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Section 1 :

Introduction to Digital Signal and Image Processing

Chapter 1: 

Introduction to signals and systems
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Introduction

A biomedical signal is a signal 

derived from a biological system 

(human or animal) or generated by a 

physiological process.

Nearly every part of the body 

produces electrical signals, which carry 

important diagnostic information. 

These signals serve as carriers of 

both relevant and irrelevant data
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BIOSIGNAL FREQUENCY

ECG Electrocardiogram 0,05Hz-150Hz

EEG Electroencephalogram 0,1HZ-100Hz

Blood Pressure 0Hz-20Hz

Bioimpedance Signals 1Hz-1MHz

Respiration 0.1Hz-1Hz

EMG Electromyograph 10Hz-500Hz

Nerve action potentials 10Hz-10kHz

Introduction

The frequencies of some common biomedical signals
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Introduction

SOURCES OF BIOMEDICAL SIGNALS

 Bioelectric Signals: Generated by nerve and muscle cells, including action 

potentials and electric field propagation. Examples include ECG 

(electrocardiogram), EEG (electroencephalogram), EMG (electromyogram), 

and GSR (galvanic skin response).

 Biochemical Signals: Derived from living tissues or laboratory-analyzed 

samples, such as pO₂ (partial oxygen pressure), pCO₂ (partial carbon dioxide 

pressure), ion concentrations, and glucose levels.

 Biomechanical Signals: Often requiring invasive measurements, these signals 

include motion, tension, displacement, blood pressure, and blood flow.
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Introduction

SOURCES OF BIOMEDICAL SIGNALS

 Biomagnetic Signals: Magnetic fields generated by the brain, heart, and 

lungs.

 Bioacoustic Signals: Sounds produced by biological activities, including heart 

sounds, respiratory sounds, and muscle contractions or joint movements.

 Bio-optical Signals: Optical properties of biological fluids or tissues, such as 

fluoroscopic properties of amniotic fluid and cardiac output measurements 

using dye dilution techniques.
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Introduction

BIOMEDICAL SIGNAL  CLASSIFICATION

Classification of Signals:

(Biomedical signals are mainly continuous in nature)

 Continuous Signals:

 Defined over a continuous range of time or space.

 Represented as continuous variable functions.

 Discrete Signals:

 Defined at specific points in time or space.

 Represented as sequences of numbers.
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Introduction

BIOMEDICAL SIGNAL CLASSIFICATION

 Deterministic

Defined by mathematical functions or rules

oPeriodic signals are deterministic (sums 

of sinusoids) s(t)=s(t+nT)

oTransient signals can be deterministic: 

signal characteristics change with time

 Random

Are described by statistical or distribution 

properties

Stationary signals remain the same over 

time

o Statistical

o Frequency spectra
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Introduction

 Real biomedical signals are not necessarily deterministic

Unpredictable noise

Non-stationary

 Change in cardiac waveform over time

Identification of stationary segments of random signals is an

 important part of signal processing and pattern analysis

 Physiological and time domain signals can often be decomposed into a 

summation of sinusoidal component waveforms. Fourier analysis.

 The frequency and phase spectra contribute to the time domain behavior or 

shape of the signal.

 Modification of a signal in the frequency domain will affect the time domain 

behavior of the signal.

BIOMEDICAL SIGNAL CLASSIFICATION
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Introduction

BIOMEDICAL SIGNAL PROCESSING

Biomedical Signal Processing: the application of signal processing methods 

on biomedical signals

 involves the analysis of signals to provide useful information upon which 

measures can make decisions

 is an a ‘operation’ designed for extracting, enhancing, storing and 

transmitting useful information.

 is especially useful in the critical care setting, where patient data must be 

analyzed in real-time. Real-time monitoring can lead to better 

management of chronic diseases, earlier detection of adverse events such 

as heart attacks and strokes and earlier diagnosis of disease.
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Introduction

The four stages of biomedical signal processing

BIOMEDICAL SIGNAL PROCESSING

 Acquisition:

 Collection of raw biomedical signals from sensors or electrodes.

 Examples: ECG, EEG, EMG recordings.

 Preprocessing:

 Noise reduction, filtering, and artifact removal.

 Signal enhancement to improve quality for further analysis.

 Feature Extraction:

 Identifying relevant characteristics or patterns in the signal.

 Examples: Peak detection, frequency analysis, waveform parameters.

 Interpretation & Analysis:

 Applying algorithms and models for diagnosis or decision-making.

 Includes machine learning, statistical analysis, and medical 

interpretation.
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HISTORY

 Signal processing principles date back to 17th-century numerical analysis 

techniques. 

 Newton used finite-difference methods, and Gauss discovered the core idea 

of the Fast Fourier Transform (FFT) in 1805, predating Fourier’s work on 

harmonic series.

 Until the early 1950s, signal processing relied on analog systems. Digital 

processing began with oil prospecting but was not real-time. 

 The FFT was formally introduced by Cooley and Tukey in 1965. 

 The rise of microprocessors enabled cost-effective digital signal processing, 

and by the mid-1980s, advancements in IC technology led to high-speed 

Digital Signal Processors (DSPs) optimized for discrete-time signal 

processing.
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BASICS OF DSP (digital signal processing)

Signals and LTI-Systems (linear time-invariant):

Linear, Time invariant systems properties :

 additivity

 shift invariance

y1[n]

y2[n]
+ y1[n] + y2[n]

x[n] y[n] ky[n]kx[n]homogeneity

x2[n]

x1[n]

x[n] y[n] x[n+s] y[n+s]

 Generation of an output signal

in response to an input signal

 Continuous and discrete systems

x2[n]x1[n]
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BASICS OF DSP (digital signal processing)

Signals and LTI-Systems (linear time-invariant):

Synthesis: in linear systems, signals can be 

combined by scaling and addition

Decomposition: the inverse operation/
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BASICS OF DSP (digital signal processing)

Fundamental concept of DSP

The synthesis of these output 

signals produces the same signal as 

when x [n] is passed through the 

system
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BASICS OF DSP DSP-Convolution
combined two signals into a third one

applies a linear system to a signal via it‘s impulse 

response, which fully describes the system behavior

y[i ] = x[i ] * h[i ] y[i ]   =    h[j ]x[i-j ]

j 0
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BASICS OF DSP DSP-Convolution

Application of a LTI:

multiplication of the input samples 

with the flipped impulse response

addition of the values gives result 

for the corresponding output sample

Note: Convolution in time domain = multiplication in frequency domain
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BASICS OF DSP DSP-Convolution

many samples of the input signals contribute to one output sample

the samples of the impulse response act as weighing coefficients

feeding a delta function into a linear system gives the impulse response:
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BASICS OF DSP-Relationships between impulse , 

step and frequency response:
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The shape of the impulse response determines phase- and frequency response 

of an LTI system. The impulse response is also called “filter kernel“.

Finite Impulse response filters can be implemented by a single convolution of 

an input signal with the filter kernel

Several positive values in the impulse response give an averaging (low-pass) 

filter

Subtracting a low-pass filter kernel from the delta function gives a high pass 

filter kernel

A symmetrical impulse response gives a linear phase response

BASICS OF DSP-Convolution and FIR Filters
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BASICS OF DSP-Convolution and FIR Filters

 Example High and Lowpass Filter-Kernels:

Watch this video
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Dirac delta and impulse response

Impulse response

We often analyze a physical system by applying a short pulse as input 

and observing its response. 

This response is known as the impulse response, which helps us 

understand how the system behaves with any given input. 
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Impulse response

To define a pulse, the simplest example is a rectangular pulse, which is 

mathematically expressed as follows:
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Delta function
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Feeding a Delta function into a linear system
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Feeding a Delta function into a linear system

Example: First-Order RC Circuit (Low-Pass Filter)

Consider a simple RC circuit (resistor R and capacitor C) as an LTI system. 

The governing equation for the voltage across the capacitor is:
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Feeding a Delta function into a linear system

Interpretation

Watch this videot
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