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Section 1:

Introduction to Digital Signal and Image Processing

Chapter 2:

Chapter 2: Fourier analysis of continuous-time signals
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Filters
Other signal processing techniques

Wavelet transformation
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Digital Filters — FIR filters

X[n] y 7 *2-1 --------- y 21
x(n) h,(n) y(n)
= L
X(z) B(z) Y(2)
______________ L 4 L4 4
) by by by by b,
IH(e") .
a Ideal
Filter
- ! % ’ “ | —|7 T
~ \«—— Ideal - - :
| Filr }fﬁ ‘\': }t‘fT_\} ————— o j’r’?’: }_’E\; >
Approximatil / / / N N
| y[n =) be- xin-K
< D3 k=
S — { > finite impulse response, no recursion (output

does not depend on the input)
> described by multiplication coefficients
> less sufficient (need higher order)
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Digital Filters — FIR filters

Finite Impulse Response (FIR) filters are widely used in biosignal
processing due to several key advantages

> Linear Phase Response that is critical for medical applications like ECG
(Electrocardiogram), EEG (Electroencephalogram), and EMG (Electromyogram).

> FIR filters are integrally stable. This stability is crucial for long-term signal
monitoring and real-time applications.

> Less oscillations or artifacts in biosignals, which reduce misinterpretation in medical
diagnoses.

> Precise control over the frequency response, making them suitable for applications
such as: noise removal

> Easy to implement in real-time digital signal processing (DSP) applications, including
portable and embedded biomedical devices.

» Suitability for adaptive filtering
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Diuit_al Filters — IR filters

'? [TE'_]} -a(0) b(0) >
1l t, -1
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: . . . X(z) , B(z) Y(z)
h,(n)
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> infinite impulse response, truncated at a certain precision
»use previously calculated values from the output (recursion)
»described by recursion coefficients

»more efficient

»can be unstable
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Digital Filter Characteristics

Performance in Time Domain
Poor
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Digital Filter Characteristics

Performance in Frequency Domain
Poor

Amplitude (dB)
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Digital Filter Characteristics-Examples

Examples of three biological signals with their frequency spectrum

Normalized amplitude

0 2 4 6 8§ Time(s) 10
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Digital FIR Filters
example: Finite Impulse Response Notch Filter

System function:

;;n;, Filter Coefficients:
b3 b2 bl -
v v Yin) 4=
— 7 .( ) ) 71 ( :
. b2=-2 -cos(wo)

Transfer function:
- 1O _(2-2)(2-2) bs=1

X(z 72

Scaling coefficient
R AL
2

|

Z = (2—2cos(mg))

= 1—2_1 '(Zz —|—Zl)—|—Z_2 'Zl 'ZE
z) = cos(y )+ j-s1n(w, )
—— H@)= 1+ z7"(-2(cos(®,)) + z~*
= bi+ b2Z7' 4 baZ_l
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Digital FIR Filters
60 Hz notch filter characteristics

—— Log magnitude —— Phase
Frequency Response: Log magnitude & Phase
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Design Digital FIR Filters
60 Hz notch filter example

Frequencies that define complex zeros:

%0
120 2 60
fo=60Hz - power supply frequency
fs=500Hz - sampling rate 150 Q5
COD=2-TE-£ o 0 05 1
/s
weget @, = 0.754 210 ¢ 0
Positions of complex zeros: 240 300

Z, = C0S(wy) + J-Sin(wg)

Z, =C0S(my)— J-Sin(m,)
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Design digital FIR Filters

60 Hz notch filter - implementation in Matlab

Original ECG
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Other Signal processing techniques correlation

» mathematical operation that is

o0
very similar to convolution Ry (1) = / z(t)z*(t—71)dt
» uses two signals to produce a Rgys [m] = i z [n] z* [n — m]
£LI _

third signal. This third signal is =
called the cross-correlation o° ‘0355 ans
the two input signals (i.e.finds _°° |, 0.1 |
similar signals in a signal) I Yyvv o o -

) 0 0.5 I i 1. 1I.'= 05 | 1
. . . . . Lin ms lin ms
> if a signal is correlated with itselt, 1* 1*
the resulting signal is instead Y — 1 T o |,
called the auto-correlation (i.e.5 o~ [/ v == o

1 | 0.1 r

finds periodic parts of a signal) “7,

» Correlation is the optimal
technique for detecting a known
waveform in random noise. E

ruD35s

Watch this video - ) o e
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https://www.youtube.com/watch?v=R7cn9b7BNyk&ab_channel=WolfSound

Other signal processing techniques discrete
Fourier transform (DFT)

» Decomposition of a signal into

. [ﬁ\.

sine and cosine waves

|

.................................................

O. ELOUTASSI: o.eloutassi@umi.ac.ma



Other signal processing techniques discrete
Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

For a discrete time sequence we define two classes of Fourier
Transforms:

» DTFT (Discrete Time FT) for sequences having infinite duration,

» DFT (Discrete FT) for sequences having finite duration.
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Other signal processing techniques discrete
Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept
Example

x[ 7]

) X (o)
X[n] = Acos(w N+ ) _; o, o, ;'r g

X(@)=Are"S(@-w)+Are " S(0+ o)
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Other signal processing techniques discrete
Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept
Discrete Fourier Transform (DFT)

Consider the finite discrete sequence

X =[x(0), x(2),..., x(N =1)]

Its Discrete Fourier Transform (DFT) is a finite sequence
X = DFT (x) =[X (0), X @),..., X (N —=1)]

X_ Iper X

N-1
: k — :
where X(k) = Zx(n)w;} W= e j27IN

n=0
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Other signal processing techniques discrete
Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Inverse Discrete Fourier Transform (IDFT)
Consider the frequency series

X =[X(0), X (1),..., X (N =1)]

its Inverse Discrete Fourier Transform (IDFT) is a finite sequence

X —— IDFT | —>X

X = IDFT (X) =[x(0), x(2),..., x(N =1)]

where
1 N-1

x(n) =~ Z X (kyw,™

N . _ _—j2mIN
w, =e
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Other signal processing techniques discrete
Fourier transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Note that:
The DFT and the IDFT form a transform pair.

X — DFT

>;

back to the same signal X<«—— IDFT X

The DFT is a numerical algorithm, and it can be computed by a digital computer.
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Other signal processing techniques discrete

Fourier transform (DFT)
DFT as vector operation

Let consider a discreet sequence as a vector X =
S
W—k
Let consider as well the vector base: e = N
Wak(N—l)

C 0]
X[1]

X = %(X[O]eo + X[1e, +...+ X[N -1]e,,,)

DFT of this discreet sequence is also as vector
CX[0]
X[1]

X — DFT{X}Z X[k] — e:TX

_X[N —1]_
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Other signal processing techniques discrete
Fourier transform (DFT)

DFT as vector operation

 X[ol ] [t 1 - 1 - x[0] |
X [L 1wy - Wy X[1
X =DFT{x}= ,[] = " § U
 XIN-1]] 1wy wy, N X[N -1
—> X =W,x
| G
AZEH’}TX
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Other signal processing techniques discrete
Fourier transform (DFT)
Periodicity

IDFT expression, shows that the sequence x(n) is interpreted as one
period sequence X, (n) original sequence

1 N-1 A
x,(n)=— Z X(k)yw, ™ x(n)
N k=0 |
. _ - |
We can multiply by w" since wy = e /™" [ v 7
_ o —j2x
1 N=1 - =1
*p(n)=— Z X (kyw, "w, ™
w=0 x,(n) periodic repetition

1 N-1 A

_E; (k)ka(””‘ | H !| Il
. | : :

=x,(n+N) iﬁ"' I ' I : N I .:\. I
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Other signal processing techniques discrete
Fourier transform (DFT)

Time shift of the sequence.

For example see what we mean with X(n — 1) . Start with the periodic extension X , ()

thp(n)
““““““““ 17 e
‘||||55‘||‘||;
] IR e
________________________ (__‘____JIIL_____________JI._____________.h
X,(n—1)
_____________________ 4
TRk .
| |
-N ;\ In
(-':' :

____________________________________________________________
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Other signal processing techniques discrete
Fourier transform (DFT)

Circular shift of the sequence at time period

x(n) x(n—=1),
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» We can vary the window size to determine more

Short time Fourier Analysis

In order to analyze small section of a signal, Denis
Gabor (1946), developed a technique, based on
the FT and using windowing : STFT (Short time

A
Fourier transform) 3
A compromise between time-based and frequency- é
based views of a signal. <

\

window

both time and frequency are represented in limited
precision.

The precision is determined by the size of the A
window.

Once you choose a particular size for the time
window - it will be the same for all frequencies.

Frequency

Many signals require a more flexible approach

accurately either time or frequency.
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The Continuous Wavelet Transform (CWT)

» The Fourier transform for a continuous data or a signal given

by the function f(t) is: +00 _
Flw) = f(t)e™/°dt
» is composed of multiple sinusoids with different frequenmes
and amplitudes AN
I\ f\ - /

\ \ - Fouriertransform F(w) LI
4 { Vi Jl BRIy
\ | | v Al
IE ||I II. |? h A A
U 1|n,-’! '“ z! \'\ H\ ’!1\ '!\ }‘\\l
Signal f(t) TR
Signal F(w)
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Wavelet Transformation- Equations

> Wavelet Transform Y (s,T) = J.f(t)\p;’T (t)dt

> Inverse Wavelet Transform  J () = J.J:Y (5,7 N/S,T (Hdrds

| [ —T

» Mother wavelet V(D)= \/EW( )

A
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Wavelet Transformation- Scaling

Proprieties
normalization shift in time
/
1 I —T
v, (1) = —=VY( )
\/; S\
change in scale: big s
wavelet with means long wavelength

scale, s and time, 1
Mother wavelet

O. ELOUTASSI: o.eloutassi@umi.ac.ma 29



Wavelet transform

Proprieties
time-series :

\ conjugate

N from now
»y(S »-C) — f (t)\lj (t)dt on, assuming

] S,T that we’re

using real

\ wavelets

coefficient of wavelet complex conjugate of
with wavelet with
scale, s and time, t scale, s and time, t
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Inverse Wavelet Transform

f(t) JJvs. r)um (tydr ds

time- serles wavelet with

coefficients  scale, s and time, t
of wavelets

Watch this video
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https://www.youtube.com/watch?v=kuuUaqAjeoA&ab_channel=AndrewNicoll

Wavelet Transformation- Scaling

» Wavelet analysis produces a time-scale view of the signal.
» Scaling means stretching or compressing of the signal.

Scale factor (a) for sine waves: Scale factor (a) with wavelets:

i o

4 a=1f(1)=sin(7) BRI NNIOES 10
| | -/ |

0 1 2 3 45

i ;

/\ ! o1

o) 4S5 f (1) =sin(21) R AU 1¢2)
T
|

L 12 SN ErRpTr
: @541 £(t) = sin(4t) /4 J =
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