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Section 1 : 

Introduction to Digital Signal and Image Processing

Chapter 2: 

Chapter 2: Fourier analysis of continuous-time signals
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Filters

Other signal processing techniques

Wavelet transformation
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Digital Filters – FIR filters
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Ideal low-pass filter approximation

 finite impulse response, no recursion (output 

does not depend on the input)

described by multiplication coefficients

 less sufficient (need higher order)
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Finite Impulse Response (FIR) filters are widely used in biosignal 

processing due to several key advantages

Digital Filters – FIR filters
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 Linear Phase Response that is critical for medical applications like ECG 

(Electrocardiogram), EEG (Electroencephalogram), and EMG (Electromyogram).

 FIR filters are integrally stable. This stability is crucial for long-term signal 

monitoring and real-time applications.

 Less oscillations or artifacts in biosignals, which reduce misinterpretation in medical 

diagnoses.

 Precise control over the frequency response, making them suitable for applications 

such as: noise removal 

 Easy to implement in real-time digital signal processing (DSP) applications, including 

portable and embedded biomedical devices.

 Suitability for adaptive filtering
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Digital Filters – IIR filters
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 infinite impulse response, truncated at a certain precision

use previously calculated values from the output (recursion)

described by recursion coefficients

more efficient

can be unstable
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Performance in Time Domain

Digital Filter Characteristics
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Poor

Good
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Digital Filter Characteristics
Performance in Frequency Domain
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Poor

Good
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Digital Filter Characteristics-Examples

Examples of three biological signals with their frequency spectrum
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System function:

Filter Coefficients:

Digital FIR Filters 

example: Finite Impulse Response Notch Filter

10

Transfer function:

Scaling coefficient
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Digital FIR Filters

60 Hz notch filter characteristics
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Frequencies that define complex zeros:

f0=60Hz - power supply frequency 

fs=500Hz - sampling rate

Design Digital FIR Filters

60 Hz notch filter example

Positions of complex zeros:

z1  cos(0 )  j sin(0 )

z2  cos(0 )  j sin(0 )

12

we get
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60Hz notch applied to ECG signal

Design digital FIR Filters

60 Hz notch filter - implementation in Matlab
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mathematical operation that is 

very similar to convolution

uses two signals to produce a 

third signal. This third signal is 

called the cross-correlation of 

the two input signals (i.e.finds

similar signals in a signal)

 if a signal is correlated with itself, 

the resulting signal is instead 

called the auto-correlation (i.e. 

finds periodic parts of a signal)

Correlation is the optimal 

technique for detecting a known 

waveform in random noise.

Other Signal processing techniques correlation
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Watch this video
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https://www.youtube.com/watch?v=R7cn9b7BNyk&ab_channel=WolfSound


Other signal processing techniques discrete 

Fourier transform (DFT)

 Decomposition of a signal into

sine and cosine waves
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Fourier Analysis of Discrete Time Signals mathematical concept

For a discrete time sequence we define two classes of Fourier 

Transforms:

 DTFT (Discrete Time FT)  for sequences having infinite duration, 

 DFT (Discrete FT) for sequences having finite duration.
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Other signal processing techniques discrete 

Fourier transform (DFT)
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)cos(][ 0   nAnx
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Example 

Fourier Analysis of Discrete Time Signals mathematical concept

Other signal processing techniques discrete 

Fourier transform (DFT)

DTFT
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Consider the finite discrete sequence

where

)]1(),...,1(),0([  Nxxxx

its Discrete Fourier Transform (DFT) is a finite sequence   

)]1(),...,1(),0([)(  NXXXxDFTX
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Discrete Fourier Transform (DFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Other signal processing techniques discrete 

Fourier transform (DFT)

x X
DFT
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)]1(),...,1(),0([  NXXXX

its Inverse Discrete Fourier Transform (IDFT) is a finite sequence

)]1(),...,1(),0([)(  NxxxXIDFTx

where
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Inverse Discrete Fourier Transform (IDFT)

Fourier Analysis of Discrete Time Signals mathematical concept

Other signal processing techniques discrete 

Fourier transform (DFT)

Consider the frequency series
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Note that:

The DFT and the IDFT form a transform pair.

back to the same signal

The DFT is a numerical algorithm, and it can be computed by a digital computer. 
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Fourier Analysis of Discrete Time Signals mathematical concept

Other signal processing techniques discrete 

Fourier transform (DFT)
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DFT as vector operation

Other signal processing techniques discrete 

Fourier transform (DFT)

DFT of this discreet sequence is also as  vector 
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DFT as vector operation

Other signal processing techniques discrete 

Fourier transform (DFT)
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original sequence

periodic repetition
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Periodicity

Other signal processing techniques discrete 

Fourier transform (DFT)

IDFT expression, shows that the sequence x(n) is interpreted as one 

period sequence x np ( )

We can multiply by since
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For example see what we mean with                     . Start with the periodic extensionx n( )1

x np ( )

x np ( )1

x np ( )
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Time shift of the sequence. 

Other signal processing techniques discrete 

Fourier transform (DFT)
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Circular shift of the sequence at time period 

Other signal processing techniques discrete 

Fourier transform (DFT)
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Short time Fourier Analysis
 In order to analyze small section of a signal, Denis

Gabor (1946), developed a technique, based on

the FT and using windowing : STFT (Short time

Fourier transform)

 A compromise between time-based and frequency-

based views of a signal.

 both time and frequency are represented in limited 

precision.

 The precision is determined by the size of the 

window.

 Once you choose a particular size for the time 

window - it will be the same for all frequencies.

 Many signals require a more flexible approach

 We can vary the window size to determine more 

accurately either time or frequency.
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The Continuous Wavelet Transform (CWT)
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Wavelet Transformation- Equations

 Wavelet Transform

 Inverse Wavelet Transform

 Mother wavelet
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normalization

wavelet with 

scale, s and time, 
Mother wavelet

change in scale: big s 

means long wavelength

29

Wavelet Transformation- Scaling

Proprieties

shift in time
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time-series
conjugate 

from now 

on, assuming 

that we’re 

using real 

wavelets

complex conjugate of 

wavelet with

scale, s and time, 

coefficient of wavelet 

with

scale, s and time, 

S,T
(t)dtf (t)(s,)
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Wavelet transform

Proprieties
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Inverse Wavelet Transform

time-series

coefficients

of wavelets

wavelet with 

scale, s and time, 

(t)d dsf (t)   (s, )S ,T
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Watch this video
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Wavelet Transformation- Scaling

 Wavelet analysis produces a time-scale view of the signal.

 Scaling means stretching or compressing of the signal.
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Scale factor (a) for sine waves: Scale factor (a) with wavelets:
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