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Electric Activities of the Cell

Electric activities in cells involve various 

physiological processes governed by the 

movement of ions across the cell 

membrane. 
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Electric Activities of the Cell

Resting Membrane Potential

The resting membrane potential (Vm ​) is the voltage 

difference across the plasma membrane of a cell at rest.

To be watch

https://www.youtube.com/watch?v=YP_P6bYvEjE&t=90s

https://www.youtube.com/watch?v=YP_P6bYvEjE&t=90s
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Electric Activities of the Cell

Resting Membrane Potential

To calculate the equilibrium potential for a specific ion, 

we use the Nernst equation:

equilibrium 

potential for 

the ion (in mV)

universal gas 

constant (8.314 

J/(mol·K))

absolute 

temperature 

(in Kelvin)

valence 

of the 

ion

Faraday's constant 

(96485 C/mol)
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Electric Activities of the Cell

Action Potential

Repolarization: 

Potassium channels open, 

K⁺ flows out, returning 

the membrane potential 

toward the resting state.

Threshold Potential: The critical 

level to which the membrane 

potential must be depolarized to 

initiate an action potential, 

typically around -55 mV.

Phases of Action Potential:.

Depolarization: 

Sodium channels 

open, and Na⁺ 

rushes into the 

cell.

Hyperpolarization: 

The membrane potential 

temporarily becomes 

more negative than the 

resting potential.
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Electric Activities of the Cell

Action Potential Equation: 

The change in membrane potential during an action potential 

can be modeled using the Hodgkin-Huxley equations, which 

describe the ionic currents through the membrane:

membrane capacitance

conductance 

equilibrium potentials
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Electric Activities of the Cell

Ion Channels and Pumps

Sodium-Potassium Pump (Na⁺/K⁺ ATPase): 

This pump maintains the resting membrane potential by actively 

transporting ions against their concentration gradients.

Goldman Equation: 

To calculate the resting membrane potential considering 

multiple ions, we use the Goldman equation:

permeability of the ion
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Electric Activities of the Cell

Synaptic Transmission

Post-synaptic potentials can be modeled as:

post-synaptic 

potential

synaptic 

conductance

reversal potential of 

the synapse

time
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Electric Activities of the Cell

Electrophysiology Techniques

Patch Clamp Equation: 

The current through an ion channel can be described by:

number of open 

channels

single-channel 

conductance

membrane 

potential

equilibrium potential 

for the ion.
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Challenges in biomedical signal processing

 Accessibility of variables to measurement

 Some physiological variables are difficult to measure directly.

 Requires specialized sensors and techniques.

 Patient safety & noninvasiveness

 Preference for noninvasive methods to minimize discomfort.

 Balancing accuracy with patient safety considerations.

 Indirect measurements

 Many variables of interest cannot be directly accessed.

 Requires computational models to estimate the desired parameters.



Electrocardiogram (ECG)
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Challenges in biomedical signal processing

 Signal source variability

 Physiological signals exhibit natural fluctuations (e.g., heart rate, 

EEG).

 Variability due to age, health conditions, and external factors.

 Interactions among physiological systems

 Multiple systems influence each other (e.g., heart-lung interactions).

 Signal interpretation must consider cross-system dependencies.

 acquisition interference

 Electrical, motion, and environmental noise can affect signal quality.

 Requires filtering and advanced signal processing techniques.
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Challenges in biomedical signal processing

Overcoming these challenges requires advanced sensor technology, signal 

processing, and innovative computational models to ensure reliable biomedical 

signal acquisition.

Centralized healthcare system



Challenges in biomedical signal processing

Wearable health sensors or monitors
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Challenges in biomedical signal processing

AI based 

wearable 

sensors

15Omar ELOUTASSI      o.eloutassi@umi.ac.ma



Challenges in biomedical signal processing

Artifacts and interference

 Interference from Other Systems

Example: Muscle artifacts in EEG recordings.

16Omar ELOUTASSI      o.eloutassi@umi.ac.ma



Challenges in biomedical signal processing

Artifacts and interference

Low-Level Signals (e.g., EEG)

Measured in microvolts.

Require highly sensitive amplifiers.

Easily affected by interference.
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Challenges in biomedical signal processing

Artifacts and interference

 Protection and system behavior

 Limited shielding options

 Difficult to fully protect signals from interference.

 Nonlinear nature of biological systems

 Most biological systems are nonlinear.

 Many methods assume linearity, leading to challenges.

 Obscurity of biological systems

 Exact structures and true functions are often unknown.
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 What is an electrocardiogram (ECG)?

 A time-varying signal reflecting ionic current flow.

 Causes cardiac fibers to contract and relax.

 ECG is Obtained using surface ECG Recording

 Measured by recording potential difference between two electrodes 

placed on the skin's surface.

 ECG Measures and records electrical activity of the heart.
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Normal ECG Cycle

Components of a normal ECG cycle

Represents:

Atrial depolarization and repolarization.

Ventricular depolarization and repolarization.

Occurs with every heartbeat.
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 Typical ECG Waves

 Components of a typical ECG period 

 that includes

 QRS complex

 P wave: the sequential activation (depolarization) of the right and left atria QRS 

complexes: right and left ventricular depolarization

 T wave: ventricular repolarization

 U wave: origin not clear, probably ”afterdepolarizations” in the ventricles

ECG period

QRS complex

Q

R

S

P wave
T wave

U wave
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 Three common noise sources

 Baseline wander

 Power line interference

 Muscle noise

 When filtering any biomedical signal care should be taken not to

alter the desired information in any way

 A major concern is how the QRS complex influences the output of the 

filter; to the filter they often pose a large unwanted impulse

 Possible distortion caused by the filter should be carefully quantified

Application

ECG filtering
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Application

ECG filtering

 Both baseline wander and power line interference removal are mainly a 
question of filtering out a narrow band of lower-than-ECG frequency 
interference.

 The main problems are the resulting artifacts and how to optimally 
remove the noise
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Application

ECG filtering
 Muscle noise, on the other hand, is more difficult as it overlaps with 

actual ECG data

 For the varying noise types (baseline wander and muscle noise) 

 adaptive approach seems quite appropriate

 For power line interference

 the nonlinear approach seems valid as ringing artifacts are almost 
unavoidable otherwise

Watch this video
Omar ELOUTASSI      o.eloutassi@umi.ac.ma

https://www.youtube.com/watch?v=3JkoPbFll_w&t=676s&ab_channel=ArefBahtiti
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Application

QRS detection

 QRS detection is important in all kinds of ECG signal processing

time

R RRR interval

P
P

Q   S Q   S

T

PR 

interval

QRS

interval

PR 

segment

ST 

segment PT segment

QT interval

PT interval
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Application

QRS detection

 QRS detector must be able to detect a large number of different QRS 

morphologies

 QRS detector must not lock onto certain types of rhythms but treat next 

possible detection as if it could occur almost anywhere
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Application

QRS detection

 Typical structure of QRS 

detector algorithm: 

preprocessing (linear 

filter,  nonlinear 

transformation) and 

decision rule
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Application

QRS detection

 For different purposes (e.g. stress testing or intensive care monitoring), different 

kinds of filtering, transformations and thresholding are needed

 Multi-lead QRS detectors
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Application

QRS detection

 Bandpass characteristics to preserve essential spectral content (e.g.

enhance QRS, suppress P and T wave), typical center frequency 10

- 25 Hz and bandwidth 5 - 10 Hz

 Enhance QRS complex from background noise, transform each QRS 

complex into single positive peak

 Test whether a QRS complex is present or not (e.g. a simple amplitude 

threshold)
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Application

Estimation problem
 Maximum likelihood (ML) estimation technique to derive detector

structure

 Starting point: same signal model as for derivation of Woody method for 

alignment of evoked responses with varying latencies

observed 
signal

QRS, known 

morphology

noise QRS occurrence time

duration of s (n)

observation interval
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