can engage in research and projects focused on minimizing radiation exposure 

while maximizing diagnostic accuracy. This involves not only understanding the physics of X-ray 

generation and detection but also exploring innovative solutions, such as image processing 

techniques and machine learning algorithms that can aid in automating and refining image 

analysis. By delving into these topics, biomedical engineering students can contribute to the 

ongoing evolution of medical imaging technologies, ultimately improving patient care and 

outcomes. 

Additionally, the interdisciplinary nature of biomedical engineering allows students to collaborate 

with healthcare professionals, radiologists, and physicists, fostering a comprehensive 

understanding of the clinical implications of imaging technologies. This collaboration can lead to 

the development of novel imaging modalities and techniques that address specific medical 

challenges. By engaging with real world, applications and challenges in X-ray imaging, biomedical 

engineering students can cultivate a passion for innovation and problem solving, positioning 

themselves as key contributors to the future of healthcare technology. 

2. Basic physics of X-rays 

2.1. Generalities  

X-rays are a form of electromagnetic radiation with much higher energy than visible light, 

capable of ionizing atoms and molecules. This ionization can lead to chemical changes in 

biological tissues, which is the basis for their use in medical imaging and treatments. 

2.2. Properties 

 Wavelength Range: X-rays have wavelengths typically ranging from 0.01 to 10nm. 

 Frequency Range: This corresponds to frequencies of approximately 

3×1015 Hz(PetaHz) to 3×1030Hz (ExaHz). 
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 The relationship between wavelength (λ) and frequency (f) can be described by the 

equation:  

𝑐 = 𝜆𝑓 

Where 

c is the speed of light in a vacuum (C≈3×108 m/s). 

2.3. Production of X-Rays 

X-ray tubes are the primary components of X-ray machines. The basic structure of an X-ray tube 

includes: 

 Cathode: The negative electrode that emits electrons when heated. 

 Anode: The positive electrode where the electrons collide. 

 Vacuum Enclosure: Prevents the electrons from colliding with air molecules. 

See figure 1. 

 
Figure 1: Production of X-Rays 

2.4. Mechanism of X-Ray production 

Thermionic emission: is the process by which electrons are emitted from a material (usually a 

metal) when it is heated to a high temperature. As the temperature of the cathode increases, the 

thermal energy provided to the electrons allows some of them to overcome the attractive forces 

binding them to the material. This results in the emission of electrons into the surrounding vacuum 

or gas. When the cathode is heated, it emits electrons due to thermionic emission. The number of 

emitted electrons can be described by the Richardson equation: 

𝐼 = 𝐴𝑇2𝑒−𝑘𝑇𝜙 

where: 

 I is the current (number of emitted electrons), 

 A is the Richardson constant, 

 T is the absolute temperature of the cathode in Kelvin, 
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 ϕ is the work function of the material, which is the minimum energy needed to remove an 

electron from the surface of the material. A higher work function means that more energy 

is required for an electron to escape. 

 k is the Boltzmann constant, 𝐾 = 1.38 × 10−23𝐽/𝐾 

Thermionic emission is a critical phenomenon in various applications, such as vacuum tubes and 

cathode ray tubes. The Richardson equation quantitatively describes how the emission of electrons 

from a heated cathode depends on temperature and material properties, allowing for predictions 

about the behavior of thermionic devices. 

Acceleration: A high voltage potential (typically in the range of 30-150 kV) accelerates these 

electrons toward the anode. 

Collision and X-ray generation: When the high-speed electrons collide with the anode material 

(usually tungsten), they undergo rapid deceleration. This process generates X-ray photons through 

two main mechanisms: 

 Bremsstrahlung radiation: This occurs when electrons are deflected by the electric field 

of the nuclei in the anode material, resulting in the emission of X-ray photons. The 

energy of the emitted photons can be calculated using: 

𝐸 = 𝑒𝑉 

Where E is the energy of the X-ray photon, e is the charge of the electron, and V is the accelerating 

voltage. 

 Characteristic Radiation: This occurs when an incoming electron knocks out an inner-

shell electron from the anode material, causing an outer-shell electron to fall into the 

vacancy, emitting an X-ray photon with energy characteristic of the anode material. The 

energy of the characteristic X-ray can be expressed as: 

𝐸 = 𝐸𝑠ℎ𝑒𝑙𝑙1 − 𝐸𝑠ℎ𝑒𝑙𝑙2 

where Eshell1 is the energy of the higher energy shell and Eshell2 is the energy of the lower energy 

shell. 

2.5. Interaction of X-Rays with matter 

When X-rays pass through matter, they can interact in several ways: 

Photoelectric Effect: An X-ray photon is completely absorbed by an atom, resulting in the ejection 

of an inner-shell electron. This effect is significant at lower energies and for high atomic number 

materials. 

Compton Scattering: An X-ray photon collides with a loosely bound outer-shell electron, 

resulting in partial energy transfer. The photon is scattered at a lower energy and different angle. 

The energy and angle can be described by: 
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𝐸′ =
𝐸

1 +
𝐸

𝑚𝑒𝑐2(1 − 𝑐𝑜𝑠𝜃)

 

Where E is the energy of the incoming photon, E ′ is the energy of the scattered photon, me is the 

mass of the electron, c is the speed of light, and θ is the scattering angle. 

Rayleigh Scattering: This elastic scattering occurs without energy loss, primarily at low energies 

and in small particles. 

Pair Production: At very high energies (greater than 1.022 MeV), an X-ray photon can produce 

an electron-positron pair when interacting with a nucleus. 

X-rays play a crucial role in medical imaging and treatment due to their unique properties and 

interactions with matter. Understanding their production and behavior is essential for optimizing 

their use in various applications, including diagnostic radiology and radiation therapy. 

3. Absorption and attenuation of X-Rays: 

3.1. Photoelectric Effect 

The photoelectric effect occurs when an X-ray photon is completely absorbed by an atom, 

resulting in the ejection of an inner-shell electron. This process is critical in medical imaging, as it 

enhances the contrast of X-ray images, particularly in tissues with different atomic numbers. Lets 

discus the key characteristics in summary as bellow 

 Energy Dependence: The probability of the photoelectric effect occurring is highly 

dependent on the energy of the X-ray photon (E) and the atomic number (Z) of the 

absorbing material. The photoelectric absorption coefficient (μPE) can be approximated 

by the following relationship: 

𝜇
𝑃𝐸

∝
𝑍3

𝐸3
 

This indicates that higher atomic number materials (like lead) are more effective at absorbing X-

rays, enhancing image contrast. 

 Threshold Energy: The minimum energy required to eject an electron from an inner 

shell is given by the work function (ϕ) of the material. For the photoelectric effect to 

occur, the energy of the incident photon must satisfy: 

𝐸 ≥ 𝜙 

Where E is the energy of the incoming X-ray photon. 

3.2. Contrast enhancement 
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The increased absorption in high-Z materials leads to greater differences in attenuation between 

different tissues, which is crucial for producing clear images. The contrast (C) in an X-ray image 

can be quantified as: 

𝐶 =
𝐼1 − 𝐼2
𝐼1 + 𝐼2

 

where I1 and I2 are the intensities of X-rays transmitted through different tissues. 

See figure 2: 

 
Figure 2: Contrast in X-ray images 

3.3. Compton scattering 

Compton scattering occurs when X-ray photons interact with loosely bound outer-shell electrons, 

resulting in a reduction in energy (and thus a longer wavelength) and a change in direction. This 

scattering contributes to image noise and reduces overall image contrast. See figure 3. 

 
Figure 3: Compton scattering 

 Energy and wavelength change: The energy of the scattered photon can be described by 

the Compton scattering formula: 

𝐸′ =
𝐸

1 +
𝐸

𝑚𝑒𝑐2(1 − 𝑐𝑜𝑠𝜃)

 



 

61 

 

Where: 

E is the energy of the incident photon, 

E ′ is the energy of the scattered photon, 

me is the mass of the electron (9.11×10−31kg), 

c is the speed of light (3×108 m/s), 

θ is the scattering angle. 

 Change in wavelength: The change in wavelength (Δλ) due to Compton scattering is 

given by: 

𝛥𝜆=𝜆′ −𝜆=
ℎ

𝑚𝑒𝑐
(1 − 𝑐𝑜𝑠𝜃) 

Where: 

λ is the initial wavelength, 

λ ′ is the wavelength after scattering, 

h is Planck's constant (6.626×10−34 J s). 

 Impact on Image Quality: The scattered photons can contribute to image noise, as they 

can scatter in various directions, reducing the clarity of the image. The overall attenuation 

𝜇𝐶 due to Compton scattering can be described by: 

𝜇𝐶 = 𝜇𝐶0. 𝜌.
𝐸0

𝐸
 

Where: 

μC0 is the mass attenuation coefficient for Compton scattering, 

ρ is the density of the material, 

E0 is the initial energy of the photon, 

E is the energy after scattering. 

Both the photoelectric effect and Compton scattering play significant roles in the absorption and 

attenuation of X-rays in various materials. Understanding these processes and their associated 

equations is crucial for optimizing X-ray imaging techniques and enhancing image quality. 

4. Transmission: 

4.1. Penetration of X-Rays 
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X-rays have the ability to penetrate various materials, including human tissues. The extent of 

penetration is influenced by several factors, primarily the energy of the X-rays, as well as the 

density and composition of the material they encounter. Factors Affecting Penetration 

 Energy of X-Rays: Higher energy X-rays have greater penetrating power. The energy of 

an X-ray photon is given by: 

𝐸 = ℎ𝑓 

Where: 

E is the energy of the photon, 

ℎ is Planck's constant (6.626×10−34 Js), 

f is the frequency of the X-ray. 

As the frequency increases (and thus the wavelength decreases), the energy of the X-ray photons 

increases, allowing them to penetrate more dense materials. 

Material density: The density (ρ) of the material also plays a crucial role in determining how 

much X-ray radiation is absorbed or transmitted. Denser materials have more atoms per unit 

volume, which increases the likelihood of interactions with X-ray photons. 

Composition of material: The atomic number (Z) of the elements in the material significantly 

affects X-ray penetration. Materials with higher atomic numbers (like lead) are more effective at 

absorbing X-rays due to increased photoelectric absorption and Compton scattering. 

4.2. Attenuation and half-value layer 

The attenuation of X-rays as they pass through a material can be quantitatively described by the 

exponential attenuation law: 

𝐼 = 𝐼0𝑒
−𝜇𝑥 

Where: 

I is the intensity of the X-ray after passing through a distance x, 

I0 is the initial intensity of the X-ray, 

μ is the linear attenuation coefficient of the material, which depends on both the energy of the X-

rays and the material properties. 

The linear attenuation coefficient (μ) can be expressed as: 

μ=μPE+μC+μR 

Where: 
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μPE is the contribution from the photoelectric effect, 

μC is the contribution from Compton scattering, 

μR is the contribution from Rayleigh scattering. 

The half-value layer (HVL) is defined as the thickness of a material required to reduce the 

intensity of X-rays to half its original value. It is calculated from the linear attenuation coefficient: 

𝐻𝑉𝐿 =
𝑙𝑛 (2)

𝜇
 

Where ln(2)≈0.693. The HVL provides a useful measure of the penetrating ability of X-rays 

through different materials. 

The penetration of X-rays through various materials, including human tissues, is a critical aspect 

of their use in medical imaging. Understanding the factors that influence this penetration, such as 

X-ray energy, material density, and composition, along with the relevant equations, is essential for 

optimizing imaging techniques and ensuring effective diagnostic outcomes. 

5. Contrast in imaging 

5.1. Differential absorption 

Differential absorption refers to the varying degrees to which different tissues in the body absorb 

X-rays. This phenomenon is crucial for producing contrast in radiographic images, allowing 

healthcare professionals to distinguish between different types of tissues based on their absorption 

characteristics. Mechanisms of Differential Absorption 

Density of Tissues: The density (ρ) of tissues plays a significant role in how much X-ray radiation 

is absorbed. Denser materials contain more mass per unit volume, leading to greater interaction 

with X-ray photons. 

Atomic Number: The atomic number (Z) of the elements in the tissue also affects absorption. 

Higher atomic number elements have a greater probability of interacting with X-ray photons, 

primarily through the photoelectric effect. For example, bones contain calcium (atomic number 

20), which is denser and has a higher atomic number compared to the elements predominantly 

found in soft tissues (like carbon, oxygen, and hydrogen). 

5.2. Absorption coefficients 

The linear attenuation coefficient (μ) quantifies how much X-ray intensity decreases as it passes 

through a material. It is influenced by both the energy of the X-rays and the composition of the 

material. The relationship can be expressed as we described above. 
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6. Mathematical description 

6.1. Beer-Lambert law 

The Beer-Lambert law is a fundamental principle that describes how the intensity of light (or 

other electromagnetic radiation, including X-rays) decreases as it passes through a medium. This 

law is particularly useful in various fields, including physics, chemistry, and medical imaging, to 

quantify the attenuation of X-rays through different materials. The Beer-Lambert law can be 

mathematically expressed as described above. However, we should emphasise on:  components of 

the equation. 

Transmitted intensity (I): This is the amount of X-ray intensity that emerges from the material 

after interacting with it. It reflects how much of the incident X-ray beam has been absorbed or 

scattered. 

Initial intensity (I0): This represents the intensity of the X-ray beam before it interacts with the 

material. It is the reference point for measuring attenuation. 

Linear attenuation coefficient (μ): This coefficient quantifies how easily a material can attenuate 

X-rays. It is influenced by: 

The material's density (ρ): Denser materials generally have higher attenuation coefficients. 

The atomic number (Z): Materials with higher atomic numbers tend to absorb X-rays more 

effectively due to increased interactions (photoelectric effect and Compton scattering). 

The energy of the X-rays: Higher energy X-rays may penetrate materials more easily, resulting in 

lower attenuation coefficients. 

Thickness of Material (x): The distance the X-rays travel through the material directly affects 

the extent of attenuation. Thicker materials will result in greater absorption and scattering. 

See figure 4, the attenuation law figure. 

 
Figure 4: Attenuation law 

6.2. Applications in medical imaging 

In medical imaging, the Beer-Lambert Law helps in understanding how different tissues absorb 

X-rays. For instance: 

 Bone vs. soft tissue: Bones, being denser and containing higher atomic number elements 

(like calcium), have a higher linear attenuation coefficient compared to soft tissues, 
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which are less dense and primarily consist of lighter elements (like carbon and oxygen). 

This difference in attenuation leads to the high contrast observed in radiographs, where 

bones appear white (high absorption) and soft tissues appear in shades of gray (lower 

absorption). 

 Quantitative analysis: The Beer-Lambert Law allows radiologists to estimate the 

thickness and density of tissues based on the intensity of X-rays that are transmitted. By 

analyzing the intensity of the X-ray beam before and after it passes through a patient, 

medical professionals can infer important diagnostic information. 

6.3. Limitations 

While the Beer-Lambert Law is widely applicable, it has some limitations, especially in complex 

biological tissues where multiple scattering events and non-linear effects may occur. Additionally, 

it assumes a uniform medium and does not account for variations in tissue composition or structure. 

The Beer-Lambert Law is a crucial tool in understanding the attenuation of X-rays as they pass 

through various materials, particularly in medical imaging. By quantifying how different tissues 

absorb X-rays, this law enables the production of clear and informative diagnostic images, 

facilitating accurate medical assessments. 

7. Image formation: 

7.1. Projection imaging 

In conventional radiography, a 2D image is formed by projecting a 3D structure onto a detector. 

This process involves the following key concepts: see figure 5. 

 
Figure 5: Image formation 

 X-ray generation: X-rays are produced by the interaction of high-energy electrons with a 

target material (usually tungsten) in the X-ray tube. The energy of the emitted X-ray 

photons is typically in the range of 20-150 keV. 

 Path of X-ray beam: As X-rays pass through the body, they interact with various tissues, 

undergoing absorption and scattering. The intensity of the X-rays reaching the detector 

depends on the cumulative absorption along the path of the X-ray beam. 
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 Cumulative absorption: The intensity of the X-rays that reach the detector can be 

described using the Beer-Lambert Law. 

7.2. Image formation process 

The formation of a radiographic image involves the following steps: 

 X-ray emission: X-rays are emitted from the tube and directed towards the patient. 

 Tissue interaction: X-rays pass through various tissues, with different degrees of 

absorption based on the tissue density and atomic number. 

 Detection: The remaining X-rays that pass through the body strike a detector (film or 

digital), forming a latent image. 

 Image processing: The latent image is processed to produce a visible image, highlighting 

the differences in absorption between various tissues. 

8. Applications 

8.1. Modern digital detectors 

 Digital conversion: Modern digital detector systems convert X-ray photons directly into 

digital signals. This conversion allows for enhanced image processing, storage, and 

retrieval, significantly improving diagnostic capabilities. 

 Reduced radiation dose: Digital systems often require lower doses of radiation 

compared to traditional film-based systems. This is due to their higher sensitivity and the 

ability to manipulate image contrast and brightness digitally. See figure 6. 

 
Figure 6: Modern digital detectors 

8.2. Specialized techniques 

 CT Scanning (computed tomography): 

 Mechanism: CT scans use X-rays taken from multiple angles around the body to create 

detailed cross-sectional images. The mathematical reconstruction of these images is 

typically done using algorithms like the Filtered back projection or iterative 

reconstruction. 

 Mathematical representation: The image reconstruction can be expressed in terms of 

the Radon transform, which relates the projection data to the original image function. 

 Fluoroscopy: 
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 Real-time imaging: This technique provides real-time moving images of the internal 

structures of the body, making it useful for guiding procedures such as catheter 

insertions. 

 Continuous X-ray exposure: Fluoroscopy involves continuous exposure to X-rays, 

necessitating careful management of radiation dose. 

 Mammography: 

 Specialized imaging: Mammography is a specialized form of X-ray imaging designed 

specifically for breast tissue. It uses lower radiation doses and higher contrast to detect 

abnormalities. 

 Screening and diagnosis: It is crucial for early detection of breast cancer, often 

employing techniques like digital mammography or tomosynthesis. 

8.3. Safety and radiation protection 

Understanding the theory of X-rays is fundamental for appreciating how this technology works 

and its wide range of applications in medical diagnostics. The physics of X-ray production, 

interaction with matter, and the principles of image formation are critical for effectively and safely 

using X-ray imaging in healthcare. 

8.3.1. Radiation dose management 

Healthcare professionals must carefully manage radiation doses because X-rays are a form of 

ionizing radiation that can damage living tissues. To minimize exposure and avoid adverse effects 

such as: 

 Radiation burns 

 Radiation sickness 

 Increased cancer risk 

8.3.2. Protection Measures 

To safeguard patients and healthcare workers from unnecessary exposure, several protection 

measures should be respected: 

 Thyroid shields: Protect the thyroid gland from scatter radiation during X-ray 

procedures. 

 Lead aprons: Use lead aprons to shield other parts of the body. 

 Distance and shielding: Maintain distance from the radiation source and use barriers to 

reduce exposure. 

In conclusion, the principles of image formation in X-ray imaging, including projection imaging 

and modern digital detector systems, are essential for effective medical diagnostics. Understanding 

these principles, along with the importance of radiation safety and protection measures, ensures 

the safe and effective use of X-ray technology in healthcare. 
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Understanding the theory of X-rays is fundamental for appreciating how this technology works 

and its wide range of applications in medical diagnostics. The physics of X-ray production, 

interaction with matter, and the principles of image formation are critical for effectively and safely 

using X-ray imaging in healthcare. Healthcare professionals must use a specific radiation dose 

because X-rays are ionizing radiation that can damage living tissues. They must minimize 

exposure to avoid adverse effects such as radiation burns, radiation sickness, and an increased risk 

of cancer. We must respect protection measures, such as using thyroid shields and other protective 

barriers, to safeguard patients and healthcare workers from unnecessary exposure.  
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Chapter 2. Magnetic resonance imaging (MRI) 

1. Introduction 

Magnetic Resonance Imaging (MRI) is a powerful non-invasive imaging technique widely used 

in medical diagnostics. It leverages the principles of nuclear magnetic resonance (NMR) to 

produce detailed images of the organs and tissues within the body. MRI is particularly valuable 

due to its ability to generate high-resolution images without the use of ionizing radiation, making 

it a safer alternative to X-rays and CT scans. 

MRI aligns hydrogen nuclei (protons) in the body using a strong magnetic field. When 

radiofrequency (RF) pulses apply, these protons temporarily shift out of alignment. As they return 

to their original state, they emit signals that sophisticated algorithms detect and convert into 

images. Various factors, including tissue composition, water content, and the presence of specific 

metabolites, influence the contrast in MRI images. Medical professionals use MRI across a range 

of specialties, including: 

Neurology: For imaging brain structures and diagnosing conditions such as tumors, strokes, and 

neurodegenerative diseases. 

Orthopedics: To assess joint injuries, cartilage damage, and soft tissue abnormalities. 

Cardiology: For evaluating heart structures and function, as well as detecting cardiac diseases. 

Oncology: To identify and monitor tumors in various body regions. 

Recent advancements in MRI technology have led to improved image quality, faster scanning 

times, and enhanced patient comfort. Techniques such as functional MRI (fMRI) allow for the 

visualization of brain activity by measuring changes in blood flow, while diffusion-weighted 

imaging (DWI) provides insights into tissue integrity. 

For biomedical imaging system engineers, understanding the intricacies of MRI technology is 

crucial for the development and optimization of imaging systems. As the field continues to evolve 

with innovations in hardware and software, engineers play a vital role in enhancing the capabilities 

of MRI, ultimately improving diagnostic accuracy and patient outcomes. 

2. Basic physics  

Magnetic Resonance Imaging (MRI) is a sophisticated medical imaging technique that leverages 

powerful magnets, radio waves, and advanced computing to generate detailed images of internal 

organs and tissues. Unlike X-ray and CT scans, MRI operates without ionizing radiation, making 

it a safer option for various diagnostic applications. The underlying physics of MRI is rooted in 

the principles of nuclear magnetic resonance (NMR). See figure 1. 
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Figure 1: Magnetic resonance imaging (MRI) as a medical imaging 

2.1. Fundamental concepts 

2.1.1. Nuclear magnetic resonance (NMR) 

Certain atomic nuclei, as hydrogen-1 ( 𝐻1
1 ) found in water and fat, possess an intrinsic property 

known as spin. This spin generates a magnetic moment, causing these nuclei to behave like tiny 

magnets. See figure 2. 

  
Figure 2: Hydrogen magnetic field  

2.1.2. Alignment in a magnetic field 

When these nuclei are subjected to a strong external magnetic field field (𝐵⃗ ₀), their magnetic 

moments align either parallel or anti-parallel to the field. The parallel alignment, which is slightly 

lower in energy, leads to a majority of nuclei aligning in this manner, resulting in a net 

magnetization along the direction of the magnetic field. See figure 3. 
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Figure 3: Magnetic proprieties for nuclei 

2.1.3. Larmor frequency 

Precession: 

The magnetic moments of the nuclei do not align perfectly with the external magnetic field; 

instead, they precess around the direction of the field. This precession occurs at a specific 

frequency, known as the Larmor frequency, which is determined by the strength of the magnetic 

field and the type of nucleus. See figure 3. 

 
Figure 4: Larmor precession 

Equation:  

The Larmor frequency (𝜔₀) is given by: 

𝜔₀ = 𝛾𝐵₀  

Where: 

𝜔₀ is the Larmor frequency. 

𝛾 is the gyromagnetic ratio (a constant specific to each type of  nucleus). 

𝐵₀ is the strength of the external magnetic field. 

2.2. Radiofrequency (RF) pulses 

2.2.1. Resonance 

When a radiofrequency pulse is applied at the Larmor frequency, energy is transferred to the 

nuclei, resulting in a tipping of the net magnetization away from the direction of the magnetic 

field. 𝐵⃗ 0. See figure 5. 
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Figure 5: Radiofrequency pulse 

2.2.3. Flip angle 

The angle by which the net magnetization is tipped is referred to as the flip angle. Commonly used 

flip angles are 90° (for maximum signal) and 180° (for inversion recovery techniques). 

MRI is a powerful imaging modality that relies on the principles of NMR, utilizing the unique 

properties of atomic nuclei in a magnetic field. By understanding the fundamental concepts of 

nuclear magnetic moments, Larmor frequency, RF pulses, relaxation processes, and signal 

detection, one can appreciate the intricate workings of MRI technology in clinical practice. 

3. Signal generation in MRI 

3.1. Relaxation processes 

In MRI, relaxation processes are crucial for signal generation and image formation. After the 

application of a radiofrequency (RF) pulse, the behavior of the net magnetization vector is 

characterized by two primary relaxation processes: T1 and T2 relaxation. 

3.1.1. T1 Relaxation (Longitudinal relaxation) 

Definition 

T1 relaxation, commonly referred to as spin-lattice relaxation, involves the process where the net 

magnetization vector returns to its equilibrium position, aligning with the external magnetic field 

𝐵⃗ ₀ after turning off the radiofrequency (RF) pulse. 

During the RF pulse, the applied energy excites the protons, causing them to move away from their 

equilibrium state. Once the RF pulse ceases, the protons begin to lose this excess energy to their 

surrounding environment, or lattice. This energy exchange facilitates the realignment of the net 

magnetization vector with the external magnetic field. 

The rate at which this relaxation occurs depends on various factors, including the type of tissue 

and its molecular environment. Different tissues exhibit distinct T1 relaxation times, which 

contribute to the contrast observed in MRI images. For instance, fat typically shows a shorter T1 

relaxation time compared to water, leading to differences in signal intensity and image 
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characteristics. Understanding T1 relaxation is crucial for optimizing MRI protocols and 

enhancing image quality. See figure 6. 

 

 
Figure 6: T1 relaxation 

Mechanism 

During T1 relaxation, energy is exchanged between the excited nuclear spins and their surrounding 

lattice (the molecular environment), allowing the spins to return to their low-energy state. 

Time constant 

The time it takes for approximately 63% of the net magnetization to recover to its equilibrium state 

is defined as the T1 time constant. The recovery can be described mathematically by the equation: 

𝑀𝑍(𝑡) = 𝑀0(1 − 𝑒−𝑡/𝑇1) 

Where: 

Mz(t) is the longitudinal magnetization at time t. 

M0 is the equilibrium magnetization. 

T1 is the time constant for T1 relaxation. 

T1 Values: T1 values vary significantly between different tissues, influencing the contrast in MRI 

images. For example, T1 is typically longer in fatty tissues than in water-rich tissues. 

3.1.2. T2 Relaxation (transverse relaxation) 

Definition:  
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T2 relaxation, often called spin-spin relaxation, describes the process where the transverse 

component of the magnetization vector decays over time due to interactions among neighboring 

spins. See figure 6. 

When protons in a magnetic field are excited by a radiofrequency (RF) pulse, they become 

misaligned relative to the magnetic field. This excitation creates a net magnetization vector that 

has both longitudinal (along the magnetic field) and transverse (perpendicular to the magnetic 

field) components. While T1 relaxation focuses on the recovery of the longitudinal component, T2 

relaxation specifically addresses the loss of coherence among the spins in the transverse plane. 

As the excited protons start to interact with each other, these interactions lead to variations in the 

local magnetic fields experienced by each proton. These magnetic field fluctuations cause the spins 

to dephase, meaning they lose their synchronized orientation. This dephasing results in a gradual 

reduction of the transverse magnetization, which manifests as a decay in the signal measured 

during an MRI scan. 

The rate of T2 relaxation varies among different tissues due to their unique molecular 

environments and the presence of various factors, such as water content and the structure of the 

tissue. For example, tissues with high water content, like cerebrospinal fluid, typically exhibit 

longer T2 relaxation times, while denser tissues, such as muscle or fibrous tissue, show shorter T2 

times. This variation in T2 relaxation times contributes significantly to the contrast seen in MRI 

images, allowing radiologists to differentiate between various types of tissues and identify 

abnormalities. Understanding T2 relaxation is essential for optimizing imaging techniques and 

improving diagnostic capabilities in MRI. 

Mechanism: As the spins in the transverse plane interact with each other, they lose coherence, 

leading to a reduction in the net transverse magnetization. This process is influenced by factors 

such as magnetic field inhomogeneities and spin interactions. 

Time Constant: The time constant for T2 relaxation indicates how quickly the transverse 

magnetization decays. The mathematical representation of this decay is given by: 

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0)𝑒−𝑡/𝑇2 

Where: 

Mxy(t) is the transverse magnetization at time t. 

Mxy(0) is the initial transverse magnetization. 

T2 is the time constant for T2 relaxation. 

T2 Values: Similar to T1, T2 values also vary by tissue type, affecting the contrast and quality of 

the MRI images. T2 values are generally shorter in denser tissues. 
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3.1.3. Free Induction Decay (FID) 

Signal Detection: After the RF pulse, the transverse magnetization induces a voltage signal in the 

receiver coil, known as the free induction decay (FID) signal. This signal represents the decaying 

transverse magnetization and contains essential information about the tissue being imaged. See 

figure 6. 

Mathematical Representation: The FID signal can be expressed as a function of time, taking into 

account both T1 and T2 relaxation effects: 

𝑀𝑥𝑦(0). 𝑒−𝑡/𝑇2. 𝑒−𝑡/𝑇1 

Where: 

FID(t) is the signal detected at time t. 

The first exponential term represents the transverse decay (T2), while the second term accounts 

for the longitudinal recovery (T1). 

Digitization: The FID signal is detected and digitized by the MRI system, allowing for further 

processing, such as Fourier transformation, to reconstruct the final image. 

Understanding the relaxation processes of T1 and T2, along with the generation of the FID signal, 

is fundamental to MRI technology. These processes not only influence the quality and contrast of 

the images produced but also provide critical insights into the physiological and pathological 

conditions of tissues. By manipulating these relaxation times through various imaging sequences, 

radiologists can optimize MRI protocols for specific diagnostic needs. 

4. Image formation in MRI 

The process of image formation in Magnetic Resonance Imaging (MRI) is a sophisticated and 

intricate sequence of steps that ensures high-quality imaging of the body's internal structures. This 

process begins with spatial encoding, which defines the location of signals within the imaging 

volume. Following this, slice selection allows for the isolation of specific anatomical sections, 

enabling detailed examination of targeted areas. 

Next, frequency and phase encoding techniques are employed to enhance the spatial resolution 

and contrast of the images, capturing the nuances of tissue characteristics. Finally, the raw data is 

transformed into a comprehensible image through image reconstruction using the Fourier 

transform, a mathematical technique that converts frequency data into spatial information. 

Each of these components is essential, working in harmony to provide accurate and detailed 

visualizations. This intricate process not only aids in diagnosing medical conditions but also 

enhances our understanding of human anatomy and physiology, making MRI a vital tool in modern 

medicine. 

4.1. Spatial encoding 
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Spatial encoding in Magnetic Resonance Imaging (MRI) is a critical process that allows for the 

localization of signals within a three-dimensional space. This technique is essential for creating 

detailed images of internal structures in the body. Understanding spatial encoding is crucial for 

engineers involved in MRI technology development. It informs the design of MRI systems, 

optimization of imaging sequences, and enhancements in image quality. Knowledge of these 

principles also aids in troubleshooting and improving existing MRI protocols. By mastering spatial 

encoding, engineers can contribute to advancements in MRI technology, leading to better 

diagnostic capabilities and patient outcomes. 

4.1.1. Gradient magnetic fields 

Definition: Gradient magnetic fields are additional magnetic fields applied in specific directions 

(x, y, and z axes) during an MRI scan. These gradients modify the main magnetic field 𝐵0⃗⃗⃗⃗  to create 

a spatially varying magnetic field. 

Effect on Larmor Frequency: The introduction of gradient fields causes the Larmor frequency 

of the nuclei to vary linearly with their position. This relationship can be expressed mathematically 

as: 

ω(x)=γ(B0+Gx⋅x) 

Where: 

ω(x) is the Larmor frequency at position x. 

γ is the gyromagnetic ratio of the nucleus. 

B0 is the strength of the main magnetic field. 

Gx is the gradient strength along the x-axis. 

x is the position along the x-axis. 

This variation allows for the differentiation of signals from different locations within the body, 

enabling the spatial encoding of the signals. 

4.2. Slice Selection 

4.2.1. Selective RF Pulses 

Mechanism: To obtain images from a specific slice of tissue, a gradient field is applied along one 

axis (e.g., the z-axis), and an RF pulse is transmitted at a frequency that corresponds to the Larmor 

frequency of the nuclei in that slice. 

Slice Thickness: The thickness of the selected slice can be controlled by the bandwidth of the RF 

pulse. A narrower bandwidth results in a thinner slice. The relationship can be expressed as: 
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𝛥𝑓 =
𝛾 ⋅ 𝐺𝑧 ⋅ 𝛥𝑧

2𝜋
 

Where: 

Δf is the bandwidth of the RF pulse. 

Gz is the gradient strength along the z-axis. 

Δz is the thickness of the slice. 

By varying the gradient and RF frequency, different slices can be selectively excited. 

4.3. Frequency and Phase Encoding 

4.3.1. Frequency encoding 

Mechanism: During signal acquisition, a gradient field is applied along one axis (e.g., the x-axis). 

This causes the nuclei in different positions to precess at different frequencies, effectively 

encoding spatial information along that dimension. 

Frequency Variation: The frequency of the precessing nuclei can be expressed as: 

ωf=γ(B0+Gx⋅x) 

Where: 

ωf  is the frequency of precession for nuclei at position x. 

4.3.2. Phase encoding 

Mechanism: Before signal acquisition, a brief gradient field is applied along a perpendicular axis 

(e.g., the y-axis). This causes the nuclei to precess at different phases based on their position, 

encoding spatial information along the other dimension. 

Phase Shift: The phase shift ϕ introduced by the gradient can be described as: 

ϕ=γ⋅Gy⋅y⋅Δt 

Where: 

ϕ is the phase shift. 

Gy is the gradient strength along the y-axis. 

y is the position along the y-axis. 

Δt is the duration of the gradient application. 

5. Fourier transform 
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5.1. Image reconstruction 

Process: The acquired signals, which are complex waveforms resulting from the superposition of 

signals from different locations, are processed using the Fourier transform. This mathematical 

technique converts the time-domain signal into the frequency domain, allowing for the spatial 

distribution of the nuclei to be reconstructed. 

Fourier Transform Equation: The Fourier transform F(k) of a signal f(t) can be expressed as: 

𝐹(𝑘) = ∫ 𝑓(𝑡)𝑒−𝑖2𝜋𝑘𝑡𝑑𝑡
∞

−∞

 

Where: 

F(k) is the Fourier-transformed function in the frequency domain. 

f(t) is the time-domain signal. 

k represents the spatial frequency. 

Final image: The result of this transformation provides the spatial distribution of the nuclei, which 

is then processed to create the final image displayed to the radiologist. 

The intricate processes of spatial encoding, slice selection, frequency and phase encoding, and 

Fourier transform are fundamental to the functionality of MRI technology. By manipulating these 

parameters, MRI can generate high-resolution images of internal structures, providing valuable 

diagnostic information in clinical practice. Understanding these concepts enhances the ability to 

optimize imaging protocols and improve diagnostic accuracy. 

5. MRI contrast 

Magnetic Resonance Imaging (MRI) is a sophisticated imaging technique that utilizes the 

principles of nuclear magnetic resonance to generate detailed images of internal body structures. 

The contrast in MRI images is primarily influenced by the relaxation times of tissues, which are 

characterized by T1 (longitudinal) and T2 (transverse) relaxation. Below is an extended 

explanation of the various types of MRI contrast, including relevant equations. 

5.1. T1-Weighted Images 

Short TR and TE: T1-weighted images are produced using short Repetition Times (TR) and Echo 

Times (TE). This emphasizes differences in T1 relaxation times among tissues. 

T1 Relaxation: The longitudinal relaxation time, T1, describes how quickly the net magnetization 

vector returns to its equilibrium state after being disturbed by an RF pulse. The equation governing 

T1 relaxation is given above. 

Contrast: In T1-weighted images, fat appears bright due to its shorter T1 relaxation time compared 

to water, which appears darker. 
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5.2. T2-Weighted Images 

Long TR and TE: T2-weighted images are obtained using long TR and TE, which highlights 

differences in T2 relaxation times. 

T2 Relaxation: The transverse relaxation time, T2, describes how quickly the transverse 

magnetization decays after the RF pulse. The equation for T2 relaxation is given above: 

Contrast: In T2-weighted images, fluid-filled structures like cerebrospinal fluid appear bright due 

to their longer T2 relaxation times, while fat appears darker. 

5.3. Proton Density-Weighted Images 

Intermediate TR and TE: Proton density-weighted images utilize intermediate TR and TE 

values. These images focus on the density of hydrogen protons in tissues. 

Proton Density (PD): The contrast is largely determined by the number of hydrogen protons in a 

given volume, which can be represented as: 

𝑃𝐷=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑜𝑛𝑠

𝑉𝑜𝑙𝑢𝑚𝑒
 

Contrast: High proton density results in brighter images, providing excellent spatial resolution 

and contrast between tissues with varying proton densities. 

Contrast Agents 

Gadolinium-based Agents: These agents are injected into the body to enhance image contrast, 

particularly in T1-weighted images. 

Mechanism: Gadolinium shortens the T1 relaxation time in tissues where it accumulates. The 

effect can be described as: 

𝑇1′ = 𝑇1 ⋅ (1 − 𝑅1) 

Where: 

𝑇1′is the modified T1 relaxation time in the presence of gadolinium, 

R1 is the relaxivity of the contrast agent, which is tissue-specific. 

Impact on Imaging: The result is increased signal intensity in tissues with gadolinium, enhancing 

their visibility on T1-weighted images. 

MRI is a powerful imaging modality that provides exceptional contrast between different types of 

tissues without utilizing ionizing radiation. By manipulating magnetic fields and radiofrequency 

pulses, MRI can differentiate between various tissues based on their T1 and T2 relaxation times, 

as well as hydrogen proton density. The use of contrast agents like gadolinium further enhances 

the diagnostic capabilities of MRI, allowing for improved visualization of specific structures and 

abnormalities. 
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Note: A visual representation of MRI contrast mechanisms can be added as Figure 7 to illustrate 

the differences in T1 and T2 relaxation times and the effects of contrast agents. 

 
Figure 7: MRI contrast 

6. Mathematical concepts of MRI 

The mathematical principles of MRI encompass various operations that convert raw data obtained 

during an MRI scan into detailed images. This involves the physics of magnetic resonance, signal 

encoding and acquisition, and methods for image reconstruction. 

6.1. k-Space 

Definition: k-space is a mathematical space where the MRI signal data is stored during acquisition. 

Each point in k-space corresponds to a specific spatial frequency in the resulting image. 

Fourier Transform Relationship: The spatial MRI image 𝐼(𝑥, 𝑦) is derived from the k-space 

data 𝑆(𝑘𝑥, 𝑘𝑦) through the inverse Fourier transform: 

𝐼(𝑥, 𝑦) = ∫ ∫ 𝑆(𝑘𝑥, 𝑘𝑦)𝑒𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 

Where: 

S(kx,ky) is the signal in k-space, 

(x,y) are the spatial coordinates in the image, 

(kx,ky) are the spatial frequencies in k-space. 

k-Space Sampling: The sampling of k-space can be described using the Nyquist theorem, which 

states that the sampling frequency must be at least twice the highest frequency component present 

in the signal 

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 

Where fs is the sampling frequency, and fmax is the maximum frequency present in the signal. 
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Spatial Frequency Representation: The relationship between spatial coordinates and spatial 

frequencies can be further explored through the Fourier transform pairs: 

𝑆(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝐼(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦 

The mathematical concepts of MRI are critical for understanding how images are generated from 

raw data. By employing the Bloch equations, Fourier transform relationships, and the principles 

of k-space, MRI is able to produce high-resolution images essential for medical diagnostics. 

Understanding these equations and their implications allows for the optimization and advancement 

of MRI technology. 

This concept includes several operations that generate detailed images from the data attained 

during an MRI scan. Indeed, the physics of magnetic resonance, the principles of signal encoding 

and acquisition, and the methods of image reconstruction are the keys of this concept. 

6.2. Signal acquisition 

6.2.1. Magnetization and precession: 

Net magnetization vector 𝑴⃗⃗⃗ : The sum of the magnetic moments of the nuclei in the sample. In 

the presence of an external magnetic field 𝐵0, the net magnetization vector processes around the 

direction of 𝐵0. 

Bloch equations: Describe the dynamics of the net magnetization vector under the influence of 

magnetic fields and relaxation processes: 

𝑑𝑀/𝑑𝑡 = 𝛾(𝑀 × 𝐵) − (
𝑀𝑥

𝑇2
)𝑥 − (

𝑀𝑦

𝑇2
)𝑦 − (

𝑀𝑧 − 𝑀0

𝑇1
)𝑧  

Where: 

 𝐵 is the total magnetic field; 𝑇1 and 𝑇2 are the longitudinal and transverse relaxation 

time; 𝛾 is the gyromagnetic ratio. 

Components of Magnetization: The components of the magnetization vector can be expressed 

as: 

𝑀𝑥 = 𝑀0𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙)  

𝑀𝑧 = 𝑀0𝑐𝑜𝑠(𝜃) 

Where θ is the angle of the magnetization vector with respect to the z-axis, and ϕ is the 

azimuthal angle. 

Larmor Frequency: The frequency at which the net magnetization precesses around the magnetic 

field is given by: 
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𝜔0 = 𝛾𝐵0 

This frequency is crucial for determining the timing of RF pulses and signal acquisition. 

6.2.2. k-Space: 

Definition: k-space is a mathematical space where the MRI signal data is stored during acquisition. 

Each point in k-space corresponds to a specific spatial frequency in the image. 

Fourier transform relationship: The spatial MRI image 𝐼(𝑥, 𝑦) is the inverse Fourier transform 

of the k-space data 𝑆(𝑘𝑥, 𝑘𝑦): 

 𝐼(𝑥, 𝑦) = ∫ ∫ 𝑆(𝑘𝑥 , 𝑘𝑦)𝑒
𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 

Where: 

𝑆(𝑘𝑥, 𝑘𝑦) is the signal in k-space. 

(𝑥, 𝑦) are the spatial coordinates in the image. 

(𝑘𝑥, 𝑘𝑦) are the spatial frequencies in k-space. 

k-Space Sampling: The sampling of k-space can be described using the Nyquist theorem, which 

states that the sampling frequency must be at least twice the highest frequency component present 

in the signal: 

𝑓𝑠 ≥ 2𝑓𝑚𝑎𝑥 

Where fs is the sampling frequency, and fmax is the maximum frequency present in the signal. 

Spatial Frequency Representation: The relationship between spatial coordinates and spatial 

frequencies can be further explored through the Fourier transform pairs: 

𝑆(𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝐼(𝑥, 𝑦)𝑒−𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦 

The mathematical concepts of MRI are critical for understanding how images are generated from 

raw data. By employing the Bloch equations, Fourier transform relationships, and the principles 

of k-space, MRI is able to produce high-resolution images essential for medical diagnostics. 

Understanding these equations and their implications allows for the optimization and advancement 

of MRI technology. 

7. Spatial encoding 

7.1. Gradient fields: 

Gradient coils: Apply linearly varying magnetic fields along the x, y, and z axes. These gradients 

cause the Larmor frequency to vary with position, enabling spatial encoding. 

Gradient strength: The gradient field strength 𝐺  determines the rate of change of the magnetic 

field with position: 
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𝐵(𝑥) = 𝐵0 + 𝐺𝑥𝑥 + 𝐺𝑦𝑦 + 𝐺𝑧𝑧 

7.2. Frequency encoding: 

Gradient application: During signal readout, a gradient is applied along one axis (e.g., the x-

axis). This causes the precession frequency of the spins to vary linearly with position: 

𝜔(𝑥) = 𝛾(𝐵0 + 𝐺𝑥𝑥) 

Signal acquisition: The signal 𝑆(𝑡) is recorded as a function of time 𝑡:  

𝑆(𝑡) = ∫ 𝜌(𝑥)𝑒𝑖(𝜔0+𝛾𝐺𝑥𝑥)𝑡  𝑑𝑥
∞

−∞

 

  Where 𝜌(𝑥) is the spin density distribution. 

7.3. Phase encoding: 

Gradient Application: Prior to signal readout, a gradient is briefly applied along a perpendicular 

axis (e.g., the y-axis). This gradient induces a position-dependent phase shift in the spins, which 

can be expressed as: 

𝜙(𝑦) = 𝛾𝐺𝑦𝑦𝛥𝑡 

Where: 

Δt is the duration of the gradient pulse. 

Signal with Phase Encoding: The resulting signal, which incorporates both frequency and phase 

encoding, can be described by the equation: 

𝑆(𝑡, 𝛥𝑡) = ∫ ∫ 𝜌(𝑥, 𝑦)𝑒𝑖(𝜔0+𝛾𝐺𝑥𝑥)𝑡𝑒𝑖𝐺𝑦𝑦𝛥𝑡  𝑑𝑥 𝑑𝑦 

Note: A visual representation of k-space and image space is typically represented in figure 7. this 

section to illustrate the relationship between the spatial encoding process, k-space data 

acquisition, and the resulting image reconstruction. 
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Figure 7: K-space and image space 

Spatial encoding in MRI is achieved through the use of gradient fields that modify the magnetic 

field strength and, consequently, the Larmor frequency of the spins. By applying these gradients 

in specific directions (frequency encoding along one axis and phase encoding along another), MRI 

can accurately reconstruct images of the internal structures of the body. The mathematical 

equations governing these processes provide the framework for understanding how spatial 

information is encoded in the acquired signals, ultimately leading to high-resolution images 

essential for medical diagnostics. 

8. Image reconstruction 

8.1. Inverse Fourier transform: 

 Reconstructing the image: The MRI image is reconstructed by applying the inverse 

Fourier transform to the k-space data: 

 𝐼(𝑥, 𝑦) = ∫ ∫ 𝑆(𝑘𝑥, 𝑘𝑦)𝑒
𝑖2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦  

8.2. Discrete Fourier transform (DFT): 

 Sampling: In practice, k-space data is sampled at discrete intervals, and the discrete 

Fourier transform (DFT) is used for reconstruction. 

 DFT formula: For a 2D image, the DFT is given by: 

𝐼(𝑚, 𝑛) ∑ ∑ 𝑆(𝑝, 𝑞)𝑒𝑖2𝜋(
𝑚𝑝
𝑁 −

𝑛𝑞
𝑀 )

𝑀−1

𝑞=0

𝑁−1

𝑝=0

 

 Where: 𝑆(𝑝, 𝑞) are the discrete k-space samples; (𝑚, 𝑛) are the pixel indices in the 

image; 𝑁 and 𝑀 are the dimensions of the image. 

8.3. Fast Fourier transform (FFT): 
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Efficiency: The Fast Fourier Transform (FFT) algorithm is used to efficiently compute the DFT, 

reducing the computational complexity from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔 𝑁). 

The process of image reconstruction in MRI relies heavily on the principles of Fourier analysis. 

By applying the inverse Fourier transform to k-space data, the MRI system can generate images 

that accurately represent the internal structures of the body. The use of the discrete Fourier 

transform allows for the handling of sampled data, while the Fast Fourier Transform enhances 

computational efficiency, making real-time imaging and analysis possible. Understanding these 

mathematical foundations is essential for optimizing MRI techniques and improving image 

quality. We can also note additional notes reconstruction technics such as: 

Windowing and Filtering: Techniques such as windowing and filtering may be applied during 

reconstruction to reduce artifacts and enhance image quality. For example, applying a Hamming 

window can minimize spectral leakage in the DFT. 

Regularization Techniques: In some cases, regularization methods may be employed to improve 

the stability of the reconstruction process, especially in cases of undersampled k-space data. 

Parallel Imaging: Advanced reconstruction techniques like parallel imaging exploit multiple 

receiver coils to accelerate data acquisition and improve image quality by reducing scan times. 

That we give more details on following paragraph. 

By integrating these concepts and techniques, MRI continues to evolve, providing clearer and more 

detailed images critical for accurate diagnosis and treatment planning. 

9. Advanced concepts 

Advanced imaging techniques have significantly enhanced the capabilities of MRI, allowing for 

faster acquisition times, improved image quality, and the ability to capture dynamic processes. 

This section discusses three key advanced concepts: parallel imaging, compressed sensing, and 

echo planar imaging (EPI). 

9.1. Parallel imaging: 

Multiple Coils: Parallel imaging utilizes multiple receiver coils to simultaneously acquire data 

from different spatial locations. This approach significantly accelerates image acquisition by 

collecting k-space data from several points at once. 

Mathematical Representation: If S(kx,ky) represents the k-space data acquired by a single coil, 

the total k-space data total Stotal(kx,ky) from N coils can be expressed as: 

𝑆𝑡𝑜𝑡𝑎𝑙(𝑘𝑥, 𝑘𝑦) = ∑𝑆𝑖(𝑘𝑥, 𝑘𝑦)

𝑁

𝑖=1

 

Where Si(kx,ky) is the k-space data from the i-th coil. 
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Sensitivity encoding (SENSE): SENSE is a widely used parallel imaging technique that exploits 

the unique sensitivity profiles of each coil to reconstruct images from undersampled k-space data. 

Reconstruction equation: The SENSE reconstruction process can be described mathematically 

as follows: 

𝐼(𝑥, 𝑦) = ∑𝑆𝑖(𝑘𝑥, 𝑘𝑦)

𝑁

𝑖=1

⋅ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖(𝑥, 𝑦) 

Where: 

Sensitivityi(x,y) is the spatial sensitivity profile of the i-th coil, 

I(x,y) is the reconstructed image. 

Undersampling Factor: The acceleration factor R indicates how many times faster the acquisition 

is compared to traditional methods, allowing for fewer samples in k-space: 

𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑖𝑚𝑎𝑔𝑖𝑛
 

Multiple coils: Uses multiple receiver coils to acquire data simultaneously, accelerating image 

acquisition. 

Sensitivity encoding (SENSE): One common parallel imaging technique that uses the sensitivity 

profiles of the coils to reconstruct the image from undersampled k-space data. 

9.2. Compressed sensing: 

Sparse Sampling: Compressed sensing is a technique that allows for the acquisition of fewer k-

space samples than traditional methods by exploiting the sparsity of images in a certain transform 

domain (e.g., wavelet or Fourier domain). 

Mathematical Framework: The core idea is that a signal can be reconstructed from a small 

number of measurements if it is sparse in some domain. The reconstruction problem can be 

formulated as: 

𝑚𝑖𝑛 ∣∣ 𝐼 ∣∣ 1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∣∣ 𝛷𝐼 − 𝑦 ∣∣ 2 ≤  𝜖 

Where: 

∣∣I∣∣1 is the L1 norm promoting sparsity, 

Φ is the transformation matrix, 

y is the undersampled k-space data, 

ϵ is a tolerance level. 
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Reconstruction Algorithms: Various algorithms, such as Iterative Shrinkage-Thresholding 

Algorithm (ISTA) and Total Variation (TV) minimization, are employed to solve this optimization 

problem efficiently. 

Sparse sampling: Acquires fewer k-space samples than traditional methods and uses 

mathematical algorithms to reconstruct the image, exploiting the sparsity of the image in some 

transform domain. 

9.3. Echo planar imaging (EPI): 

Rapid Acquisition: EPI is a fast imaging technique that acquires an entire 2D image from a single 

excitation. It achieves this by rapidly switching gradient fields, allowing for the collection of 

multiple lines of k-space data in a single echo. 

Mathematical Description: The k-space trajectory for EPI can be described by a series of gradient 

pulses that create a spiral or zigzag pattern in k-space. The relationship between the readout 

time t and the spatial frequency k can be expressed as: 

𝑘𝑥(𝑡) = 𝛾𝐺𝑥𝑡 

Where: 

γ is the gyromagnetic ratio, 

Gx is the gradient strength along the x-axis. 

Applications: EPI is particularly useful in functional MRI (fMRI) and diffusion MRI, where rapid 

imaging is essential for capturing dynamic physiological processes. 

Rapid acquisition: Acquires an entire 2D image from a single excitation by rapidly switching 

gradient fields, often used in functional MRI and diffusion MRI. See figure 8. 

 
Figure 8: Image reconstruction 

Advanced imaging techniques such as parallel imaging, compressed sensing, and echo planar 

imaging enhance the capabilities of MRI by enabling faster acquisition times and improved image 
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quality. These methods leverage mathematical principles and algorithms to reconstruct high-

resolution images from limited data, making them invaluable tools in modern medical imaging. 
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Chapter 3. Ultrasound imaging 

1. Introduction 

Ultrasound imaging, also known as sonography, serves as a non-invasive medical imaging 

technique that uses high-frequency sound waves to create detailed images of the body's internal 

structures. This technology relies on an ultrasound machine that generates sound waves. A 

handheld device called a transducer sends these sound waves into the body. As the sound waves 

travel through different tissues and organs, they bounce back, producing echoes that vary in 

intensity depending on the type of tissue encountered. The transducer captures these echoes and 

sends them back to the ultrasound machine, which processes the information and converts it into 

visual images displayed on a monitor. This process allows healthcare professionals to visualize 

and assess the condition of various organs and tissues in real time. 

Ultrasound imaging encompasses three primary types: 2D, 3D, and 4D ultrasound. The 2D 

ultrasound produces flat, two-dimensional images and commonly helps practitioners monitor fetal 

development in obstetrics. In contrast, the 3D ultrasound provides three-dimensional images, 

offering enhanced detail and depth, which benefits for more comprehensive prenatal assessments. 

Finally, the 4D ultrasound builds on the 3D technology by adding the element of time, enabling 

healthcare providers to observe real-time movement and activity within the womb. This dynamic 

imaging capability significantly enhances the understanding of fetal behavior and development. 

Healthcare professionals use ultrasound imaging across various medical fields due to its versatility 

and effectiveness. In obstetrics and gynecology, practitioners monitor fetal development, assess 

maternal health, and evaluate reproductive organs. In cardiology, ultrasound plays a crucial role 

in assessing heart function and diagnosing conditions affecting the heart's structure. Additionally, 

abdominal imaging utilizes ultrasound to evaluate vital organs such as the liver, kidneys, and 

pancreas for abnormalities. Musculoskeletal imaging also benefits from ultrasound, allowing 

practitioners to examine muscles, tendons, and joints for injuries or underlying conditions. 

One of the key advantages of ultrasound imaging lies in its non-invasive nature. This technique 

eliminates the need for incisions or injections, making it a safer option for patients. Furthermore, 

ultrasound provides real-time measurements, enabling healthcare professionals to observe moving 

structures, such as a beating heart or a developing fetus. This imaging modality does not use 

ionizing radiation, which enhances its safety profile for both patients and technicians. Additionally, 

practitioners can perform ultrasound at the bedside or in various clinical settings, making it a 

convenient option for immediate assessments. 

Despite its many benefits, ultrasound imaging presents some limitations. Image quality can suffer 

due to factors such as obesity or the presence of gas in the intestines, which may obstruct sound 

wave transmission. Moreover, the technique may not penetrate deeply enough to visualize certain 

structures clearly, limiting its effectiveness in specific areas. Understanding these limitations helps 

healthcare professionals make informed decisions regarding the appropriate use of ultrasound in 

diagnostic imaging. 
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2. Sonography concept 

The mathematical concepts behind ultrasound imaging are crucial for biomedical engineers, 

providing a framework to understand the complex interactions between sound waves and 

biological tissues. Utilizing high-frequency sound waves, ultrasound technology allows for non-

invasive visualization of internal structures, making it an essential tool across various medical 

specialties. 

Central to ultrasound imaging is the interaction of sound waves with different tissue types, each 

reflecting and absorbing waves uniquely based on their density and acoustic properties. For 

biomedical engineers, grasping concepts such as wave speed, frequency, and impedance is vital. 

For example, the speed of sound in human tissue averages around 1540 m/s, a factor that influences 

how sound waves travel and return to the transducer, affecting the accuracy of depth and structural 

assessments. 

Signal processing also plays a pivotal role. The system must interpret echoes to create coherent 

images, utilizing complex algorithms to calculate distances and construct two-dimensional or 

three-dimensional representations. Advanced techniques like Doppler ultrasound enhance this 

process by measuring frequency shifts from moving objects, offering insights into blood flow 

dynamics that are critical for cardiovascular diagnostics. 

Additionally, harmonic imaging leverages the nonlinear properties of sound wave propagation to 

enhance image quality and reduce artifacts. Understanding these mathematical principles is 

essential for biomedical engineers focused on optimizing ultrasound technologies and improving 

diagnostic capabilities. 

In summary, the mathematical foundations of ultrasound imaging are fundamental for biomedical 

engineers, enabling them to innovate and refine ultrasound applications, ultimately leading to 

better patient outcomes and advancements in medical diagnostics 

2.1. Sound wave propagation and reflection 

2.1.1. Speed of sound 

The speed of sound in a given medium plays a crucial role in calculating the distance between the 

transducer and the tissues. In human tissue, the speed of sound measures approximately 1540 m/s. 

However, this speed varies based on the type of tissue and its density. For instance, sound travels 

faster in denser tissues, such as bone, compared to softer tissues like fat or fluid. You can 

summarize the speed of sound in various tissues as follows: 

Fat Muscle Blood Bone 

~1450 m/s ~1580 m/s ~1570 m/s ~4080 m/s 

These variations are important for accurate imaging, as they affect the timing of the echoes 

received by the transducer. 
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2.1.2. Time-of-flight principle 

The time it takes for an ultrasound pulse to travel to a tissue and back is used to calculate the 

distance to that tissue. This principle is known as the time-of-flight principle. The distance d is 

computed using the formula: 

𝑑 = 2𝑣𝑡 

Where: 

d is the distance to the tissue, 

v is the speed of sound in the tissue, 

t is the time it takes for the echo to return. 

This formula accounts for the round trip of the sound wave, hence the factor of 2. See figure 1. 

 
Figure 1: Sound propagation 

In this figure, sound waves are illustrated as they propagate through various tissues, reflecting off 

boundaries and returning to the transducer. The dynamics of sound wave propagation and 

reflection are essential for accurate imaging and diagnosis in ultrasound technology. 

2.1.3. Reflection and Impedance 

When sound waves encounter a boundary between two different tissues, some of the energy is 

reflected back while the rest is transmitted into the next medium. The reflection coefficient R 

quantifies the proportion of the sound wave that is reflected at the interface of two tissues and can 

be calculated using the acoustic impedances Z1 and Z2 of the two tissues: 

𝑅 = (
𝑍2 − 𝑍1

𝑍2 + 𝑍1
)
2

 

Where: 

Z1 is the acoustic impedance of the first medium, 

Z2 is the acoustic impedance of the second medium. 
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The acoustic impedance Z is defined as: 

𝑍 = ρv 

Where: 

ρ is the density of the medium, 

v is the speed of sound in that medium. 

2.1.4. Total Time Calculation 

To further elaborate on the time-of-flight principle, if we consider multiple tissue boundaries, the 

total time T for the sound to travel through several layers can be expressed as: 

T = ∑
2di

vi

n

i=1

 

Where: 

T is the total time, 

di is the distance to each tissue layer, 

vi is the speed of sound in each corresponding tissue layer, 

n is the number of tissue boundaries encountered. 

By understanding these principles and equations, biomedical engineers and healthcare 

professionals can enhance the effectiveness of ultrasound imaging, leading to improved diagnostic 

accuracy and patient care. 

2.2. Image resolution and depth 

2.2.1. Axial resolution 

Axial resolution refers to the ability to distinguish between two points along the axis of the 

ultrasound beam. It is determined by the pulse duration Δt and the frequency f of the transducer. 

The axial resolution AR can be estimated as: 

𝐴𝑅 =
𝑐

2𝑓
 

Where: 

c is the speed of sound in the tissue, 

f is the frequency of the ultrasound. 
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Higher frequencies provide better axial resolution but have less penetration depth. See figure 2. 

 

 
Figure 2: Axial resolution 

2.2.2. Lateral resolution 

Lateral resolution refers to the ability to distinguish between two points perpendicular to the axis 

of the ultrasound beam. It is influenced by the width of the ultrasound beam and the focusing of 

the beam. The lateral resolution LR can be approximated as: 

𝐿𝑅 =
𝐷

2
 

Where: 

D is the diameter of the ultrasound beam at the depth of interest. See figure 3. 

 
Figure 3: Lateral resolution 

2.2.3. Beamforming 

Beamforming is the process of directing the ultrasound beam to focus on specific regions. 

Mathematically, it involves adjusting the timing of the signals received from different elements of 

the transducer array to construct a focused image. The time delay τ for each element is given by: 

τ =
dsinθ

v
 

Where: 
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d is the distance between the transducer elements, 

θ is the desired angle of focus, 

v is the speed of sound in the material. 

By summing the signals from different transducer elements with these appropriate time delays, the 

system enhances signals from a specific direction, resulting in improved image quality. See figure 

4 and figure 5. 

 

 
Figure 4: Beamforming signal 

 
Figure 5: Beamforming signal 

3. Doppler-effect 

Doppler ultrasound utilizes the Doppler effect to measure the change in frequency of the sound 

waves reflected from moving objects, such as blood cells. The frequency shift Δf can be calculated 

using: 

Δf =
2𝑓0vcosθ

𝑉𝑠
 

Where: 

f0 is the original frequency of the ultrasound, 

v is the velocity of the moving object (e.g., blood flow), 

θ is the angle between the ultrasound beam and the direction of the moving object, 

𝑉𝑠 is the speed of sound in the medium. 
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This equation forms the basis for assessing blood flow and detecting abnormalities in 

cardiovascular diagnostics. See figure 6. 

 
Figure 6: Doppler Effect 

Example: The change in pitch of a passing ambulance siren is a common example of the Doppler 

Effect. As the ambulance approaches, the siren's pitch increases; as it moves away, the pitch 

decreases. 

4. Concept and application in medical imaging 

Medical imaging is a crucial field that encompasses various techniques and technologies used to 

visualize the interior of the body for clinical analysis and medical intervention. This discipline 

plays a vital role in diagnosing diseases, monitoring treatment progress, and guiding surgical 

procedures. The primary modalities include X-ray, computed tomography (CT), magnetic 

resonance imaging (MRI), ultrasound, and nuclear medicine. Each of these techniques offers 

unique advantages and applications, contributing to a comprehensive understanding of human 

anatomy and pathology. 

For biomedical engineers, the intersection of engineering principles and medical imaging 

technology presents exciting opportunities. They are instrumental in developing advanced imaging 

systems, improving image quality, and enhancing diagnostic capabilities. Biomedical engineers 

work on creating innovative algorithms for image reconstruction, developing contrast agents, and 

integrating artificial intelligence to automate and refine image analysis. Their contributions are 

essential in advancing personalized medicine, improving patient outcomes, and reducing 

healthcare costs, making medical imaging a dynamic and impactful area of focus within 

biomedical engineering. 

4.1. Basic principle 

The Doppler Effect is a phenomenon observed when there is a relative motion between a wave 

source and an observer. It is particularly significant in medical imaging, where it is used to assess 

the velocity of moving structures, such as blood flow in vessels. The effect can be observed in 

various types of waves, including sound and electromagnetic waves. 
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4.1.1. Frequency Shift 

When a wave source moves towards an observer, the observed frequency increases, resulting in a 

higher pitch for sound waves or a higher frequency for light waves. Conversely, when the source 

moves away from the observer, the observed frequency decreases, leading to a lower pitch or 

frequency. 

 Doppler shift: The Doppler Effect is used to measure the velocity of moving structures, 

such as blood flow. It involves analyzing the change in frequency of the returned echoes 

relative to the transmitted frequency:  

- The Doppler shift 𝛥𝑓, known as the Frequency Shift: When a wave source moves 

towards an observer, the frequency of the wave increases, leading to a higher pitch (in 

sound waves) or a higher frequency (in light waves). Conversely, if the source moves 

away from the observer, the frequency decreases, resulting in a lower pitch or lower 

frequency.  𝛥𝑓 is calculated as: 

Δf =
2f0vcos(θ)

C
 

 Where :  f0 is the emitted frequency of the ultrasound wave; v is the velocity of the 

moving object (e.g., blood); θ is the angle between the ultrasound beam and the direction 

of motion; c is the speed of sound in the medium. 

4.1.2. Observed frequency  

The observed frequency 𝑓′ can be calculated using the following formula 

f′ = f(v + vo)/(v − vs) 

Where: 

f = original frequency of the wave;  

v speed of the wave in the medium; 

vo speed of the observer relative to the medium;  

vs = speed of the source relative to the medium 

This formula reflects the motion of both the source and the observer. The sign depends on whether 

they are moving towards or away from each other. 

4.1.3. Interpretation  

Observer moving towards the source: If the observer is moving towards the source, vo is 

positive, leading to an increase in the observed frequency. 

Observer moving away from the source: If the observer is moving away, vo is negative, resulting 

in a decrease in the observed frequency. 
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Source moving towards the observer: If the source moves towards the observer, vs is negative, 

which also increases the observed frequency. 

Source moving away from the observer: If the source moves away, vs is positive, leading to a 

decrease in the observed frequency. 

4.1.4. Example  

Consider an ultrasound wave with the following parameters: 

Emitted frequency, f0=5MHz 

Speed of sound in tissue, c=1540m/s 

Velocity of blood flow, v=0.5m/s 

Angle, θ=0∘ (directly towards) 

Using the Doppler shift formula: 

𝛥𝑓 =
2 × 5 × 106𝐻𝑧 ×

0.5𝑚
𝑠 × cos(0)

1540𝑚
𝑠

 

= 15405 × 106 × 0.5 

≈ 1620.78𝐻𝑧 

This frequency shift can then be used to determine the velocity of the blood flow, demonstrating 

the practical application of the Doppler Effect in medical imaging. 

The Doppler Effect is a fundamental principle in medical imaging that enables the measurement 

of velocities of moving structures, such as blood flow. Understanding the mathematical 

representations and their implications is crucial for biomedical engineers and medical 

professionals in applying these concepts effectively in clinical settings. 

4.2. Application in medical imaging 

Doppler ultrasound is a non-invasive imaging technique that leverages the Doppler effect to 

measure the velocity and direction of blood flow within the body. This technology is particularly 

valuable in assessing cardiovascular health, aiding in the detection of conditions such as blood 

clots, blocked arteries, and heart valve defects. 

4.2.1. Color Doppler 

Color Doppler ultrasound enhances the visualization of blood flow by employing color coding. In 

this technique: 
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 Flow towards the transducer is typically represented in red. 

 Flow away from the transducer is indicated in blue. 

This color-coding system allows clinicians to quickly assess both the direction and speed of blood 

flow, providing critical information for diagnosing various cardiovascular conditions. See figure 

7. 

 
Figure 7: Color Doppler 

4.2.2. Continuous Wave Doppler 

Principle 

Continuous wave Doppler utilizes two crystals within the transducer: 

One crystal continuously emits ultrasound waves. 

The other continuously receives the reflected waves. 

This method is particularly effective for measuring high-velocity blood flow, such as in cases of 

stenosis (narrowing of blood vessels). We did see above the mathematical frequency shift. 

Limitation 

While continuous wave Doppler provides accurate measurements of blood flow velocity, it cannot 

localize the source of the signal, meaning it does not provide information on the exact location of 

the flow being measured. 

4.2.3. Pulsed Wave Doppler 

Principle 

Pulsed wave Doppler sends out short bursts (pulses) of ultrasound waves and measures the 

frequency shift of the returning echoes. This technique allows for specific sampling at different 

depths, making it useful for measuring blood flow in targeted areas. You can rvise the paragraph 

before about the observed frequency that allows for the calculation of the frequency shift based on 

the relative motion of the source and observer. 

Limitation 
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Pulsed wave Doppler is limited in its ability to measure very high velocities due to a phenomenon 

known as aliasing. Aliasing occurs when the frequency shift exceeds half the pulse repetition 

frequency (PRF), leading to misinterpretation of the flow direction or speed. See figure 8. 

Doppler ultrasound, through its various applications like Color Doppler, Continuous Wave 

Doppler, and Pulsed Wave Doppler, plays a crucial role in modern medical imaging. By utilizing 

the Doppler effect, these techniques provide valuable insights into blood flow dynamics, aiding in 

the diagnosis and management of cardiovascular diseases. Understanding the underlying 

principles and mathematical representations enhances the ability of healthcare professionals to 

interpret results accurately and make informed clinical decisions. 

 

Doppler ultrasound is a non-invasive imaging technique that uses the Doppler effect to measure 

the velocity and direction of blood flow in the body. It is particularly useful in assessing 

cardiovascular health, including the detection of blood clots, blocked arteries, and heart valve 

defects. 

 
Figure 8: Pulse and continuous wave Doppler principal 

4.3. Applications of Doppler-effect in medicine 

4.3.1. Cardiovascular Assessment 

Blood flow measurement: Doppler ultrasound is instrumental in measuring the velocity of blood 

flow in arteries and veins. For example, in diagnosing deep vein thrombosis (DVT), a clinician 

may use Doppler ultrasound to assess blood flow in the femoral vein. If the ultrasound detects a 

significantly reduced velocity or a complete absence of flow, it may indicate the presence of a 

thrombus (blood clot). Similarly, for peripheral artery disease (PAD), Doppler ultrasound can 

measure the blood flow in the popliteal artery to evaluate the severity of the condition. 

Heart function: In echocardiography, the Doppler effect is utilized to evaluate heart valve 

function and measure cardiac output. For instance, in a patient with suspected aortic stenosis, 

Doppler ultrasound can be employed to measure the velocity of blood flow across the aortic valve. 

Using the continuity equation, clinicians can calculate the aortic valve area: 

𝐴1𝑉1 = 𝐴2𝑉2 
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Where A1 and V1 are the cross-sectional area and velocity of blood flow in the left ventricle, and 

A2 and V2 are the area and velocity across the aortic valve. This calculation helps in assessing the 

severity of the stenosis. 

4.3.2. Maternal and fetal health monitoring  

Fetal monitoring: Doppler ultrasound is routinely employed to monitor fetal heart rate and blood 

flow in the umbilical artery. For example, during a routine prenatal check-up, a clinician may use 

Doppler ultrasound to assess the umbilical artery's blood flow. By measuring the systolic/diastolic 

ratio (S/D ratio), clinicians can evaluate fetal well-being. An elevated S/D ratio may indicate 

placental insufficiency, prompting further investigation or intervention. 

4.3.3. Vascular surgery 

Pre- and post-operative evaluation: Doppler ultrasound is vital before and after vascular 

surgeries. For instance, after a bypass graft surgery, Doppler ultrasound can be used to assess 

blood flow in the graft. A normal flow pattern with adequate velocity indicates successful graft 

placement. Conversely, a significant decrease in flow velocity may suggest graft occlusion or 

stenosis, necessitating further surgical intervention. 

4.4. Advantages and limitations 

4.4.1. Advantages 

Non-invasive: Doppler ultrasound provides valuable information without the need for invasive 

procedures, making it a patient-friendly option for assessing cardiovascular health. 

Real-time Imaging: This technique allows for real-time assessment of blood flow and heart 

function, making it highly useful in emergency and dynamic situations, such as evaluating a patient 

with chest pain for possible myocardial infarction. 

Wide Range of Applications: The versatility of the Doppler effect extends across various areas 

of medicine, including cardiology, obstetrics, and vascular medicine, providing comprehensive 

diagnostic capabilities. 

4.4.2. Limitations 

Angle Dependence: The accuracy of Doppler measurements is highly dependent on the angle 

between the ultrasound beam and the direction of blood flow. For example, if the angle exceeds 

60 degrees, the measured velocity can be significantly underestimated, leading to potential 

misdiagnosis. 

Aliasing: In pulsed wave Doppler, aliasing can occur at high velocities, resulting in 

misinterpretation of the flow data. For example, in a patient with severe aortic regurgitation, the 

high diastolic velocities may lead to confusion in interpreting the flow pattern. 

Limited by Penetration Depth: Ultrasound waves may not penetrate deeply enough in certain 

patients, such as those with high body mass index (BMI). This limitation can restrict the 
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effectiveness of Doppler imaging, particularly in obese patients where deeper structures may not 

be adequately visualized. 

The applications of the Doppler effect in medicine, particularly in cardiovascular assessment, 

obstetrics, and vascular surgery, illustrate its critical role in modern diagnostic practices. While 

the advantages of Doppler ultrasound make it an invaluable tool, understanding its limitations is 

essential for accurate interpretation and effective patient management. 
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Chapter 4. Nuclear medicine 

1. Introduction 

Nuclear medicine involves the use of radioactive substances to diagnose and treat diseases. The 

primary mathematical concepts in nuclear medicine pertain to the physics of radioactive decay, 

the interaction of radiation with matter, the modeling of biological processes, and the 

reconstruction of images from the detected radiation. 

Nuclear medicine imaging employs small amounts of radioactive material, a special camera, and 

a computer to create detailed images of the inside of the body. This technique provides information 

that is often unattainable through other imaging methods, making it invaluable in clinical settings. 

It helps diagnose various conditions, including many types of cancers, heart disease, 

gastrointestinal disorders, endocrine issues, and neurological disorders. Nuclear medicine 

procedures can pinpoint molecular activity within the body, allowing for the detection of diseases 

in their earliest stages when they are most amenable to treatment. 

Biomedical engineers play a crucial role in advancing nuclear medicine technologies and 

applications. They actively engage in designing and optimizing imaging systems, ensuring that the 

equipment used in nuclear medicine is efficient, safe, and capable of producing high-quality 

images. By applying their expertise in imaging physics and engineering principles, biomedical 

engineers enhance the performance of gamma cameras and PET (positron emission tomography) 

scanners, enabling more accurate and precise diagnostics. 

Moreover, biomedical engineers contribute to the development of novel radiopharmaceuticals, 

which are essential for targeted therapies and diagnostics. They leverage their understanding of 

biochemistry and molecular biology to design agents that can selectively bind to specific tissues 

or receptors, improving the specificity and effectiveness of treatments. 

In addition, biomedical engineers work on the integration of advanced computational techniques 

and artificial intelligence in nuclear medicine. They develop algorithms for image reconstruction 

and analysis that enhance the interpretation of nuclear medicine scans, leading to better patient 

outcomes. By creating software solutions that facilitate the visualization and quantification of 

molecular activity, they empower clinicians to make more informed decisions. 

Overall, the collaboration between nuclear medicine and biomedical engineering fosters 

innovation in diagnostic and therapeutic approaches, ultimately improving patient care and 

treatment efficacy. 

2. Mathematical concepts 

2.1. Radioactive decay 

Radioactive decay is the process by which unstable atomic nuclei lose energy by emitting 

radiation. This phenomenon occurs in various forms, and understanding these types is crucial for 
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applications in nuclear medicine, radiation therapy, and radiological safety. There are three 

primary types of radioactive decay: see figure 1. 

 
Figure 1: Three type of radioactive decay 

2.1.1. Alpha Decay 

In alpha decay, an unstable nucleus emits an alpha particle, which consists of two protons and two 

neutrons (essentially a helium nucleus). This process reduces the atomic number of the original 

atom by two and the mass number by four. 

Example: A common example of alpha decay is the transformation of uranium-238 into thorium-

234: 

𝑈𝑟𝑎𝑛𝑖𝑢𝑚238 → 𝑇ℎ𝑜𝑟𝑖𝑢𝑚234 + 𝛼 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

Applications: Alpha emitters are used in certain types of cancer treatments and in smoke detectors. 

2.1.2. Beta Decay 

Beta decay occurs when a neutron in the nucleus transforms into a proton (or vice versa), resulting 

in the emission of a beta particle. There are two types of beta decay: 

Beta-minus decay: A neutron is converted into a proton, emitting an electron (beta particle) and 

an antineutrino. 

Beta-plus decay (positron emission): A proton is converted into a neutron, emitting a positron 

(the antimatter counterpart of an electron) and a neutrino. 

Example: A common example of beta-minus decay is the transformation of carbon-14 into 

nitrogen-14: 

𝐶𝑎𝑟𝑏𝑜𝑛14 → 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛14 + 𝛽 −  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 + 𝜈̅ (Antineutrino) 

Applications: Beta emitters are widely used in medical imaging, such as in positron emission 

tomography (PET) scans, and in radiation therapy for cancer treatment. 
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2.1.3. Gamma Decay 

Gamma decay involves the emission of gamma rays, which are high-energy photons, from an 

excited nucleus. This process typically follows alpha or beta decay, allowing the nucleus to 

transition from a higher energy state to a lower energy state without changing the number of 

protons or neutrons. 

Example: After alpha decay, the resulting nucleus may be in an excited state and can emit a gamma 

photon: 

𝐸𝑥𝑐𝑖𝑡𝑒𝑑 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 → 𝑆𝑡𝑎𝑏𝑙𝑒 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 + 𝛾 𝑝ℎ𝑜𝑡𝑜𝑛 

Applications: Gamma rays are utilized in various medical applications, including cancer treatment 

(radiation therapy) and diagnostic imaging. They are also employed in sterilization processes and 

in the detection of radioactive materials. 

This comprehensive overview of radioactive decay types highlights their significance in nuclear 

medicine and other fields, illustrating how they contribute to diagnostic and therapeutic 

applications. 

2.2. Decay law: 

2.2.1. Exponential decay 

Radioactive decay follows an exponential decay law, which describes how the number of 

radioactive nuclei in a sample decreases over time. This phenomenon is a fundamental 

characteristic of radioactive materials and is crucial for understanding their behavior in various 

applications, including nuclear medicine, radiometric dating, and radiation safety. 

The relationship governing the decay of radioactive nuclei can be expressed mathematically as: 

𝑁(𝑡) = 𝑁0𝑒
−𝜆𝑡 

Where: 

𝑁0 is the initial number of nuclei. This value represents the total count of radioactive nuclei present 

in the sample at the start of the observation (time t=0). It is essential for calculating how many 

nuclei remain after a specific duration. 

𝜆 is the decay constant (specific to each radionuclide). This constant is a unique characteristic of 

each radionuclide, reflecting its stability and rate of decay. It is defined as the fraction of nuclei 

that decay per unit time. A higher decay constant indicates a faster decay rate. 

The relationship between the decay constant and the half-life (T1/2) of a radionuclide is given by: 

𝑇1/2 =
ln (2)

𝜆
≈

0.693

𝜆
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𝑡 is the time that represents the duration over which the decay is observed. As time increases, the 

number of remaining radioactive nuclei decreases exponentially. 

The decay process is continuous, meaning that at every moment, there is a probability that a 

nucleus will decay. 

2.2.2. Characteristics  

Rapid Initial Decline: The number of radioactive nuclei decreases quickly at first, but as time 

progresses, the rate of decay slows, leading to a gradual tapering off. 

Half-Life Concept: The half-life is the time required for half of the radioactive nuclei in a sample 

to decay. This concept is essential for understanding the longevity of radioactive materials and is 

directly related to the decay constant. 

For example, if a radionuclide has a half-life of 10 years, after 10 years, 50% of the original N0 

will remain, after 20 years 25% will remain, and so forth. See figure 2. 

 
Figure 2: Characteristic of exponential decay law 

2.2.3. Applications of exponential decay 

Radiometric Dating: Used in archaeology and geology to date ancient artifacts and geological 

formations based on the known decay rates of isotopes like Carbon-14 and Uranium-238. 

Nuclear Medicine: Understanding the decay of radiopharmaceuticals helps in determining 

appropriate dosages and timing for diagnostic imaging and treatment. 

Radiation Safety: Knowledge of decay rates is critical for managing exposure to radioactive 

materials and ensuring safety in environments where radiation is present. 

The exponential decay law describes how the number of radioactive nuclei in a sample decreases 

over time, governed by the initial quantity, decay constant, and elapsed time. This law is 

fundamental to various scientific and medical applications, providing insight into the behavior of 

radioactive materials and their implications for health, safety, and research. 
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2.3. Activity 

Definition: The activity (A) of a radioactive sample is the rate of decay, measured in Becquerel 

(Bq) or Curies (Ci). It is related to the number of nuclei (N) by the following equation: 

𝐴(𝑡) = 𝜆𝑁(𝑡) = 𝐴0𝑒
−𝜆𝑡  

Where: 

𝐴(𝑡) is the activity at time t 

𝜆 is the radioactive decay constant, which represents the probability of a nucleus decaying per unit 

of time 

𝑁(𝑡) is the number of radioactive nuclei at time t 

𝐴0 is the initial activity at time 𝑡 =  0 

The activity is a measure of the number of radioactive decays occurring in the sample per unit of 

time. The decay constant 𝜆 is a characteristic of the specific radioactive isotope and determines 

the rate of decay. 

The exponential term 𝑒−𝜆𝑡 represents the fraction of the initial number of radioactive nuclei that 

remain at time t. As time passes, the activity decreases exponentially due to the radioactive decay. 

Note these key points about radioactive activity: 

Units: The activity is measured in Becquerel (Bq), which represents one decay per second, or in 

Curies (Ci),  

where 1 𝐶𝑖 =  3.7 ×  1010𝐵𝑞. 

Half-life: The half-life (𝑡₁/₂) is the time it takes for the activity to decrease to half of its initial 

value. It is related to the decay constant by the equation: 

𝑡₁/₂ =  𝑙𝑛(2) / 𝜆. 

Specific Activity: The specific activity is the activity per unit mass or volume of the radioactive 

material, typically expressed in 𝐵𝑞/𝑔 𝑜𝑟 𝐵𝑞/𝑚𝐿. 

Applications: Radioactive activity is important in various fields, such as nuclear medicine, 

radiation detection, and environmental monitoring. 

2.4. Half-life: 

The relationship between half-life and decay constant is fundamental in understanding and 

predicting the behavior of radioactive materials, with applications in fields such as nuclear physics, 

nuclear medicine, and radiometric dating. 

The half-life (𝑇1/2) is the time it takes for half of the radioactive nuclei to decay: 𝑇1/2 =
ln (2)

𝜆
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2.5. Interaction of radiation with matter 

When radiation, such as alpha, beta, gamma, or X-rays, interacts with matter, it can undergo 

various types of interactions, which can lead to the absorption, scattering, or transmission of the 

radiation. The specific interactions depend on the type of radiation and the properties of the 

material it is interacting with. 

2.5.1. Alpha (α) Radiation: 

Alpha particles have a high mass and positive charge, making them strongly ionizing. 

They have a short range in matter, typically only a few centimeters in air or a few micrometers in 

tissue. 

Alpha particles can be easily shielded by a thin layer of material, such as a sheet of paper or the 

outer layer of skin. 

2.5.2. Beta (β) Radiation: 

Beta particles are high-energy electrons or positrons. 

They have a longer range in matter compared to alpha particles, but are less ionizing. 

Beta particles can penetrate deeper into materials, but can be shielded by a few millimeters of 

aluminum or a few centimeters of water. 

2.5.3. Gamma (γ) Radiation: 

Gamma rays are high-energy electromagnetic radiation, similar to X-rays. 

They have a high penetrating power and can travel through significant thicknesses of material. 

Gamma radiation can be shielded by dense materials, such as lead or concrete, which absorb the 

energy of the gamma rays. 

2.5.4. X-Rays: 

X-rays are also high-energy electromagnetic radiation, similar to gamma rays. 

They have a shorter wavelength and higher energy compared to visible light. 

X-rays can penetrate matter and are widely used in medical imaging and material analysis. 

The interaction of radiation with matter can result in various processes, such as: 

Ionization: Radiation can ionize atoms and molecules in the material, creating charged particles 

and free radicals. 

Excitation: Radiation can raise the energy levels of electrons in atoms, causing them to move to 

higher energy states. 

Scattering: Radiation can be scattered by the atoms and molecules in the material, changing the 

direction of the radiation. 
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Absorption: Radiation can be absorbed by the material, transferring its energy to the atoms and 

molecules. 

The specific interactions and their effects depend on the type of radiation, the energy of the 

radiation, and the properties of the material being irradiated. Understanding these interactions is 

crucial in various fields, such as radiation protection, medical imaging, and materials science. See 

figure 3, figure 4 and figure 5. 

 

 

Figure 3: Interaction of Radiation with the Matter Photoelectric effect 

 
Figure 4: Interaction of Radiation with the Matter Compton effect 
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Figure 5: Interaction of Radiation with the Matter pair production 

2.5.4.1. Attenuation: 

 Exponential Attenuation: 
When gamma rays or other types of radiation pass through a medium, their intensity 

decreases exponentially. This phenomenon is described by the equation: 

𝐼(𝑥) = 𝐼0𝑒
−𝜇𝑥 

 Where: 𝐼(𝑥) is the intensity after traveling a distance x through the medium;  

 𝐼0 is the initial intensity; 

 𝜇 is the linear attenuation coefficient, dependent on the material and the energy of the 

radiation. 

 Explanation of terms: 

 Intensity (I): This refers to the amount of radiation energy passing through a unit area 

per unit time. It is often measured in units such as counts per minute (CPM) or grays 

(Gy). 

 Linear attenuation coefficient (μ): This coefficient represents how easily a material can 

attenuate radiation. It varies with the type of material and the energy of the radiation. 

Higher values of μ indicate that the material is more effective at attenuating radiation. 

2.5.4.1. Example Calculation: 

Let's consider an example where we have a gamma ray source with an initial intensity  

I0=1000 CPM, and we want to calculate the intensity after it passes through 5 cm of lead, given 

that the linear attenuation coefficient for lead (μ) at the gamma ray energy of interest is 10.5cm−1. 

Substituting into the Equation: 

 𝐼(5) = 1000𝐶𝑃𝑀 ⋅ 𝑒−0.5⋅5 ≈ 1000𝐶𝑃𝑀. 0.0821 ≈ 82.1𝐶𝑃𝑀 

After passing through 5 cm of lead, the intensity of the gamma rays decreases from 1000 CPM to 

approximately 82.1 CPM. This example illustrates how effective materials can be in attenuating 
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radiation and highlights the importance of the linear attenuation coefficient in determining the 

extent of attenuation. 

We can also consider these notes:   

Energy dependence: The value of μ is not constant and can change with the energy of the 

radiation. Higher energy gamma rays may penetrate materials more effectively than lower energy 

rays. 

Material composition: Different materials have different attenuation coefficients. For example, 

lead is commonly used for shielding against gamma radiation due to its high density and effective 

attenuation properties. 

2.5.5. Photoelectric effect and Compton scattering: 

The interaction of radiation (such as gamma rays or X-rays) with matter can occur through various 

mechanisms, with the photoelectric effect and Compton scattering being two of the most 

significant. The probability of these interactions is quantified using cross-sections, which are 

directly related to the linear attenuation coefficient (μ). 

Photoelectric Effect 

The photoelectric effect occurs when a photon interacts with an atom and is completely absorbed, 

resulting in the ejection of an electron from the atom. This process is more likely to occur with 

lower-energy photons and materials with high atomic numbers (Z). 

Probability and Cross-Section 

The probability of the photoelectric effect occurring can be expressed using the photoelectric 

cross-section (σPE), which is a measure of the effective area for interaction between the radiation 

and the target atoms. The relationship between the photoelectric cross-section and the linear 

attenuation coefficient is given by: 

 𝜇𝑃𝐸 = 𝑁 ⋅ 𝜎𝑃𝐸 

Where: 

 𝜇𝑃𝐸  is the linear attenuation coefficient due to the photoelectric effect. 

N is the number density of target atoms (number of atoms per unit volume). 

2.5.5.1. Example: Photoelectric Effect 

Consider a scenario where a photon with energy of 100 keV interacts with a lead target (Z = 82). 

The photoelectric cross-section for lead at this energy might be approximately 

σPE≈0.1cm2/g. 
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Calculate the Number Density (N): The density of lead is about 11.34g/cm3. The number 

density N can be calculated as follows: 

𝑁 =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑎𝑡𝑜𝑚𝑖𝑐 𝑚𝑎𝑠𝑠
⋅ 𝑁𝐴  

Where NA (Avogadro's number) is approximately 6.022×1023 atoms/mol 

The atomic mass of lead is approximately 207.2g/mol. 

𝑁 ≈ 3.25 × 1022𝑎𝑡𝑜𝑚𝑠/𝑐𝑚3 

𝜇𝑃𝐸  ≈ 3.25 × 1021𝑐𝑚−1 

Compton Scattering 

Compton scattering occurs when a photon collides with a loosely bound or free electron, resulting 

in a transfer of energy and a change in the direction of the photon. This process is significant for 

intermediate-energy photons (typically in the range of a few hundred keV). 

The probability of Compton scattering is described by the Compton cross-section (σC), which also 

contributes to the linear attenuation coefficient: 

μC=N⋅σC 

Where: 

μC is the linear attenuation coefficient due to Compton scattering. 

2.5.5.2. Example: Compton Scattering 

Assuming an incident photon energy of 500 keV interacting with the same lead target, the Compton 

cross-section might be approximately σC≈0.02cm2/g. 

μC≈6.5×1020cm−1 

Both the photoelectric effect and Compton scattering are critical mechanisms for understanding 

how radiation interacts with matter. The probabilities of these interactions are quantified using 

cross-sections, which relate directly to the linear attenuation coefficients. Understanding these 

interactions is essential in fields such as medical imaging, radiation therapy, and radiation safety. 

See figure 4. 
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Figure 4: Photoelectric effect and Compton scattering 

2.6. Radiopharmaceutical kinetics 

Radiopharmaceutical kinetics involves the study of how radiopharmaceuticals distribute, 

accumulate, and are eliminated in the body. This is crucial for understanding their behavior and 

optimizing their use in medical imaging and therapy. Compartmental models simplify the complex 

processes of drug distribution and elimination into manageable mathematical representations. 

2.6.1. Compartmental models 

The compartmental models provide a framework for understanding the kinetics of 

radiopharmaceuticals in the body. By using these models, healthcare professionals can better 

predict the distribution and elimination of these substances, leading to improved diagnostic and 

therapeutic outcomes. 

2.6.1.1. One-compartment model 

The simplest model, where the entire body is represented as a single compartment. The substance 

is assumed to distribute instantaneously throughout the body and is eliminated from this 

compartment. Useful for substances that distribute quickly and uniformly, such as certain 

intravenous drugs. The mathematical representation:  

𝐶(𝑡) = 𝐶0 ⋅ 𝑒−𝑘⋅𝑡  

 Where: 

  𝐶(𝑡) is the concentration of the substance at time 𝑡; 

  𝐶0 is the initial concentration  

 𝑘 is the elimination rate constant 

2.6.1.2 Two-compartment model 

The body is divided into two compartments: a central compartment (blood and highly perfused 

organs) and a peripheral compartment (less perfused tissues). The substance can move between 
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these compartments and be eliminated from the central compartment. It is commonly used for 

substances that have a slower distribution phase before reaching equilibrium between 

compartments. The mathematical representation:  

𝐶(𝑡) = 𝐶(𝑡) = 𝐴 ⋅ 𝑒−𝛼𝑡 + 𝐵 ⋅ 𝑒−𝛽𝑡  

 Where: 

  𝐴 and 𝐵 are coefficients related to the distribution and elimination phases 

  𝛼 and 𝛽 are the rate constants for distribution and elimination phases, respectively 

2.6.1.3. Multi-Compartment Model 

Extends the two-compartment model by adding more compartments to represent additional tissues 

or organs. More complex and necessary when the kinetics of the substance cannot be accurately 

described by simpler models. Applicable in scenarios where the substance has a complex 

distribution pattern, such as drugs with extensive tissue binding or radiopharmaceuticals targeting 

multiple tissues. 

𝐶(𝑡) = ∑𝐶𝑖

𝑛

𝑖=1

𝑒−𝜆𝑖𝑖𝑡 

Where: 

n: Total number of compartments. 

Ci: Coefficient for compartment i. 

λi: Rate constant for compartment i. 

2.6.2. Applications of compartmental models 

2.6.2.1. Pharmacokinetics:  

Drug Distribution: Compartmental models are essential in pharmacokinetics to predict how a 

drug is distributed throughout the body, its concentration over time, and its eventual elimination. 

This helps in determining the appropriate dosing regimen. 

Therapeutic Monitoring: By modeling the kinetics of a drug, healthcare providers can monitor 

therapeutic levels in the blood, adjust doses, and avoid toxicity. 

2.6.2.2. Nuclear medicine: 

Radiopharmaceutical kinetics: Compartmental models help in understanding the behavior of 

radiopharmaceuticals used in imaging or therapy. For example, in PET imaging, the model predicts 

the distribution of a radiotracer in the body, helping in interpreting images. 
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Dosimetry: These models are used to calculate the radiation dose delivered to tissues during 

radionuclide therapy, ensuring that the target tissue receives the optimal dose while minimizing 

exposure to healthy tissues. 

2.6.2.3. Medical imaging: 

- Dynamic imaging: In techniques like dynamic PET (Positron Emission Tomography) or SPECT 

(Single Photon Emission Computed Tomography), compartmental models help in analyzing the 

time-activity curves, allowing for the quantification of physiological parameters like blood flow, 

metabolism, and receptor binding. 

2.6.3. Mathematical aspects of compartmental models 

2.6.3.2. Differential equations: 

Two-Compartment Model is the commonly used model where the radiopharmaceutical is 

distributed between two compartments (e.g., blood and tissue). The kinetics is described by 

differential equations:  

 
𝑑𝐶1(𝑡)

𝑑𝑡
= −𝑘12𝐶1(𝑡) + 𝑘21𝐶2(𝑡) 

 
𝑑𝐶2(𝑡)

𝑑𝑡
= 𝑘12𝐶1(𝑡) − 𝑘21𝐶2(𝑡) 

Where: 𝐶1(𝑡) and 𝐶2(𝑡)are the concentrations of the radiopharmaceutical in the two compartments 

𝑘12 and 𝑘21 are rate constants for the transfer between compartments. 

 Parameter estimation: 

Parameters such as rate constants (𝑘) and initial concentrations are often estimated using 

experimental data and statistical techniques like least squares fitting. These parameters are crucial 

for accurately predicting the kinetics of a substance. 

 Simulation and prediction: 

Once a compartmental model is defined and parameters are estimated, simulations can predict the 

concentration of the substance over time in each compartment. These predictions are used to 

optimize dosing schedules, imaging protocols, and treatment plans. 

2.6.4. Advantages and limitations of compartmental models 

2.6.4.1. Advantages: 

Simplicity: Provides a simplified framework to understand complex biological processes. 

Predictive power: Allows for predictions of how a substance behaves in the body over time, aiding 

in drug development and medical treatment. 

Flexibility: Can be adapted to various substances and scenarios by adjusting the number of 

compartments and rate constants. 
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2.6.4.2. Limitations: 

Oversimplification: Real biological systems are often more complex than what can be represented 

by compartmental models. These models may overlook important factors like non-linear kinetics 

or heterogeneous tissue properties. 

Assumptions: The assumptions of homogeneity and first-order kinetics may not always hold true, 

leading to inaccuracies in predictions. 

Parameter estimation: Accurate parameter estimation requires high-quality data, and incorrect 

estimates can lead to erroneous conclusions. 

3. Image reconstruction in nuclear medicine 

3.1. Tracer kinetics 

Linear model: When using a tracer dose (a small amount of radiopharmaceutical), the kinetics 

can often be assumed to be linear:  

𝐶(𝑡) = 𝐶0𝑒
−λt 

Non-linear models: In cases where higher doses are used or in more complex systems, non-linear 

models may be necessary. 

3.2. SPECT (Single photon emission computed tomography): 

Projection data: SPECT involves acquiring projection data at multiple angles. Each projection 

can be represented mathematically as: 

𝑃𝜃(𝑥′) = ∫ 𝜌(𝑥, 𝑦) 𝑑𝑦
∞

−∞

 

 Where: 𝑃𝜃(𝑥′) is the projection at angle 𝜃 along line 𝑥′; 𝜌(𝑥, 𝑦) is the radionuclide 

distribution in the object. 

Filtered back projection (FBP): A common method for reconstructing the 2D image from the 

projections. The reconstructed image 𝜌(𝑥, 𝑦) is given by: 

𝜌(𝑥, 𝑦) = ∬[𝑃𝜃(𝑥′)

𝜋∞

0−∞

(ℎ(𝑥′ − 𝑥𝑐𝑜𝑠(𝜃) − 𝑦𝑠𝑖𝑛(𝜃))𝑑𝑥′]𝑑𝜃′ 

 Where: ℎ(𝑥) a filter function. 

3.3. PET (Positron emission tomography): 
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Coincidence detection: PET detects pairs of gamma photons emitted simultaneously in opposite 

directions. The line of response (LOR) between the detectors is recorded. 

Image reconstruction: PET images are reconstructed using algorithms such as filtered back 

projection or iterative methods like Maximum Likelihood Expectation Maximization (MLEM):  

𝜌(𝑥, 𝑦, 𝑧) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜌

 {∑𝑑𝑖𝑙𝑛 (𝜌 ⋅ 𝑅𝑖)

𝑁

𝑖=1

− 𝜌 ⋅ 𝑅𝑖} 

 Where: 𝑑𝑖 is the measured data for detector pair 𝑖; 

 𝑅𝑖 is the system response function for 𝑖;  

 𝜌(𝑥, 𝑦, 𝑧) is the reconstructed activity distribution. 

 
Figure 5: PET imaging reconstruction 

Positron emission tomography (PET). (a) Molecules with radioactively labeled probes are injected 

into the bloodstream. Blood flows preferentially to areas with increased metabolism, such as active 

brain areas. When the radioactive compound decays, it emits gamma rays in opposite directions. 

(b) Those gamma rays are detected by sensors surrounding the head of the subject at the PET 

scanner, providing (c) an indication of the absolute concentration of that compound in different 

brain regions.  

4. Dosimetry 

4.1. Absorbed dose   

Dose calculation: The absorbed dose 𝐷 (in grays, 𝐺𝑦) is calculated as: 

𝐷 = 𝐴 ⋅ 𝐸 ⋅ 𝜙/𝑚 

 Where: 𝐴 is the activity administered;  

 𝐸 is the energy of the emitted radiation;  

 𝜙 is the fraction of emitted energy absorbed by the tissue; 

 𝑚 is the mass of the tissue. 
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4.2. Effective dose 

Weighting factors: The effective dose 𝐸 accounts for the type of radiation and the sensitivity of 

different tissues: 

𝐸 = ∑ 𝑤𝑇𝑇 𝐷𝑇   

Where: 

 𝑤𝑇 is the tissue weighting factor for tissue 𝑇  

𝐷𝑇 is the absorbed dose to tissue 𝑇. 

4.3. Application example 

4.3.1. Case Study: PET Imaging for cancer diagnosis 

A patient is referred for a Positron Emission Tomography (PET) scan to evaluate a suspected 

malignancy. The radiopharmaceutical used for the PET scan is Fluorodeoxyglucose (FDG), a 

glucose analog that is preferentially taken up by cancer cells due to their higher metabolic activity. 

4.3.2. Dosimetry calculation 

The physician decides to administer 10 mCi (millicuries) of FDG. 

10 mCi=10×37×106 Bq=370×106 Bq 

The energy E of emitted radiation (the average energy of the emitted positrons from FDG) is 

approximately 0.511 MeV 

The Fraction ϕ  of emitted energy absorbed by tissue is about 60% of the emitted energy is 

absorbed by the tumor tissue. 

The mass of tumor tissue is istimated at 0,5kg 

4.3.3. Absorbed dose calcultion 

Using the absorbed dose formula: 

𝐷 = 𝐴 ⋅ 𝐸 ⋅ 𝜙/𝑚 

𝐷 ≈ 0.51.82 × 10−5𝐺𝑦 

4.3.4. Effective dose calculation 

Assuming the patient has multiple tissues exposed to radiation, we consider the absorbed doses to 

various organs and their respective tissue weighting factors: 

Tissue Absorbed Doses: 

Tumor: DT=3.64×10−5Gy 

Heart: DT=1.0×10−5Gy 
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Liver: DT=2.0×10−5Gy 

Tissue Weighting Factors (��wT): 

Tumor: wT=0.12 

Heart: wT=0.01 

Liver: wT=0.05 

Effective Dose Calculation 

Using the effective dose formula: 

𝐸 = ∑ 𝑤𝑇. 𝐷𝑇𝑇  

Calculating for each tissue 

E=(0.12⋅3.64×10−5)+(0.01⋅1.0×10−5)+(0.05⋅2.0×10−5) 

Calculating each term 

Tumor:  ≈4.37×10−6 

Heart: =1.0×10−7 

Liver:  =1.0×10−6 

E≈5.47×10−6Sv (Sv the effective dose unit). 

In this example, dosimetry calculations help quantify the absorbed and effective doses of radiation 

received by the patient during a PET scan. This information is crucial for assessing the risks 

associated with the procedure, guiding treatment decisions, and ensuring patient safety. By 

understanding the dosimetry, healthcare professionals can optimize the use of 

radiopharmaceuticals to achieve the best diagnostic outcomes while minimizing potential harmful 

effects. 

 

 

 

  



 

119 

 

Chapter 5. Optical imaging:  

1. Introduction 

Optical imaging is a versatile and powerful tool in both clinical and research settings, offering 

high-resolution, real-time visualization of tissues, cells, and molecular processes. This technology 

has gained significant traction in the biomedical field due to its ability to provide detailed insights 

into biological systems without the harmful effects associated with ionizing radiation. While 

optical imaging has some limitations in terms of tissue penetration, ongoing advancements in 

technology and techniques are expanding its capabilities, making it an increasingly valuable tool 

in modern medicine and biomedical research. 

Optical imaging employs various light wavelengths to visualize tissues, cells, and molecules 

within the body. Unlike modalities that rely on ionizing radiation, such as X-rays or CT scans, 

optical imaging primarily utilizes non-ionizing light in the visible, ultraviolet (UV), or near-

infrared (NIR) spectrum. This characteristic allows for safer imaging protocols, particularly in 

sensitive populations such as pediatric patients and pregnant women. The non-invasive nature of 

optical imaging not only enhances patient safety but also facilitates repeated imaging sessions, 

which is crucial for monitoring disease progression or treatment response. 

The high-resolution images produced by optical imaging techniques enable researchers and 

clinicians to observe dynamic biological processes in real time. This capability is particularly 

beneficial in fields such as oncology, where real-time visualization of tumor responses to therapies 

can guide treatment decisions. Additionally, optical imaging plays a pivotal role in understanding 

cellular mechanisms and molecular interactions, thereby contributing to the development of 

targeted therapies and personalized medicine. 

For biomedical engineers, the interest in optical imaging lies in its potential for innovation and 

improvement in medical diagnostics and therapeutics. As advancements in imaging technologies, 

such as fluorescence imaging, multispectral imaging, and optical coherence tomography, continue 

to emerge, biomedical engineers are presented with opportunities to design and optimize imaging 

systems that enhance diagnostic accuracy and therapeutic efficacy. Furthermore, the integration of 

optical imaging with other modalities, such as MRI or PET, can provide comprehensive insights 

into complex biological phenomena, paving the way for more effective treatment strategies. 

In summary, optical imaging represents a rapidly evolving field that holds immense promise for 

biomedical engineering. Its ability to deliver high-resolution, real-time visualization of biological 

systems without the risks associated with ionizing radiation makes it an indispensable tool in both 

clinical and research environments. As technology continues to advance, the role of optical 

imaging in medicine will undoubtedly expand, offering new avenues for exploration and 

innovation in the pursuit of improved healthcare outcomes. See figure 1. 
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Figure 1: Optical imaging 

2. Principles of optical imaging 

2.1. Light-tissue interaction 

Optical imaging relies on several fundamental interactions between light and biological tissues, 

each contributing to the overall imaging process. Understanding these interactions is crucial for 

optimizing imaging techniques and interpreting results effectively. Below are the key principles 

of optical imaging, along with relevant equations that describe these phenomena. 

2.2.1. Absorption 

Different tissues and molecules absorb light at specific wavelengths. This absorption can be 

quantified using the Beer-Lambert Law, which relates the absorbance of light to the properties of 

the material through which the light is traveling. The equation is given by: 

𝐴 = 𝑙𝑜𝑔10(
𝐼0
𝐼

) = 𝜖𝑐𝑙 

Where: 

A = Absorbance (no units) 
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I0 = Intensity of incident light 

I = Intensity of transmitted light 

ϵ = Molar absorptivity (extinction coefficient) of the substance (L/(mol·cm)) 

c = Concentration of the absorbing species (mol/L) 

l = Path length through which the light travels (cm) 

This equation indicates that the absorbance increases with the concentration of the absorbing 

species and the path length, allowing for the identification and quantification of specific molecules 

or tissue types. 

2.1.2. Scattering 

As light passes through tissues, it scatters in different directions due to variations in tissue density 

and composition. The scattering can be described using the Rayleigh scattering equation, 

particularly for small particles: 

𝐼 ∝
1

𝜆4 

Where: 

I = Intensity of scattered light 

λ = Wavelength of the incident light 

This relationship shows that shorter wavelengths scatter more than longer wavelengths, which can 

affect image resolution. Additionally, the scattering coefficient (μs) can be defined, which 

describes how much light is scattered per unit distance: 

𝜇𝑠 =
1

𝐼𝑠
 

Where: 

ls = Mean free path of light in the medium (cm) 

2.1.3. Fluorescence 

Fluorescence occurs when certain molecules absorb light and re-emit it at a longer wavelength. 

The fluorescence intensity can be described by the following equation: 

𝐹 = 𝜙 ⋅ 𝜖 ⋅ 𝑐 ⋅ 𝐼0 

Where: 

F = Fluorescence intensity 
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ϕ = Quantum yield of the fluorescent molecule (no units) 

ϵ = Molar absorptivity at the excitation wavelength (L/(mol·cm)) 

c = Concentration of the fluorescent species (mol/L) 

I0 = Intensity of the excitation light 

This equation illustrates that the fluorescence intensity is proportional to the concentration of the 

fluorescent molecule and the intensity of the incident light, making it a powerful tool for tagging 

and visualizing specific molecules or structures. 

2.1.4. Reflectance 

Light that is not absorbed or scattered may be reflected back, and this reflected light can be 

captured to form an image. The reflectance (R) can be described using the Fresnel equations, which 

account for the angle of incidence and the refractive indices of the two media involved: 

𝑅 = (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
)
2

 

Where: 

R = Reflectance (no units) 

n1 = Refractive index of the first medium (e.g., air) 

n2 = Refractive index of the second medium (e.g., tissue) 

This equation indicates that reflectance depends on the refractive indices of the media, which can 

vary significantly among different tissue types. The captured reflected light forms the basis of the 

imaging process, contributing to the overall quality and clarity of the resulting images. 

Understanding these principles absorption, scattering, fluorescence, and reflectance along with 

their corresponding equations, is essential for biomedical engineers and researchers working with 

optical imaging technologies. These interactions not only influence the quality of the images 

obtained but also provide critical information about the biological processes occurring within 

tissues. As technology advances, the ability to manipulate and optimize these interactions will 

enhance the diagnostic and therapeutic capabilities of optical imaging in clinical and research 

settings. 

2.2. Spectral range 

Optical imaging employs various wavelengths of light, each with unique properties and 

applications. Understanding the interaction of these wavelengths with biological tissues is essential 

for optimizing imaging techniques. Below are the key types of light used in optical imaging, along 

with relevant equations that describe their interactions with tissues. 



 

123 

 

2.2.1. Visible Light 

Visible light, typically ranging from 400 to 700 nm, is primarily used for surface imaging, such as 

skin or eye examinations. The interaction of visible light with tissues can be described by the 

absorption and scattering coefficients, which influence image quality. The total attenuation of light 

as it travels through a medium can be represented by the Beer-Lambert Law: 

𝐼 = 𝐼0𝑒
−𝜇𝑎𝑙−𝜇𝑠𝑙 

Where: 

I = Intensity of light after passing through the tissue 

I0 = Initial intensity of light 

μa = Absorption coefficient (cm−1) 

μs = Scattering coefficient (cm−1) 

l = Path length through the tissue (cm) 

This equation shows how both absorption and scattering reduce the intensity of visible light, 

impacting the resolution and quality of surface images. 

2.2.2.  Near-Infrared (NIR) 

Near-Infrared (NIR) light, typically ranging from 650 to 900 nm, penetrates deeper into tissues 

than visible light. This property makes it particularly useful for imaging deeper structures, such as 

blood vessels and organs. The penetration depth (�d) of light in biological tissues can be 

estimated using the following equation: 

𝑑 ≈
1

𝜇𝑎 + 𝜇𝑠
 

Where: 

d = Penetration depth (cm) 

μa = Absorption coefficient (cm−1−1) 

μs = Scattering coefficient (cm−1−1) 

This equation indicates that as the absorption and scattering coefficients decrease, the penetration 

depth increases, allowing NIR light to access deeper tissue layers effectively. 

2.2.3. Ultraviolet (UV) 

Ultraviolet (UV) light, typically ranging from 10 to 400 nm, can induce fluorescence in certain 

molecules, making it useful for specific imaging applications. However, UV light is generally 

limited to surface imaging due to its limited penetration depth and potential to cause damage to 
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biological tissues. The penetration depth of UV light can be estimated similarly to that of visible 

light: 

𝑑 ≈
1

𝜇𝑎 + 𝜇𝑠
 

In this case, the absorption coefficient (μa) for UV light is usually higher than for visible and NIR 

light, resulting in a significantly reduced penetration depth. Additionally, the potential for UV-

induced damage can be modeled using the following equation, which describes the relationship 

between exposure time (t) and the dose (D) absorbed by the tissue: 

𝐷 = 𝐼0 ⋅ 𝑡 ⋅ 𝑒−𝜇𝑎𝑙 

Where: 

D = Dose of UV light absorbed (J/cm²) 

I0 = Intensity of incident UV light (W/cm²) 

t = Exposure time (s) 

μa = Absorption coefficient (cm−1−1) 

l = Path length through the tissue (cm) 

This equation highlights the risk of damage from UV light exposure, as higher intensities and 

longer exposure times can lead to increased doses absorbed by the tissue. 

The use of visible light, near-infrared light, and ultraviolet light in optical imaging provides a range 

of capabilities for visualizing biological structures. Each type of light has distinct properties that 

influence its application, with equations describing how these wavelengths interact with tissues. 

Understanding these interactions is crucial for biomedical engineers and researchers aiming to 

optimize imaging techniques and improve diagnostic and therapeutic outcomes. As technology 

continues to advance, the ability to harness these different wavelengths will enhance the versatility 

and effectiveness of optical imaging in clinical and research settings. 

2.3. Optical techniques 

Optical imaging encompasses various techniques that utilize light to visualize biological structures 

and processes. Each method has unique principles and applications, often described 

mathematically. Below are the key optical imaging techniques, along with relevant equations that 

elucidate their underlying mechanisms. 

2,3,1. Reflectance Imaging 

Reflectance imaging measures the intensity of light reflected from tissues to create an image. This 

technique is commonly used in dermatology and ophthalmology. The intensity of the reflected 
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light (Ir) can be described using the Fresnel equations, which account for the refractive indices of 

the tissue and the medium (e.g., air): 

𝑅 = (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
)
2

 

Where: 

R = Reflectance (no units) 

n1 = Refractive index of the first medium (e.g., air) 

n2 = Refractive index of the second medium (e.g., tissue) 

𝐼𝑟 = 𝑅 ⋅ 𝐼0 

Where: 

Ir = Intensity of reflected light 

I0 = Intensity of incident light 

This relationship indicates that the amount of light reflected from tissues is dependent on both the 

incident light intensity and the reflectance coefficient. 

2.3.2. Fluorescence Imaging 

Fluorescence imaging employs fluorescent dyes or proteins that emit light at specific wavelengths 

when excited by a light source. The fluorescence intensity (F) can be quantified using the 

following equation: 

𝐹 = 𝜙 ⋅ 𝜖 ⋅ 𝑐 ⋅ 𝐼0 

Where: 

F = Fluorescence intensity 

ϕ = Quantum yield of the fluorescent molecule (no units) 

ϵ = Molar absorptivity at the excitation wavelength (L/(mol·cm)) 

c = Concentration of the fluorescent species (mol/L) 

I0 = Intensity of the excitation light 

The equation illustrates how the fluorescence intensity is directly proportional to the concentration 

of the fluorescent molecules and the intensity of the excitation light, making it an effective method 

for visualizing specific biological molecules or cells. 
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2.3.3. Bioluminescence Imaging 

Bioluminescence imaging utilizes the emission of light by living organisms, such as the luciferase 

enzyme found in fireflies, to study biological processes in vivo. The intensity of bioluminescence 

(L) can be modeled using the following equation: 

L=k⋅[Substrate]⋅[Enzyme] 

Where: 

L = Bioluminescence intensity (photons/s) 

k = Rate constant (specific to the reaction 

[Substrate] = Concentration of the substrate (e.g., luciferin) (mol/L) 

[Enzyme] = Concentration of the enzyme (e.g., luciferase) (mol/L) 

This equation indicates that the intensity of bioluminescence is dependent on the concentrations 

of both the substrate and the enzyme, allowing for real-time monitoring of biological processes in 

living organisms. 

2.3.4. Optical Coherence Tomography (OCT) 

Optical coherence tomography (OCT) is a non-invasive imaging technique that captures cross-

sectional images of tissues by measuring the echo time delay of reflected light. The basic principle 

can be described using the following equation for the time delay (td) of light reflecting from a 

tissue layer: 

𝑡𝑑 =
2𝑑

𝑐
 

Where: 

td = Time delay (s) 

d = Depth of the tissue layer (cm) 

c = Speed of light in the medium (≈ 3 × 1010 cm/s in tissue) 

The depth resolution (Δz) of OCT can be expressed as: 

𝛥𝑧 =
𝑐

2𝛥𝑓𝑐
 

Where: 

Δz = Depth resolution (cm) 
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Δf = Bandwidth of the light source (Hz) 

This equation indicates that better depth resolution can be achieved with a light source that has a 

broader bandwidth, allowing OCT to produce high-resolution cross-sectional images, particularly 

useful in ophthalmology for imaging the retina. 

Optical imaging techniques such as reflectance imaging, fluorescence imaging, bioluminescence 

imaging, and optical coherence tomography each have distinct principles and mathematical 

foundations. Understanding these methods and their equations is crucial for biomedical engineers 

and researchers working to optimize imaging technologies and improve diagnostic and therapeutic 

applications. As advancements in optical imaging continue, these techniques will play an 

increasingly vital role in clinical and research settings. 

3. Applications of optical imaging 

3.1. Clinical applications: 

Dermatology: Optical imaging is used to evaluate skin conditions, including the detection of skin 

cancer, by analyzing light reflectance and absorption properties. 

Ophthalmology: OCT is commonly used to diagnose and monitor eye diseases such as glaucoma, 

macular degeneration, and diabetic retinopathy. 

Surgery: Fluorescence imaging can be used during surgery to identify cancerous tissues, map 

blood flow, or visualize nerves, thereby improving surgical precision. 

3.2. Research applications: 

Molecular imaging: In research, optical imaging is used to study molecular interactions in real-

time, allowing scientists to observe processes such as protein-protein interactions, gene expression, 

and cell signaling. 

Preclinical studies: Bioluminescence and fluorescence imaging are extensively used in animal 

models to study disease progression, monitor therapeutic interventions, and track the behavior of 

cells or pathogens. 

4. Advantages and limitations of optical imaging 

4.1. Advantages: 

Non-ionizing radiation: Optical imaging uses light, which is non-ionizing and generally safe, 

making it suitable for repeated use and imaging sensitive areas such as the eyes or developing 

embryos. 

High resolution: Optical imaging provides high spatial resolution, especially for surface imaging, 

allowing for detailed visualization of tissues and cellular structures. 

Real-time imaging: Many optical imaging techniques offer real-time imaging capabilities, which 

are crucial for guiding surgeries or monitoring dynamic processes in live tissues. 
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4.2. Limitations: 

Limited penetration depth: Optical imaging, especially with visible light, is generally limited to 

surface or near-surface imaging due to scattering and absorption by tissues. 

Scattering: Scattering of light within tissues can degrade image quality and limit the ability to 

resolve structures deep within the body. 

Contrast agents: Some optical imaging techniques require the use of contrast agents (e.g., 

fluorescent dyes), which may not be universally available or suitable for all patients. 

5. Emerging techniques and future directions 

5.1. Multiphoton microscopy: 

A technique that uses two or more photons of lower energy (typically NIR) to excite a fluorophore, 

enabling deeper tissue penetration and reduced photodamage, making it ideal for imaging live 

tissues in research. 

5.2. Photoacoustic imaging: 

Combines optical imaging with ultrasound to provide high-resolution images with greater tissue 

penetration. It works by detecting ultrasound waves generated by the absorption of pulsed laser 

light by tissues, offering insights into both anatomical and functional properties. 

5.3. Super-resolution imaging: 

Techniques such as Stimulated Emission Depletion (STED) microscopy and Structured 

Illumination Microscopy (SIM) allow imaging at resolutions beyond the diffraction limit of light, 

enabling visualization of cellular structures at the nanometer scale. 

5.4. Optical molecular imaging: 

Advancements in optical imaging are moving towards the ability to visualize specific molecular 

targets within tissues, enabling personalized medicine approaches where imaging can guide 

targeted therapies based on individual molecular profile 

6. Imaging techniques: 

B-mode imaging, or brightness mode imaging, is a fundamental technique used in ultrasound 

imaging where the brightness of each pixel in the image corresponds to the amplitude of the 

reflected echo from that specific location in the tissue. This method provides a two-dimensional 

representation of the internal structures of the body based on the echoes received from ultrasound 

waves. 

6.1. Relationship between Image Intensity and Echo Amplitude 

The image intensity I(x,y) at a given pixel position (x,y) is proportional to the magnitude of the 

echo amplitude A(x,y): 
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I(x,y)∝∣A(x,y)∣ 

This relationship indicates that brighter pixels correspond to stronger echoes, which typically 

originate from denser or more reflective tissues. The proportionality can be expressed more 

formally as: 

I(x,y)=k⋅∣A(x,y)∣ 

Where: 

I(x,y) = Intensity of the pixel at position (x,y) 

A(x,y) = Echo amplitude at position (x,y) 

k = Proportionality constant that may include factors such as system gain and calibration settings. 

6.2. Echo Amplitude and Tissue Properties 

The echo amplitude A(x,y) is influenced by several factors, including the properties of the tissue 

being imaged. The amplitude can be modeled as: 

𝐴(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)𝑒−𝜇𝑙 

Where: 

R(x,y) = Reflection coefficient at position (x,y) 

μ = Attenuation coefficient of the tissue (cm−1−1) 

l = Path length of the ultrasound wave through the tissue (cm) 

The reflection coefficient R(x,y) is determined by the differences in acoustic impedance between 

the tissue interfaces. The acoustic impedance Z of a tissue is given by: 

Z=ρ⋅c 

Where: 

ρ = Density of the tissue (kg/m³) 

c = Speed of sound in the tissue (m/s) 

The reflection coefficient at an interface between two media can be expressed as: 

𝑅 = (
𝑍1 − 𝑍2

𝑍1 + 𝑍2
)
2

 

Where: 

Z1 and Z2 are the acoustic impedances of the two tissues. 
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6.3. Image Formation Process 

The overall process of B-mode imaging involves several steps, which can be summarized as 

follows: 

Ultrasound Wave Emission: A transducer emits ultrasound waves that propagate through the 

tissue. 

Echo Reception: The waves reflect off tissue interfaces and return to the transducer, where they 

are received as echoes. 

Echo Processing: The received echoes are processed to determine their amplitude and time delay, 

allowing for the calculation of depth. 

Image Construction: The intensity of each pixel in the image is determined based on the 

amplitude of the corresponding echo, creating a grayscale image representation of the internal 

structures. 

6.4. Time Delay and Depth Calculation 

The time delay t for the echo to return can be related to the depth d of the tissue layer from which 

the echo originated: 

𝑑 =
𝑐𝑡

2
 

Where: 

c = Speed of sound in the tissue (approximately 1540 m/s in soft tissue) 

t = Time taken for the echo to return (s) 

This relationship indicates that the depth can be calculated based on the time delay of the received 

echo. 

B-mode imaging is a crucial technique in ultrasound diagnostics, providing real-time visualization 

of internal structures based on the amplitude of reflected echoes. The relationships between image 

intensity, echo amplitude, tissue properties, and depth calculation form the basis for understanding 

how B-mode images are generated and interpreted. This technique plays a vital role in various 

medical applications, including obstetrics, cardiology, and abdominal imaging, facilitating non-

invasive examination of internal organs and tissues. 

6.5. Resolution: 

The resolution of an ultrasound image is determined by the wavelength of the sound waves and 

the orifice of the transducer. The axial resolution (𝑅𝑎) is given by:  

𝑅𝑎 =
𝑐

2𝑓
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Where: 

𝑓 is the frequency of the ultrasound wave. 

𝑐 is the speed of sound in the medium. 

The lateral resolution 𝑅𝑙 is related to the beam width (𝑊) and the depth (𝑧):  

𝑅𝑙 =
λz

𝑊
 

Where: λ is the wavelength of the ultrasound wave. 

6.6. Speckle noise: 

Speckle noise is a granular pattern that appears in ultrasound images due to the interference of 

scattered sound waves. It can be described by a statistical model: 

𝑆(𝑥, 𝑦) = ∑ 𝐴𝑖𝑐𝑜𝑠 (𝑘𝑖 ⋅ 𝑥 + 𝜙𝑖)𝑖 . 

Where: 𝐴𝑖 is the amplitude of the 𝑖 − 𝑡ℎ scatterer: 

 𝑘𝑖 is the wave vector of the 𝑖 − 𝑡ℎ scatterer; 

 𝜙𝑖 is the phase of the 𝑖 − 𝑡ℎ scatterer. 

7. Advanced techniques 

7.1. Harmonic imaging: 

Harmonic imaging enhances image quality by using the second harmonic of the transmitted 

ultrasound frequency. The received signal at the harmonic frequency 2𝑓0  improves contrast and 

resolution:  

𝑆ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐(𝑡) = 𝐴2 cos(2𝜔0𝑡 + 𝜙) 

Where: 

𝐴2 is the amplitude of the second harmonic. 

𝜔0 is the angular frequency of the fundamental wave. 

7.2. Elastography: 

Elastography measures tissue stiffness by analyzing the displacement of tissues under mechanical 

stress. The strain (𝜖) in the tissue is given by: 

𝜖 =
𝛥𝐿

𝐿
  

Where: 𝛥𝐿 is the change in length of the tissue;  

𝐿 is the original length of the tissue.  
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Module 237 : Advanced Biomedical Signal and Image Processing (Cours : 26H , TD : 10H , 

Activités pratiques : 10H ) 

The Advanced Biomedical Signal and Image Processing module will cover the following three 

main parts: 

Partie 1 : Introduction to Digital Signal and Image Processing 

 Signals and Biomedical Signal Processing 

 Fourier Analysis and Applications 

 Image Filtering, Enhancement, and Restoration 

 Edge Detection and Segmentation of Images 

 Wavelet Transform 

 Other Signal and Image Processing Methods 

 Clustering and Classification. 

Partie 2 : Processing of Biomedical Signals 

 Electric Activities of the Cell 

 Electrocardiogram 

 Electroencephalogram 

 Electromyogram 

 Other Biomedical Signals. 

Partie 3 : Processing of Biomedical Images 

 Principles of Computed Tomography 

 X-Ray Imaging and Computed Tomography 

 Magnetic Resonance Imaging 

 Ultrasound Imaging 

 Positron Emission Tomography 

 Other Biomedical Imaging Techniques. 

 


