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Section 1 :

Introduction to Digital Signal and Image Processing

Chapter 1:

Introduction to signals and systems
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Introduction

The frequencies of some common biomedical signals

ECG Electrocardiogram 0,05Hz-150Hz
EEG Electroencephalogram 0,1HZ-100Hz
Blood Pressure OHz-20Hz
Bioimpedance Signals 1Hz-1MHz
Respiration 0.1Hz-1Hz
EMG Electromyograph 10Hz-500Hz
Nerve action potentials 10Hz-10kHz
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Introduction
SOURCES OF BIOMEDICAL SIGNALS

» Bioelectric Signals: Generated by nerve and muscle cells, including action
potentials and electric field propagation. Examples include ECG
(electrocardiogram), EEG (electroencephalogram), EMG (electromyogram),
and GSR (galvanic skin response).

» Biochemical Signals: Derived from living tissues or laboratory-analyzed
samples, such as pO- (partial oxygen pressure), pCO: (partial carbon dioxide
pressure), ion concentrations, and glucose levels.

» Biomechanical Signals: Often requiring invasive measurements, these signals

Include motion, tension, displacement, blood pressure, and blood flow.
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Introduction
SOURCES OF BIOMEDICAL SIGNALS

» Biomagnetic Signals: Magnetic fields generated by the brain, heart, and
lungs.

» Bioacoustic Signals: Sounds produced by biological activities, including heart
sounds, respiratory sounds, and muscle contractions or joint movements.

» Bio-optical Signals: Optical properties of biological fluids or tissues, such as
fluoroscopic properties of amniotic fluid and cardiac output measurements

using dye dilution techniques.
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Introduction

BIOMEDICAL SIGNAL CLASSIFICATION

Classification of Signals:
(Biomedical signals are mainly continuous in nature)

» Continuous Signals:

O Defined over a continuous range of time or space.

O Represented as continuous variable functions.
» Discrete Signals:
O Defined at specific points in time or space.

O Represented as sequences of numbers.
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Introduction
BIOMEDICAL SIGNAL CLASSIFICATION

» Deterministic
Defined by mathematical functions or rules
o Periodic signals are deterministic (sums
of sinusoids) s(t)=s(t+nT) /
o Transient signals can be deterministic: O/\ 7N\ 7N\ .

signal characteristics change with time N4 N4

» Random
L Are described by statistical or distribution
properties
Stationary signals remain the same over
time
o Statistical
o Frequency spectra

N Deterministic Signal

N Random Signal

VARYA AN
Y.
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https://www.youtube.com/watch?v=gyec1X_b_oo&ab_channel=StudyTube

Introduction

BIOMEDICAL SIGNAL CLASSIFICATION

» Real biomedical signals are not necessarily deterministic
Unpredictable noise
Non-stationary

» Change in cardiac waveform over time

Qldentification of stationary segments of random signals is an
» Important part of signal processing and pattern analysis

» Physiological and time domain signals can often be decomposed into a
summation of sinusoidal component waveforms. Fourier analysis.

» The frequency and phase spectra contribute to the time domain behavior or
shape of the signal.

» Modification of a signal in the frequency domain will affect the time domain
behavior of the signal.
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Introduction

BIOMEDICAL SIGNAL PROCESSING

Biomedical Signal Processing: the application of signal processing methods
on biomedical signals

» involves the analysis of signals to provide useful information upon which
measures can make decisions

» 1s an a ‘operation’ designed for extracting, enhancing, storing and
transmitting useful information.

» Is especially useful in the critical care setting, where patient data must be
analyzed in real-time. Real-time monitoring can lead to better
management of chronic diseases, earlier detection of adverse events such
as heart attacks and strokes and earlier diagnosis of disease.
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Introduction

BIOMEDICAL SIGNAL PROCESSING

The four stages of biomedical signal processing

» Acquisition:
O Collection of raw biomedical signals from sensors or electrodes.
O Examples: ECG, EEG, EMG recordings.
» Preprocessing:
U Noise reduction, filtering, and artifact removal.
O Signal enhancement to improve quality for further analysis.
» Feature Extraction:
U Identifying relevant characteristics or patterns in the signal.
O Examples: Peak detection, frequency analysis, waveform parameters.
> Interpretation & Analysis:
O Applying algorithms and models for diagnosis or decision-making.
O Includes machine learning, statistical analysis, and medical
Interpretation.
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HISTORY

» Signal processing principles date back to 17th-century numerical analysis
techniques.

» Newton used finite-difference methods, and Gauss discovered the core idea
of the Fast Fourier Transform (FFT) in 1805, predating Fourier’s work on
harmonic series.

» Until the early 1950s, signal processing relied on analog systems. Digital
processing began with oil prospecting but was not real-time.

» The FFT was formally introduced by Cooley and Tukey in 1965.

» The rise of microprocessors enabled cost-effective digital signal processing,
and by the mid-1980s, advancements in IC technology led to high-speed
Digital Signal Processors (DSPs) optimized for discrete-time signal

processing.
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BASICS OF DSP (digital signal processing)
Signals and LTI-Systems (linear time-invariant):

> Generation of an output signal _I0PUt | 11 system | ooPut
In response to an input signal
. . Continuous
» Continuous and discrete systems }‘AU‘Q | System [ [Q'v‘
x(1) y(t)

Linear, Time invariant systems properties : F-:- Discrete | o | e oo

System

X|n] [n]

> additivity XN Y0 o o] —s yalnl 4 ven]
x2[n] —> y7[N]

»homogeneity x[n] —> y[n] = kx[n] — ky[n]

> shift invariance x[n] — y[n] = x[n+s] — y[n+s]
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BASICS OF DSP (digital signal processing)
Signals and LTI-Systems (linear time-invariant):

o

< ............... S ' Xo[mn] : : :
synthesis | :

xml [ A &
. decmnpcrsitio>
X;[n]
> Synthesis: in linear systems, signals can be
combined by scaling and addition +*
» Decomposition: the inverse operation/ x,[n]
e
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http://www.dspguide.com/

BASICS OF DSP (digital signal processing)
Fundamental concept of DSP

. > Any signal can be decomposed into a group of
X[n] pe— additive components x;

»Passing these components through a linear system
produces signals, y;

decomposition

» The synthesis of these output

< [n] | ] system > ] bo" signals produces the same signal as
when x [n] is passed through the
system

X)[n] peeseesennee ol Gusrem > Vi[0] pre—wesnenes Synihesis y[n] kﬁv
5:1[11] F——- — S}'Sifll.’l — }':[11] F-
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BASICS OF DSP DSP-Convolution

»combined two signals into a third one
x[n]

sema r
" i 1 i [ [l
' 1 '

A. ... LLQg
[ [l [ 0 [ P 1 ' [ [

[ ] i [ 0 i [ ]
= lltllll‘lllhil'll'ﬁll.?l:lll}tl

" 1 [ i " i B i [ [

[ [ [ i [ i 1 i [ [
= EEpEEEEEFEE = ®

»applies a linear system to a signal via it‘s impulse -
mear

response, which fully describes the system behavioi x(n] —> Sfl.'sf'te-]m | > y[n]
111

x[n] *h[n] = v[n]

Vil=xi1-hli] &> yi] = 2 hijIxiii]

j=0
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BASICS OF DSP DSP-Convolution

Application of a LTI:

»multiplication of the input samples %% AP VY S S

with the flipped impulse response | ! : : '
y | by bt bl el

»addition of the values gives result | gippea) [777]2  ipped) |oiviey

for the corresponding output sample Ak

Set to caleulate y[0] Set to caleulate y[3]
Note: Convolution in time domain = multiplication in frequency domain
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BASICS OF DSP DSP-Convolution

»many samples of the input signals contribute to one output sample

Delta Impulse
Function Response
NN fm! 181

1 - ........ L X . 1= 1+.,..,,
opererrres Ol —>f gigem > bl opE - guwes
B T 1A

210123456 2-101 23456

> the samples of the impulse response act as weighing coefficients

> feeding a delta function into a linear system gives the impulse response:
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BASICS OF DSP-Relationships between impulse ,
step and frequency response:

T ¥ T
| . Frequency response |

0.3 1 1
[n. Impulse response ] !

T W, W————.

2
=2
=
=
-0.1 -0.5
0 32 64 96 127 o 2.1 0.2 0.3 0.4 0.5
Sample number Frequency
l 20 Log( )
Integrate
1-5 I 40 I I I T
| b. Step response | I d. Freqguency response (in dB) |
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BASICS OF DSP-Convolution and FIR Filters

The shape of the impulse response determines phase- and frequency response
of an LTI system. The impulse response is also called “filter kernel®.

»Finite Impulse response filters can be implemented by a single convolution of
an input signal with the filter kernel

»Several positive values in the impulse response give an averaging (low-pass)
filter

» Subtracting a low-pass filter kernel from the delta function gives a high pass
filter kernel

» A symmetrical impulse response gives a linear phase response
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BASICS OF DSP-Convolution and FIR Filters

» Example High and Lowpass Filter-Kernels:

Low-pass Filter
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https://www.youtube.com/watch?v=drzdjrQ-dMw&ab_channel=WirelessFuture

Dirac delta and impulse response
Impulse response

We often analyze a physical system by applying a short pulse as input

and observing its response.

This response is known as the impulse response, which helps us

understand how the system behaves with any given input.
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Impulse response

To define a pulse, the simplest example is a rectangular pulse, which is

mathematically expressed as follows:

00 | oS 0 15 20
20 | I I ]

0 if t < a, :

pe(t) =M if a<t<b, : f
0 if b<it. 5 F E

= M (u(t — a) — u(t — b)) :

u(t) is the unit step function. :
05 | -

0.0 : | | 1 |

0 Y T T E.UI I

Omar ELOUTASSI  o.eloutassi@umi.ac.ma 23

2.0

1.5

1.0

0.5

1 0.0



Delta function

» The Dirac delta function is not a conventional function

» It is often referred to as a generalized function

» The key idea behind the delta function is to define a

function 6 (t) that satisfies the following property for any
continuous function f(t) / 5(t)f(t) dt = f(0)

» Consequently we can accept 6(t) as an object that is

possible to integrate

» To shift §(t) to another point, for example §(t — a) In

continuous function f(t)

[ o asw i = i

Omar ELOUTASSI o.eloutassi@umi.ac.ma 24



Feeding a Delta function into a linear system

» When a delta function §(t) is applied as an input to a linear
time-invariant (LTI) system

» The system's output is called the impulse response, denoted as
h(t)

» The impulse response characterizes the system completely and

can be used to determine its response to any input
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Feeding a Delta function into a linear system
Example: First-Order RC Circuit (Low-Pass Filter)

Consider a simple RC circuit (resistor R and capacitor C) as an LTI system.

The governing equation for the voltage across the capacitor is:

dVe(t)
dt

» we apply an impulse function §(t) as the input V;,,(t), the system’s response is
the impulse response:

RC + V() = Vin(t)

1 /
h(t) = RE t/ Rcu(t)

» where u(t) is the unit étep function ensuring causality.
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Feeding a Delta function into a linear system

Interpretation

» The impulse response h(t) describes how the system reacts to an instantaneous
inputatt = 0.

» For a general input signal x(t), the system’s output can be computed using
convolution:

y(£) = 2(t) % h(t) = / " e(Dh(t — T)dr

=D

» This example illustrates how feeding a delta function into a linear system gives
the impulse response, which fully characterizes the system's behavior.

Watch this videot
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https://www.youtube.com/watch?v=SxNVcCVj-3c&ab_channel=Dr.TreforBazett
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