

Advanced biomedical signal and image processing

Master: Plasturgy & Biomedical Engineering

2025-2026

Faculté de Science Meknes

Professor Omar ELOUTASSI

O. ELOUTASSI: o.eloutassi@umi.ac.ma

Section 1 :

Introduction to Digital Signal and Image Processing

Chapter 2:

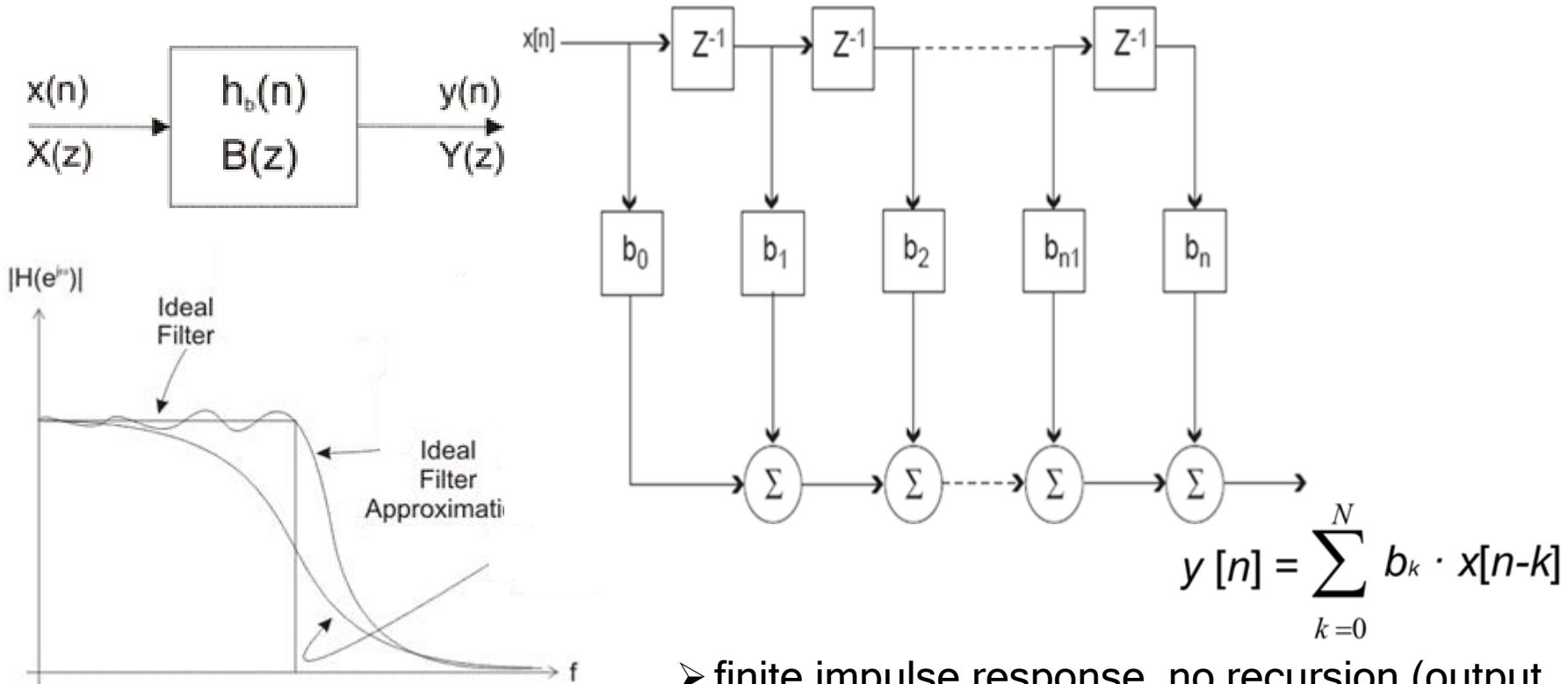
Chapter 2: Fourier analysis of continuous-time signals

Filters

Other signal processing techniques

Wavelet transformation

Digital Filters – FIR filters



Ideal low-pass filter approximation

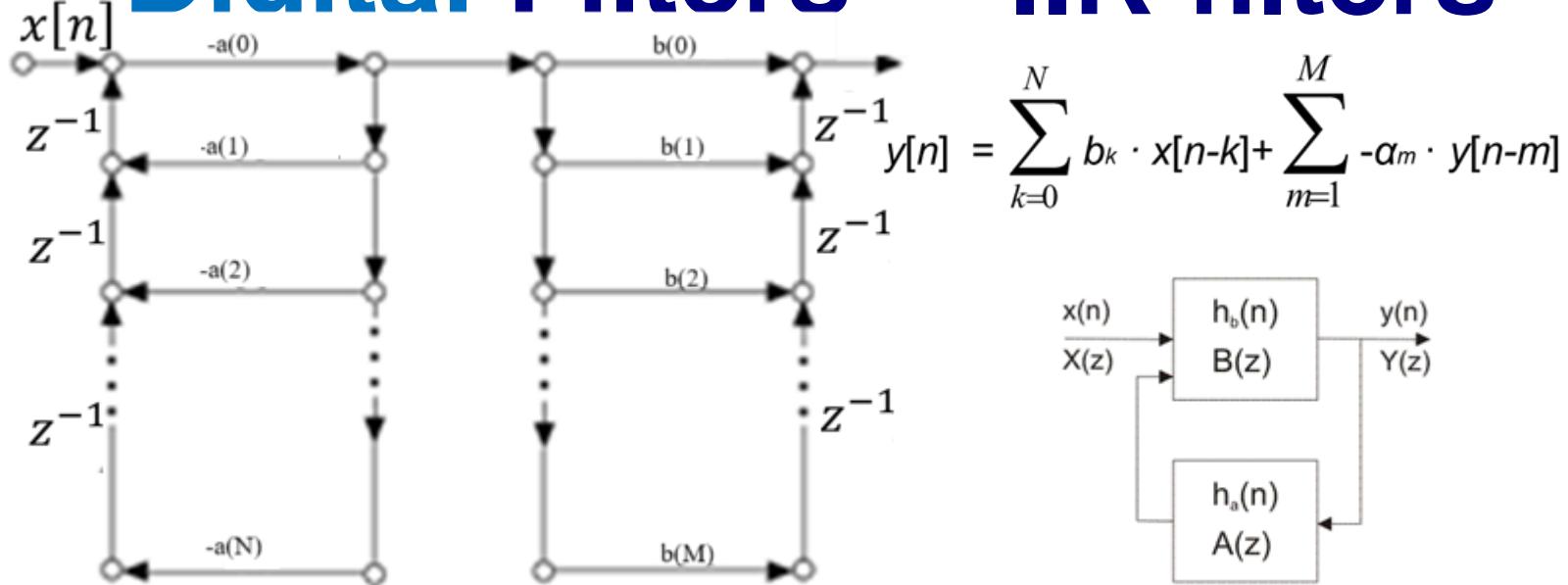
- finite impulse response, no recursion (output does not depend on the input)
- described by multiplication coefficients
- less sufficient (need higher order)

Digital Filters – FIR filters

Finite Impulse Response (FIR) filters are widely used in biosignal processing due to several key advantages

- Linear Phase Response that is critical for medical applications like ECG (Electrocardiogram), EEG (Electroencephalogram), and EMG (Electromyogram).
- FIR filters are integrally stable. This stability is crucial for long-term signal monitoring and real-time applications.
- Less oscillations or artifacts in biosignals, which reduce misinterpretation in medical diagnoses.
- Precise control over the frequency response, making them suitable for applications such as: noise removal
- Easy to implement in real-time digital signal processing (DSP) applications, including portable and embedded biomedical devices.
- Suitability for adaptive filtering

Digital Filters – IIR filters

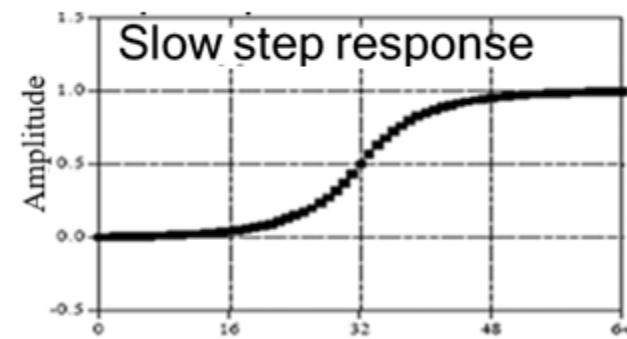
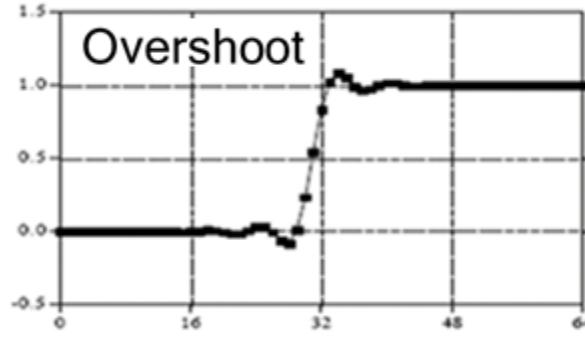
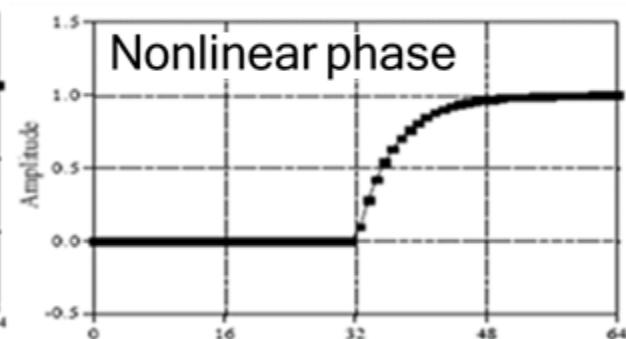


- infinite impulse response, truncated at a certain precision
- use previously calculated values from the output (recursion)
- described by recursion coefficients
- more efficient
- can be unstable

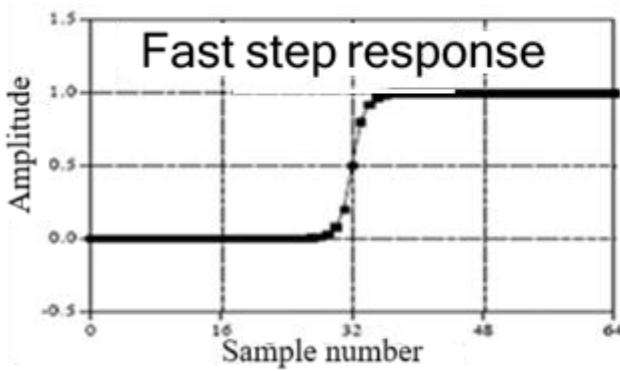
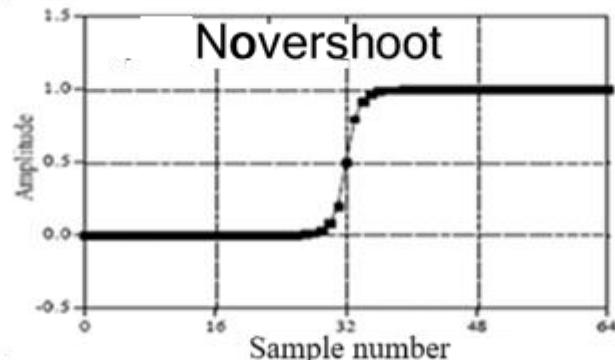
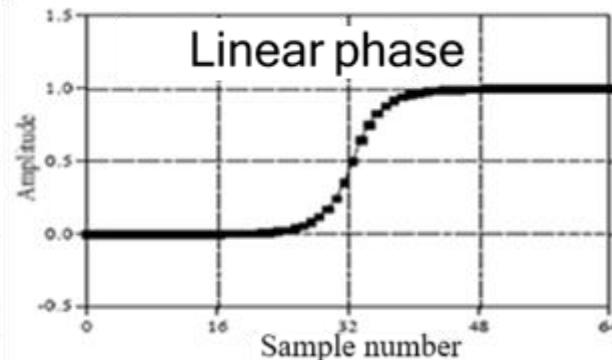
Digital Filter Characteristics

Performance in Time Domain

Poor



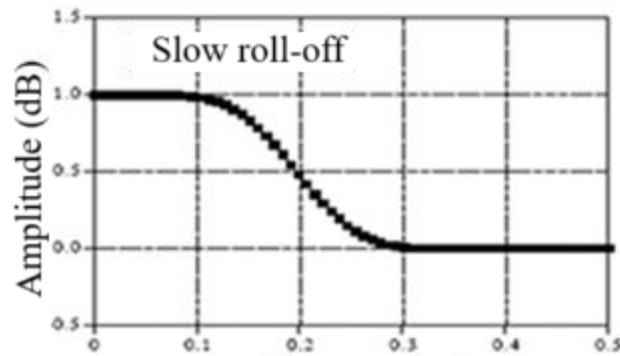
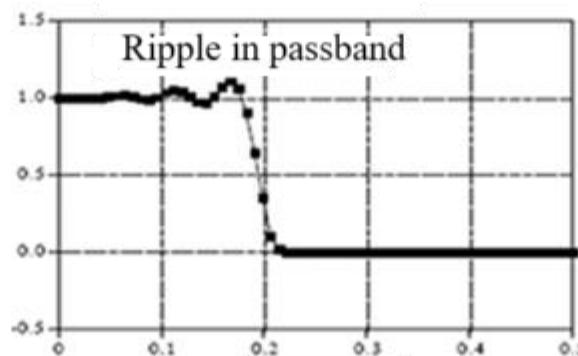
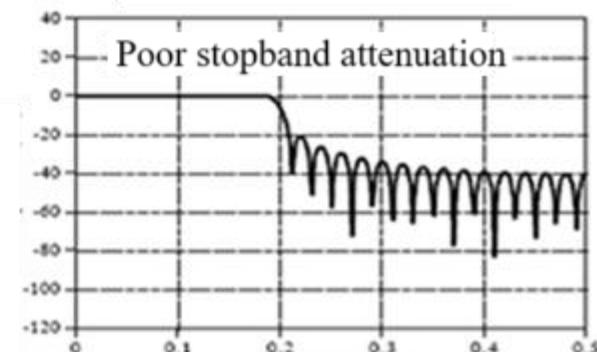
Good



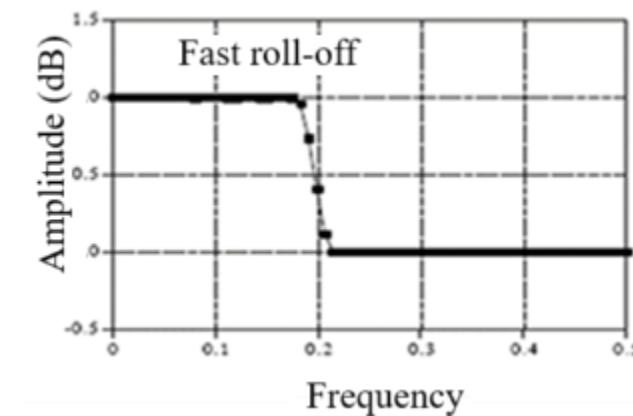
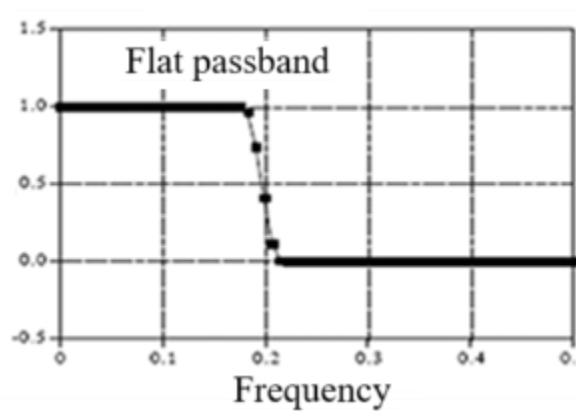
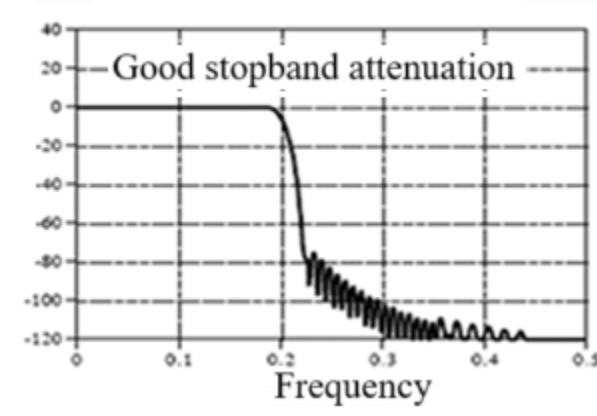
Digital Filter Characteristics

Performance in Frequency Domain

Poor

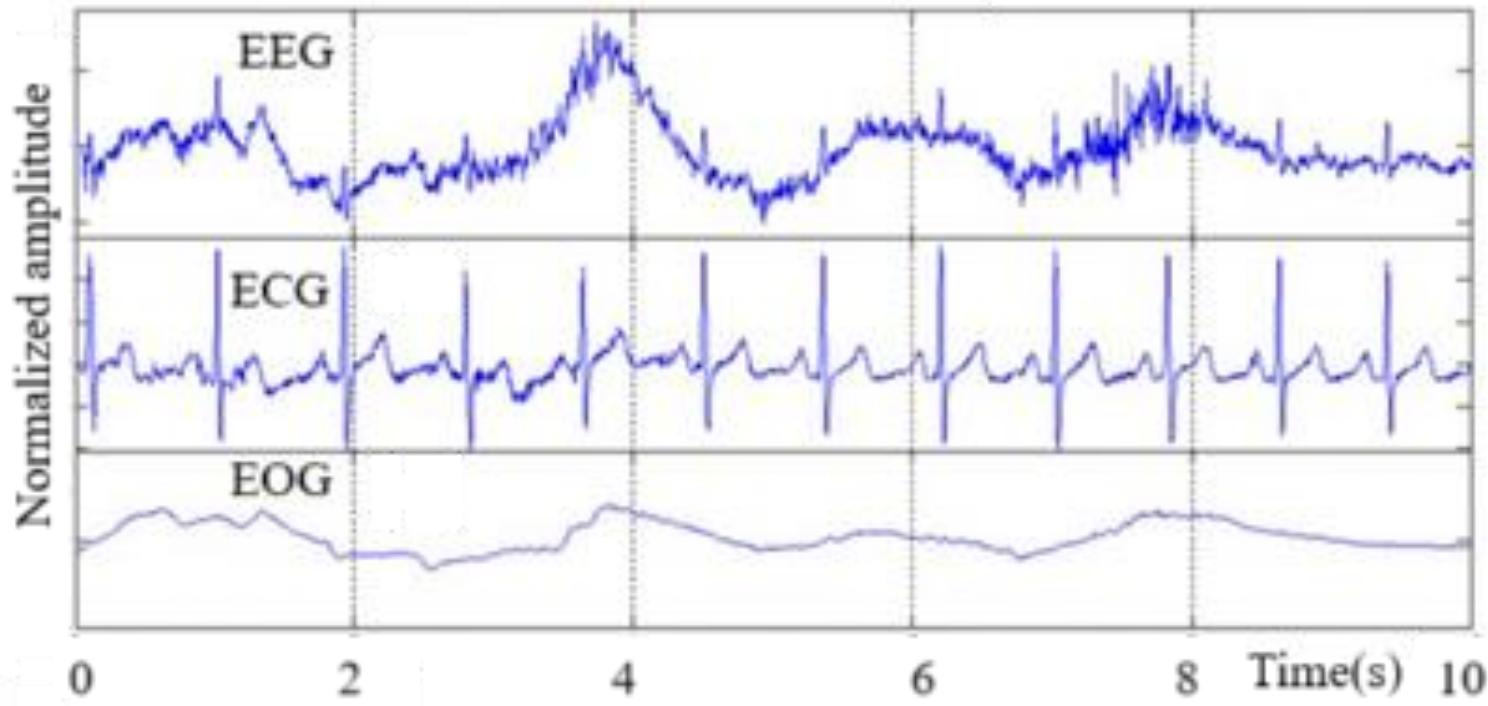


Good



Digital Filter Characteristics-Examples

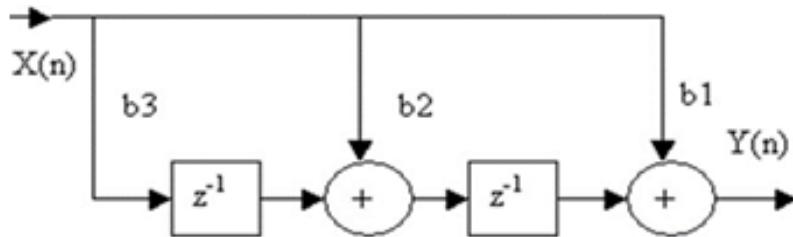
Examples of three biological signals with their frequency spectrum



Digital FIR Filters

example: Finite Impulse Response Notch Filter

System function:



Transfer function:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{(z - z_1) \cdot (z - z_2)}{z^2}$$
$$= \frac{z^2 - z \cdot z_2 - z_1 \cdot z + z_1 \cdot z_2}{z^2}$$

Filter Coefficients:

$$b_1 = 1$$

$$b_2 = -2 \cdot \cos(\omega_0)$$

$$b_3 = 1$$

Scaling coefficient

$$G = \frac{1}{(2 - 2 \cos(\omega_0))}$$

$$= 1 - z^{-1} \cdot (z_2 + z_1) + z^{-2} \cdot z_1 \cdot z_2$$

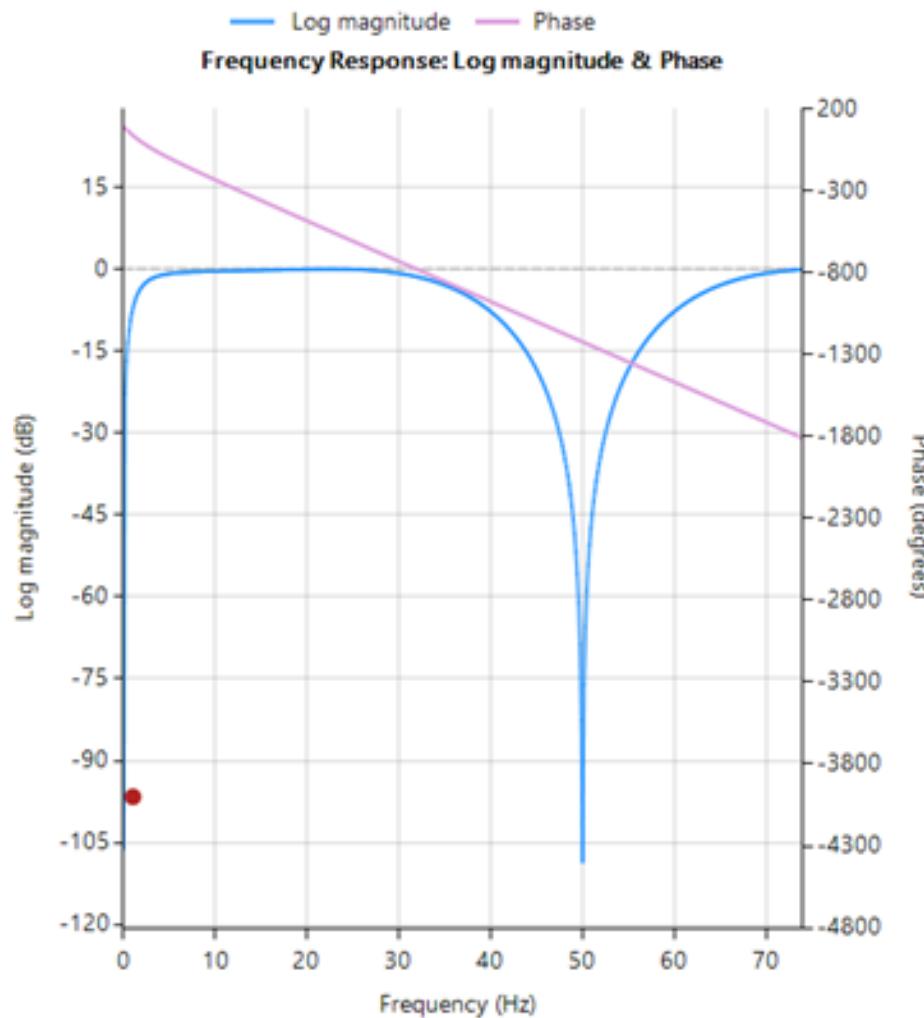
$$z_1 = \cos(\omega_0) + j \cdot \sin(\omega_0)$$

$$z_2 = \cos(\omega_0) - j \cdot \sin(\omega_0)$$

$$\begin{aligned} H(z) &= 1 + z^{-1}(-2(\cos(\omega_0))) + z^{-2} \\ &= b_1 + b_2 z^{-1} + b_3 z^{-2} \end{aligned}$$

Digital FIR Filters

60 Hz notch filter characteristics



Design Digital FIR Filters

60 Hz notch filter example

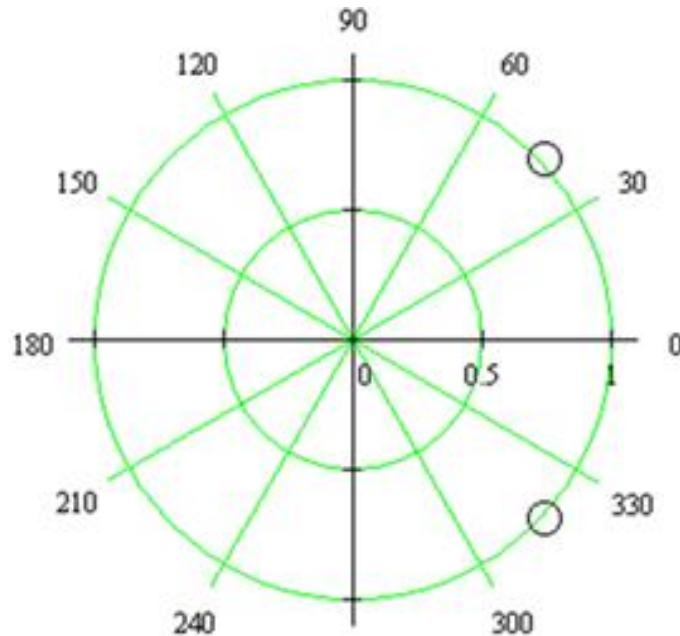
Frequencies that define complex zeros:

$f_0 = 60\text{Hz}$ - power supply frequency

$f_s = 500\text{Hz}$ - sampling rate

$$\omega_0 = 2 \cdot \pi \cdot \frac{f_0}{f_s}$$

we get $\omega_0 = 0.754$



Positions of complex zeros:

$$z_1 = \cos(\omega_0) + j \cdot \sin(\omega_0)$$

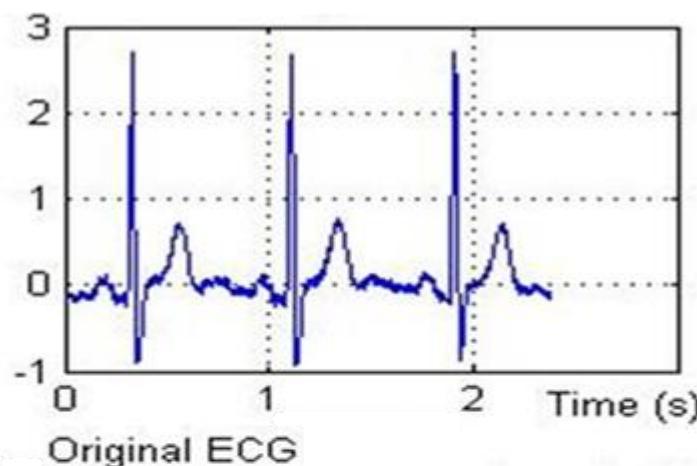
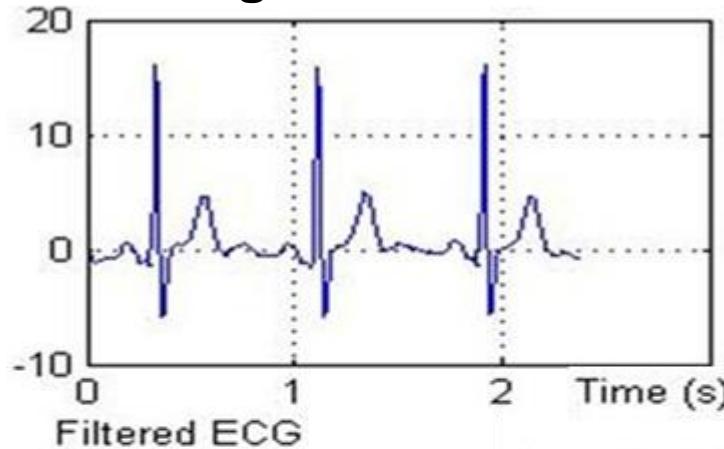
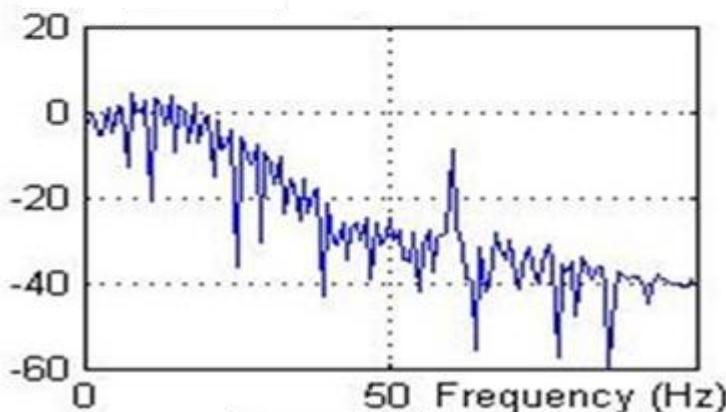
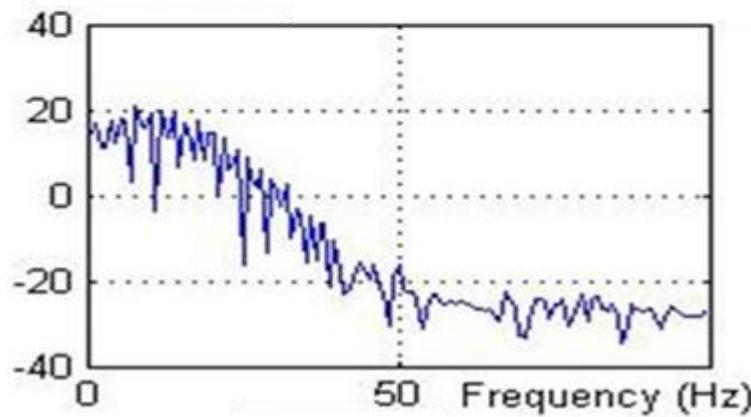
$$\arg[Z_1]. \arg[Z_2]$$

$$z_2 = \cos(\omega_0) - j \cdot \sin(\omega_0)$$

Design digital FIR Filters

60 Hz notch filter - implementation in Matlab

60Hz notch applied to ECG signal



Other Signal processing techniques correlation

- mathematical operation that is very similar to convolution
- uses two signals to produce a third signal. This third signal is called the **cross-correlation** of the two input signals (i.e. finds similar signals in a signal)

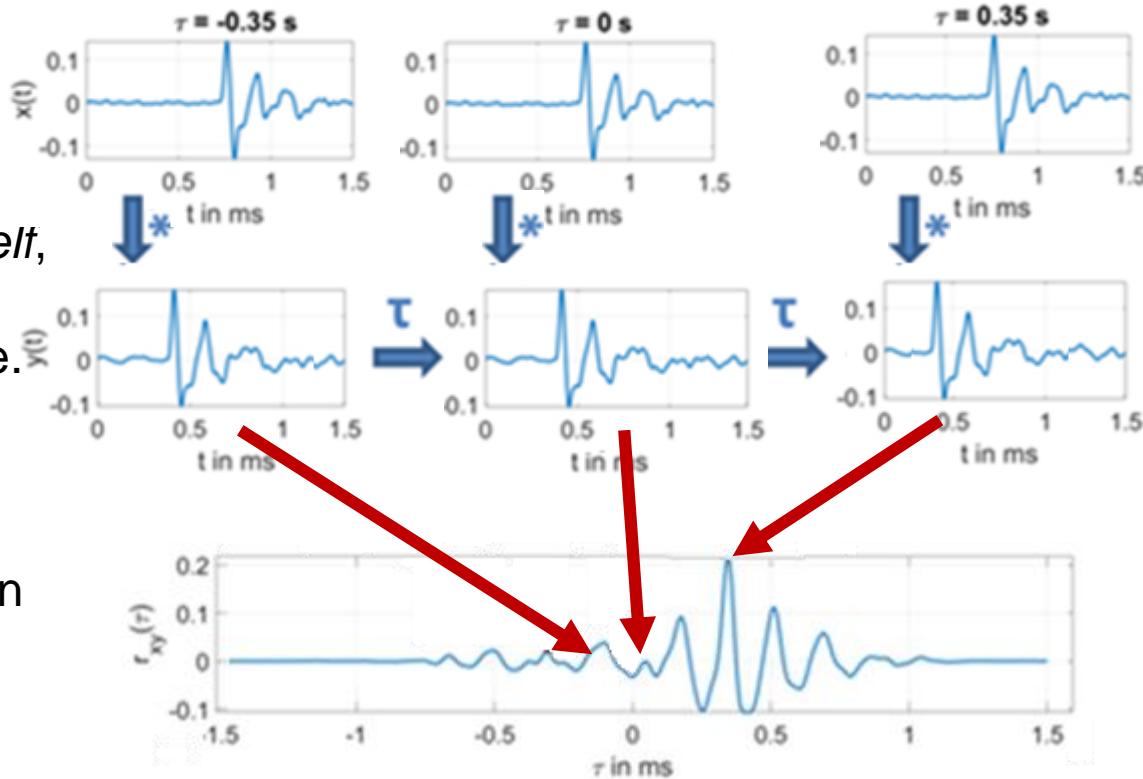
- if a signal is correlated with *itself*, the resulting signal is instead called the **auto-correlation** (i.e. finds periodic parts of a signal)

- Correlation is the *optimal* technique for detecting a known waveform in random noise.

[Watch this video](#)

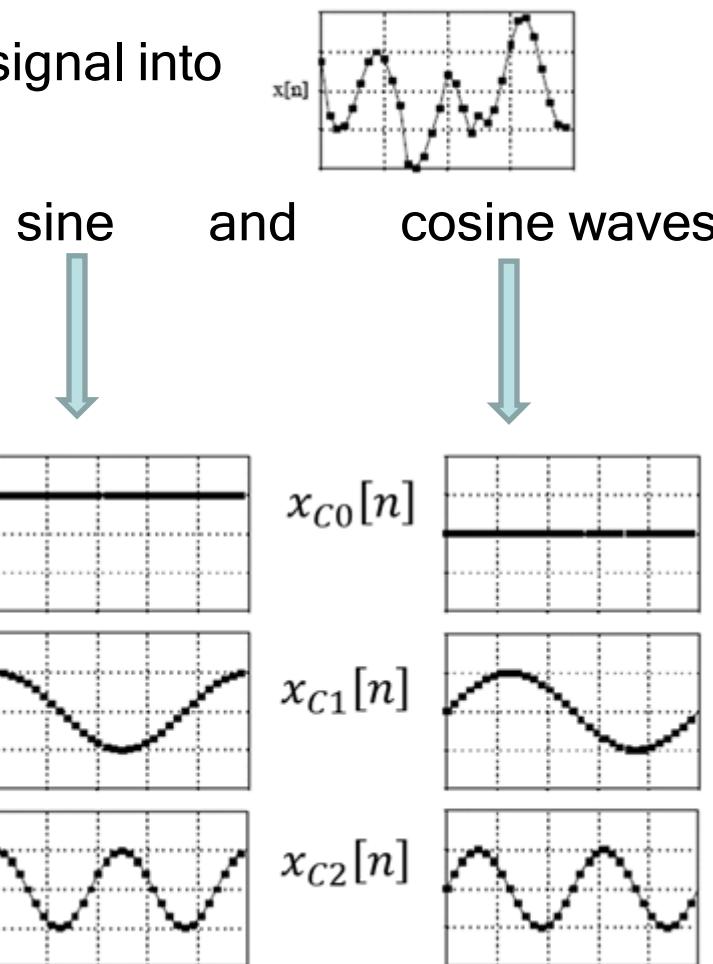
$$R_{xx} (\tau) = \int_{-\infty}^{\infty} x (t) x^* (t - \tau) dt$$

$$R_{xx} [m] = \sum_{n=-\infty}^{\infty} x [n] x^* [n - m]$$



Other signal processing techniques discrete Fourier transform (DFT)

- Decomposition of a signal into



Other signal processing techniques discrete Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

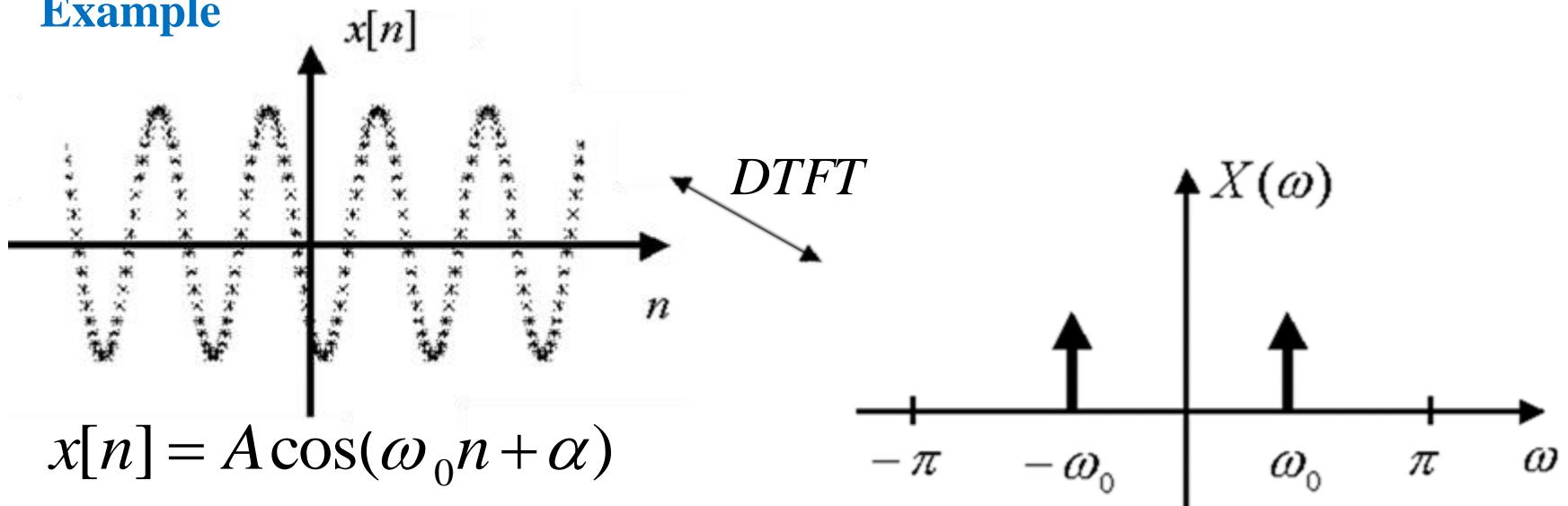
For a discrete time sequence we define two classes of Fourier Transforms:

- DTFT (Discrete Time FT) for sequences having **infinite** duration,
- DFT (Discrete FT) for sequences having **finite** duration.

Other signal processing techniques discrete Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Example



$$X(\omega) = A\pi e^{j\alpha} \delta(\omega - \omega_0) + A\pi e^{-j\alpha} \delta(\omega + \omega_0)$$

Other signal processing techniques discrete Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept *Discrete Fourier Transform (DFT)*

Consider the finite discrete sequence

$$x = [x(0), x(1), \dots, x(N-1)]$$

its Discrete Fourier Transform (DFT) is a finite sequence

$$X = DFT(x) = [X(0), X(1), \dots, X(N-1)]$$

where

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{kn} \quad w_N = e^{-j2\pi/N}$$

Other signal processing techniques discrete Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Inverse Discrete Fourier Transform (IDFT)

Consider the frequency series

$$X = [X(0), X(1), \dots, X(N-1)]$$

its Inverse Discrete Fourier Transform (IDFT) is a finite sequence

$$x = IDFT(X) = [x(0), x(1), \dots, x(N-1)]$$

where

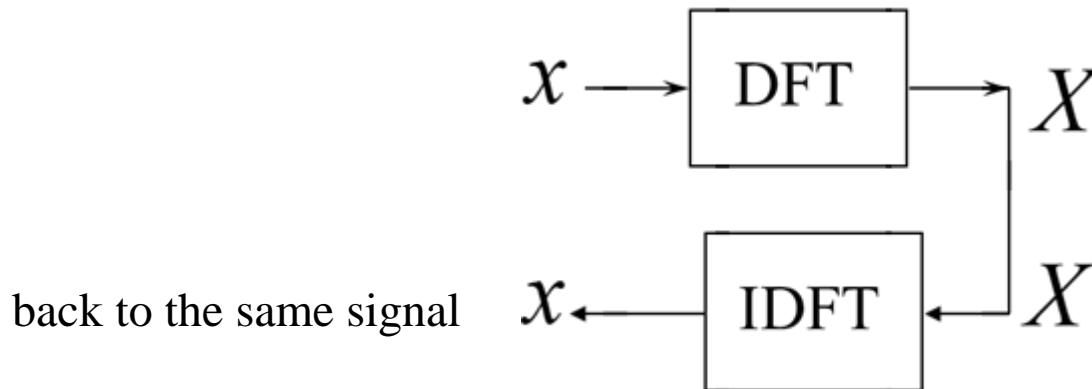
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{-kn}$$
$$w_N = e^{-j2\pi/N}$$

Other signal processing techniques discrete Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Note that:

The DFT and the IDFT form a transform pair.



The DFT is a numerical algorithm, and it can be computed by a digital computer.

Other signal processing techniques discrete

Fourier transform (DFT)

DFT as vector operation

Let consider a discrete sequence as a vector

$$x = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix},$$

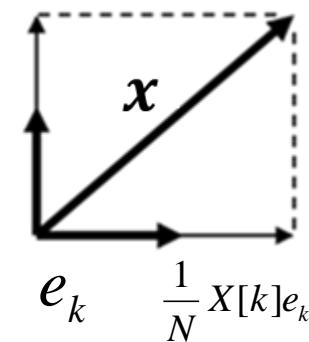
$$e_k = \begin{bmatrix} 1 \\ w_N^{-k} \\ \vdots \\ w_N^{-k(N-1)} \end{bmatrix},$$

Let consider as well the vector base: $e_k =$

$$x = \frac{1}{N} (X[0]e_0 + X[1]e_1 + \dots + X[N-1]e_{N-1})$$

DFT of this discrete sequence is also a vector

$$X = DFT\{x\} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix} \quad X[k] = e_k^{*T} x$$



Other signal processing techniques discrete Fourier transform (DFT)

DFT as vector operation

$$X = DFT\{x\} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & w_N & \cdots & w_N^{N-1} \\ \vdots & & \ddots & \\ 1 & w_N^{N-1} & & w_N^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}$$

$\underbrace{w_N}_{W_N}$

$$\Rightarrow X = W_N x$$
$$x = \underbrace{\frac{1}{N} W_N^{*T} X}_{W_N^{-1}}$$

Other signal processing techniques discrete Fourier transform (DFT)

Periodicity

IDFT expression, shows that the sequence $x(n)$ is interpreted as one period sequence $x_p(n)$

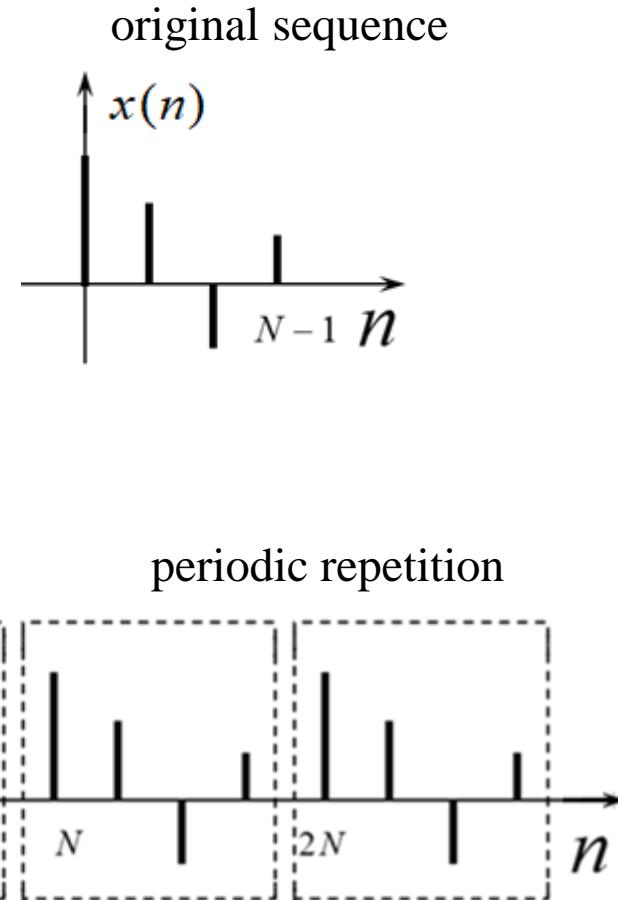
$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{-kn}$$

We can multiply by w_N^{-kN} since $w_N^{-kN} = e^{-j2\pi kN/N} = e^{-j2\pi} = 1$

$$x_p(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{-kn} w_N^{-kN}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{-k(n+N)}$$

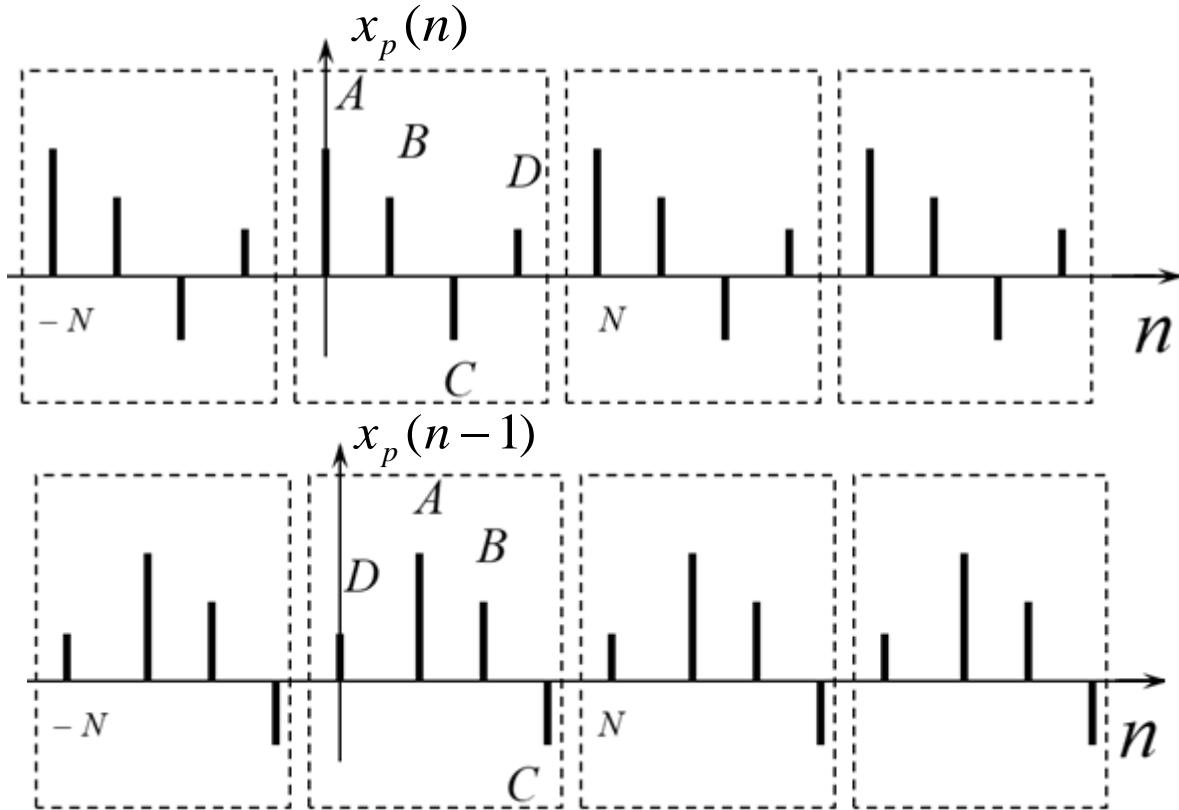
$$= x_p(n+N)$$



Other signal processing techniques discrete Fourier transform (DFT)

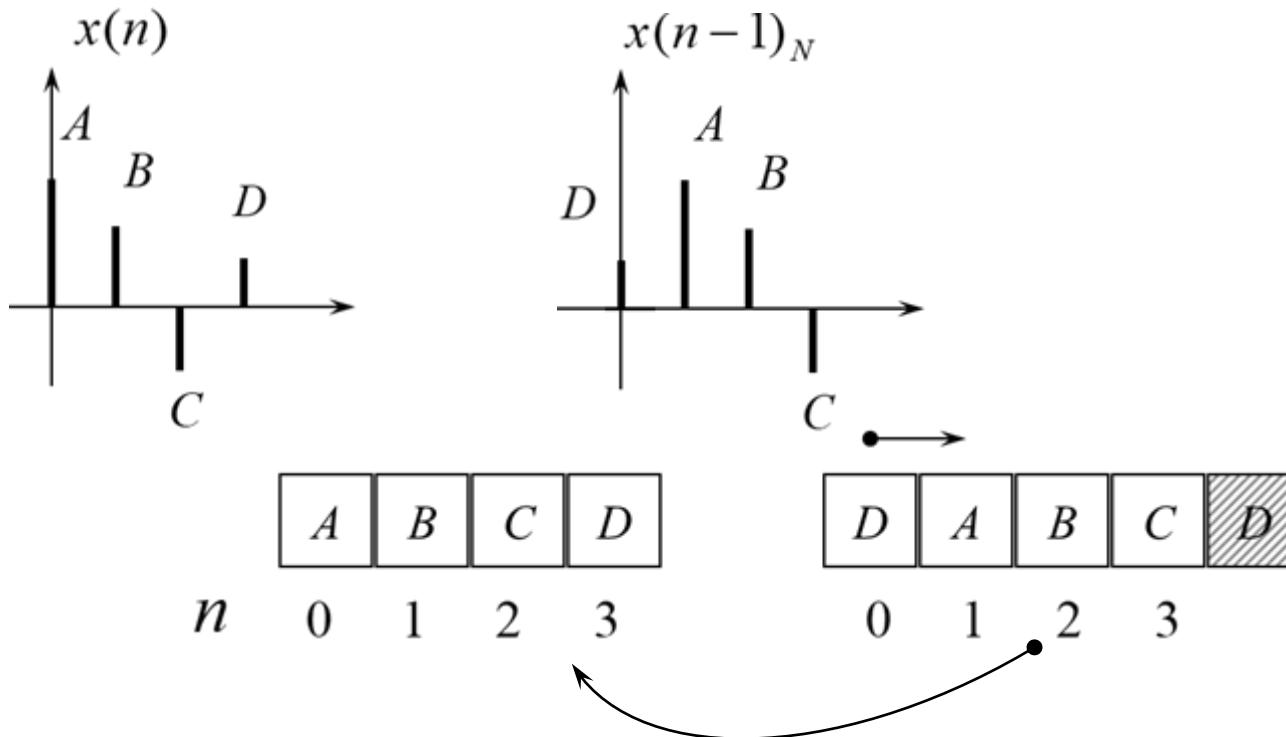
Time shift of the sequence.

For example see what we mean with $x(n - 1)$. Start with the periodic extension $x_p(n)$



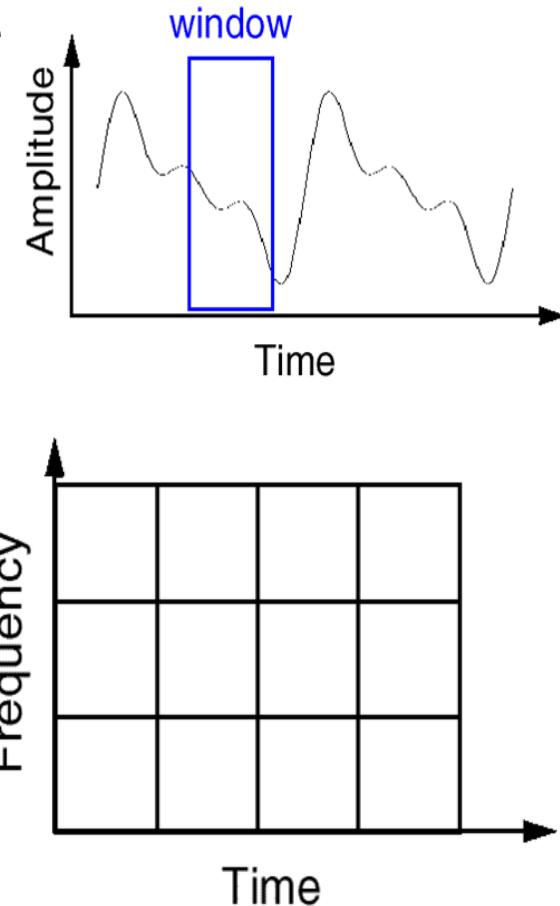
Other signal processing techniques discrete Fourier transform (DFT)

Circular shift of the sequence at time period



Short time Fourier Analysis

- In order to analyze small section of a signal, Denis Gabor (1946), developed a technique, based on the FT and using *windowing* : STFT (Short time Fourier transform)
- A compromise between time-based and frequency-based views of a signal.
- both time and frequency are represented in limited precision.
- The precision is determined by the size of the window.
- Once you choose a particular size for the time window - it will be the same for all frequencies.
- Many signals require a more flexible approach
- We can vary the window size to determine more accurately either time or frequency.

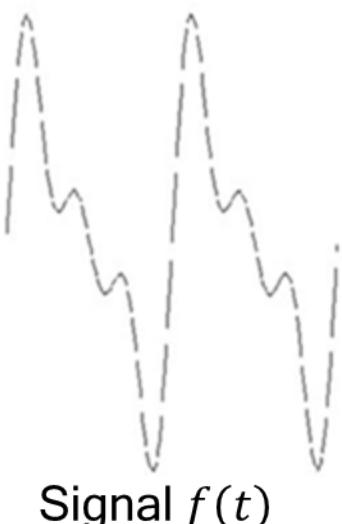


The Continuous Wavelet Transform (CWT)

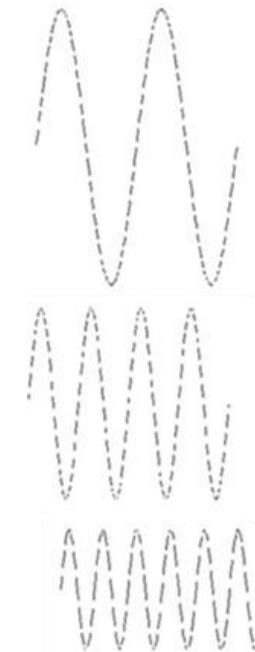
- The Fourier transform for a continuous data or a signal given by the function $f(t)$ is:

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

- is composed of multiple sinusoids with different frequencies and amplitudes



Fourier transform $F(\omega)$



Signal $F(\omega)$

Wavelet Transformation- Equations

- Wavelet Transform

$$\gamma(s, \tau) = \int f(t) \psi_{s, \tau}^*(t) dt$$

- Inverse Wavelet Transform

$$f(t) = \iint \gamma(s, \tau) \psi_{s, \tau}(t) d\tau ds$$

- Mother wavelet

$$\psi_{s, \tau}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t - \tau}{s}\right)$$

Wavelet Transformation- Scaling

Properties

$$\Psi_{s,t}(t) = \frac{1}{\sqrt{s}} \Psi\left(\frac{t-\tau}{s}\right)$$

Diagram illustrating the components of the wavelet transformation formula:

- wavelet with scale, s and time, τ** : Points to the entire expression $\Psi_{s,t}(t)$.
- normalization**: Points to the factor $\frac{1}{\sqrt{s}}$.
- shift in time**: Points to the term $\frac{t-\tau}{s}$.
- change in scale: big s means long wavelength**: Points to the term $\frac{t-\tau}{s}$.
- Mother wavelet**: Points to the term Ψ .

Wavelet transform

Properties

$$\gamma(s, \tau) = \int f(t) \psi_{s, \tau}^*(t) dt$$

time-series

coefficient of wavelet with scale, s and time, τ

complex conjugate of wavelet with scale, s and time, τ

conjugate from now on, assuming that we're using real wavelets

Inverse Wavelet Transform

$$f(t) = \iint \gamma(s, \tau) \psi_{s, \tau}(t) d\tau ds$$

time-series

coefficients of wavelets

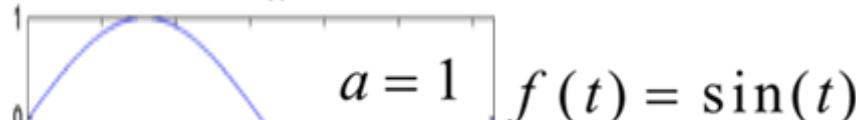
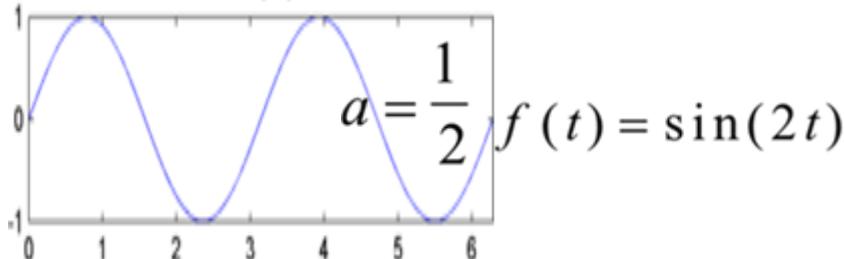
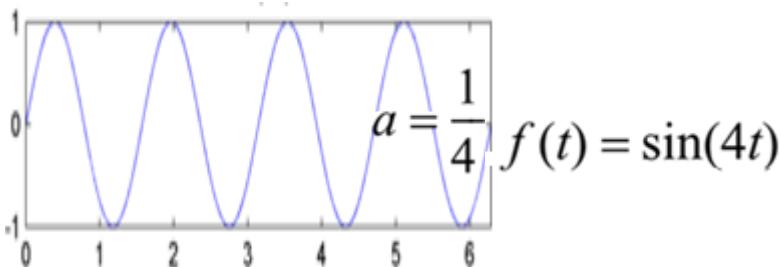
wavelet with scale, s and time, τ

[Watch this video](#)

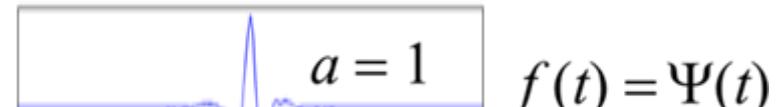
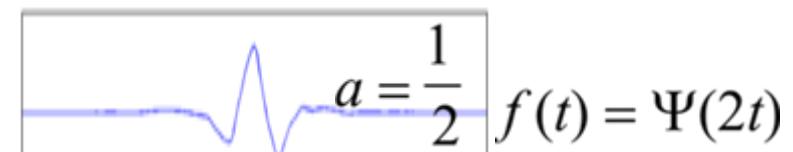
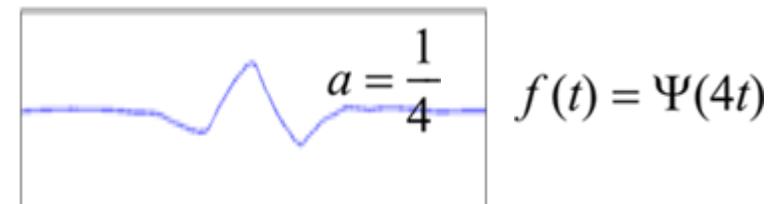
Wavelet Transformation- Scaling

- Wavelet analysis produces a time-scale view of the signal.
- *Scaling* means stretching or compressing of the signal.

Scale factor (a) for sine waves:



Scale factor (a) with wavelets:



END