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Electric Activities of the Cell

Electric activities in cells involve various
physiological processes governed by the

movement of 1ons across the cell

membrane.
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Electric Activities of the Cell

Resting Membrane Potential
The resting membrane potential (Vm) is the voltage

difference across the plasma membrane of a cell at rest.
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To be watch
https://www.youtube.com/watch?v=YP_P6bYVEjE&t=90s
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https://www.youtube.com/watch?v=YP_P6bYvEjE&t=90s

Electric Activities of the Cell

Resting Membrane Potential
To calculate the equilibrium potential for a specific ion,

we use the Nernst equation:

universal gas absolute
constant (8.314 temperature
Ji(mol-K)) —1 (inKelvin)

e . "R ['.F:E"H-],;.”; side
equilibrium Eiuﬂ. — F In 07 inside
potential for «— - tieside
the ion (in mV)

valence Faraday's constant
of the (96485 C/mol)

[o]p
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Electric Activities of the Cell

Action Potential

Phases of Action Ii’otential:.

Depolarization:—x
Sodium channels
open, and Na*
rushes into the
cell.

Repolarization:

I Potassium channels open,
K* flows out, returning
the membrane potential

v

o

Membrane potential (mV)

&

L .

Threshold Potential: The critical fine .
: Hyperpolarization:
level to which the membrane :
. : The membrane potential
potential must be depolarized to :
. : : temporarily becomes
Initiate an action potential,

: ’ more negative than the
typically around -55 mV. resting potential.

—_—
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.
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Electric Activities of the Cell

Action Potential Equation:

The change in membrane potential during an action potential
can be modeled using the Hodgkin-Huxley equations, which
describe the ionic currents through the membrane:

conductance

Cm d:;t? — _Q’\.a E"wa 9‘}1 gL Vm

membrane capacnance \

equmbrlum potentials
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Electric Activities of the Cell

lon Channels and Pumps
Sodium-Potassium Pump (Na*/K* ATPase):
This pump maintains the resting membrane potential by actively

transporting ions against their concentration gradients.
3Na ms:;de T 2Kaut3ufa, + ATP — SNa‘autﬂde + QKHISEdE + ADP T R

Goldman Equation:
To calculate the resting membrane potential considering

multiple ions, we use the Goldman equation:

Py | F yut s |P'|.,tf"-(]],rr|P (TI];.
Vin = RT/FIH( i[[;; Him. i P, [N ins ﬂp‘_fffu Touts " )

permeability of the ion
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Electric Activities of the Cell

Synaptic Transmission
Post-synaptic potentials can be modeled as:

reversal potential of
the synapse

post-synaptic
potential «— I_T
I— post — Vresf, T gsyn(Esyn —_ ‘Vj;JGSt) - T

T

synaptic time
conductance
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Electric Activities of the Cell

Electrophysiology Techniques
Patch Clamp Equation:

The current through an ion channel can be described by:

membrane
number of open potential

channels I_T l_T

I=N-P-(V—E)

|_T L equilibrium potential

single-channel for the ion.
conductance

Omar ELOUTASSI o.eloutassi@umi.ac.ma

10



Electrocardiogram (ECG)

Challenges in biomedical signal processing

» Accessibility of variables to measurement
» Some physiological variables are difficult to measure directly.
» Requires specialized sensors and techniques.

» Patient safety & noninvasiveness
» Preference for noninvasive methods to minimize discomfort.
» Balancing accuracy with patient safety considerations.

» Indirect measurements
» Many variables of interest cannot be directly accessed.

» Requires computational models to estimate the desired parameters.
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Electrocardiogram (ECG)

Challenges in biomedical signal processing

» Signal source variability

» Physiological signals exhibit natural fluctuations (e.g., heart rate,
EEG).

» Variability due to age, health conditions, and external factors.

» Interactions among physiological systems
» Multiple systems influence each other (e.g., heart-lung interactions).
» Signal interpretation must consider cross-system dependencies.

» acquisition interference
» Electrical, motion, and environmental noise can affect signal quality.
» Requires filtering and advanced signal processing techniques.
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Challenges in biomedical signal processing

Overcoming these challenges requires advanced sensor technology, signal
processing, and innovative computational models to ensure reliable biomedical

signal acquisition.

Centralized healthcare system
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Challenges in biomedical signal processing

Wearable health sensors or monitors
__ EEG/IOP/glucose

;/./ 9‘1 Muscle movement
, \

& <
Body condition or 1 Feedback % 1/“« .

Therapeutic method % . ECG/Heart/Breath rate

\ J e

Anmyws / \ Wrist pulse/Blood pressure

Hospital or database for | A \ Parkinson tremor
analysis :
. l
| EMG signals/Human motion

Transmission
_ : Temperature/glucose
[ Physiological signals Z

Collection f | = 4

| Attach to human body’ \

| Flexible sensors
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Challenges in biomedical signal processing

Al based .//
wearable

Sensors C|OUd
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Challenges in biomedical signal processing
Artifacts and interference

» Interference from Other Systems
» Example: Muscle artifacts in EEG recordings.
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Challenges in biomedical signal processing
Artifacts and interference

» Low-Level Signals (e.g., EEG)
» Measured in microvolts.
» Require highly sensitive amplifiers.
» Easily affected by interference.
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Challenges in biomedical signal processing
Artifacts and interference

» Protection and system behavior
» Limited shielding options

» Difficult to fully protect signals from interference.
» Nonlinear nature of biological systems

» Most biological systems are nonlinear.

» Many methods assume linearity, leading to challenges.

» Obscurity of biological systems

» Exact structures and true functions are often unknown.

Omar ELOUTASSI o.eloutassi@umi.ac.ma
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Application-ECG

» What is an electrocardiogram (ECG)?
» A time-varying signal reflecting ionic current flow.
» Causes cardiac fibers to contract and relax.
» ECG is Obtained using surface ECG Recording
» Measured by recording potential difference between two electrodes
placed on the skin's surface.

:('F :;RF

skin

» ECG Measures and records electrical activity of the heart.
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Application- ECG

» Normal ECG Cycle
» Components of a normal ECG cycle
» Represents:
» Atrial depolarization and repolarization.
» Ventricular depolarization and repolarization.

» Occurs with every heartbeat.

Omar ELOUTASSI o.eloutassi@umi.ac.ma
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Application- ECG QRS complex
> Typical ECG Waves R |

P wave : U wave

N

'
'
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< >

Q ECG period
S

» Components of a typical ECG period
» that includes
» QRS complex
» P wave: the sequential activation (depolarization) of the right and left atria QRS
complexes: right and left ventricular depolarization
» T wave: ventricular repolarization

» U wave: origin not clear, probably “afterdepolarizations” in the ventricles
Omar ELOUTASSI o.eloutassi@umi.ac.ma 21



Application
ECG filtering

» Three common noise sources
» Baseline wander
» Power line interference
» Muscle noise
» When filtering any biomedical signal care should be taken not to

alter the desired information in any way

» A major concern is how the QRS complex influences the output of the
filter; to the filter they often pose a large unwanted impulse

» Possible distortion caused by the filter should be carefully quantified
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Application
ECG filtering

» Both baseline wander and power line interference removal are mainly a
question of filtering out a narrow band of lower-than-ECG frequency

Iinterference.
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» The main problems are the resulting artifacts and how to optimally
remove the noise
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Application
ECG filtering

» Muscle noise, on the other hand, is more difficult as it overlaps with
actual ECG data

Volts

Volts

T'i.rne

» For the varying noise types (baseline wander and muscle noise)
» adaptive approach seems quite appropriate
» For power line interference

» the nonlinear approach seems valid as ringing artifacts are almost
unavoidable otherwise

Watch this video
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Application

QRS detection
> QRS detection is important in all kinds of ECG signal processing
- R RR interval R
+1 < —
r PR
', interval
-, +0.5 - PT interval
g P_ ‘
) | P PR ST T
] |
= segmént| segment PT segment
> 0p V_
QS, : Q S
05L QRS QT interval
- interval
time
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Application
QRS detection

» QRS detector must be able to detect a large number of different QRS
morphologies
» QRS detector must not lock onto certain types of rhythms but treat next

possible detection as if it could occur almost anywhere

R RRInterval f

T T

Q S Q

=y = -y x
o | =
Filtering Feature Decision
ECG :
Linear filtering Detection Logic
! | ) | |

Preprocessing Stage Decision Stage
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Application

QRS detection

» Typical structure of QRS
detector algorithm:
preprocessing (linear
filter, nonlinear
transformation) and

decision rule

- Stape b Preprocessing

ifn)

ECG

v

Bandpass
Filtering

Sfing

Differentiation

i)

AStage-2:—Tvontlinear-Transform.,

|
ET :
' Stage 3: Extreme Point
1””" : Detection
|
Accumulation I
|
Knssean_ oo i :
Stage 4: PD Control-hased
k2 Threshold Comparison
Stage 5: Tall T-wave Rejection
Indices of Real
R-peaks
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Application
QRS detection

» For different purposes (e.g. stress testing or intensive care monitoring), different

kinds of filtering, transformations and thresholding are needed

Amplitude (mV)
=
’ .-
L
\)
é/

Time (seconds)

» Multi-lead QRS detectors
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Application
QRS detection

» Bandpass characteristics to preserve essential spectral content (e.g.

enhance QRS, suppress P and T wave), typical center frequency 10
- 25 Hz and bandwidth 5 - 10 Hz

» Enhance QRS complex from background noise, transform each QRS
complex into single positive peak

» Test whether a QRS complex is present or not (e.g. a simple amplitude
threshold)

Preprocessor

x(n) Linear Decision 6,0,
filtering rule
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Application

Estimation problem
» Maximum likelihood (ML) estimation technique to derive detector
structure

» Starting point: same signal model as for derivation of Woody method for
alignment of evoked responses with varying latencies

noise QRS occurrence time
— .
(u(n) 0<n<t-1
*X(n) =1 s(n—0)tu(n) t<n<t+D-1
observed _
Signal L u(n) t+D <n<N-1
QRS, known |_(|)bservation interval
morphology
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