[bookmark: _Toc175942854][bookmark: _Toc178022377][image:]
[image:]

O. ELOUTASSI: 	o.eloutassi@vac.ueuromed.org

Lab 2
Advanced Biomedical Signal and Image Processing
Master: Plasturgy & Biomedical Engineering
Pr. Omar ELOUTASSI

Group:

Names:

15
O. ELOUTASSI: 	o.eloutassi@umi.ac.ma

1. Objective:
What is the goal of this practical work in digital signal processing for biomedical signals?
What types of noise commonly affect biomedical signals, and how can digital filters help in removing them?
What is the differences between time domain and frequency domain?
How can we transform a signal from time domain to frequency domain?
Give some examples of extracted features from both time domain and frequency domain

2. Tasks to achieve: Understanding the ECG signal and noise Sources
Task 1: Identify the frequency range of a typical ECG signal (0.05–100 Hz).
Copy this code run it and screenshot the result
clc; clear; close all;
% Define the time axis (one heartbeat duration ~0.8s)
fs = 1000; % Sampling frequency (Hz)
t = -0.5:1/fs:1.5; % Time vector (covering one full cycle)
% Define the peaks and widths of P, Q, R, S, T, and U waves
p_wave = 0.1 * exp(-((t - 0.1) / 0.025).^2); % P wave
q_wave = -0.15 * exp(-((t - 0.2) / 0.010).^2); % Q wave
r_wave = 1.0 * exp(-((t - 0.25) / 0.015).^2); % R wave
s_wave = -0.2 * exp(-((t - 0.3) / 0.010).^2); % S wave
t_wave = 0.3 * exp(-((t - 0.4) / 0.050).^2); % T wave
u_wave = 0.05 * exp(-((t - 0.6) / 0.030).^2); % U wave
% Sum all waves to create a complete ECG cycle
ecg_signal = p_wave + q_wave + r_wave + s_wave + t_wave + u_wave;
% Repeat the ECG signal to simulate multiple heartbeats
num_beats = 5; % Number of heartbeats
full_ecg = repmat(ecg_signal, 1, num_beats);
full_t = linspace(0, num_beats, length(full_ecg));
% Plot the ECG signal
figure;
plot(full_t, full_ecg, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('Simulated ECG Signal with P, Q, R, S, T, and U Waves');
grid on;
Paste your screenshot result and analyze it

Task 2 Identify the types of noise affecting the ECG signal:
Task 2.1. Add a baseline Wander noise
Copy this code and run it then screenshot the result
clc; clear; close all;
% Define the time axis
fs = 1000; % Sampling frequency (Hz)
t = -0.5:1/fs:1.5; % Time vector (for one heartbeat)
% Define ECG waves using Gaussian functions
p_wave = 0.1 * exp(-((t - 0.1) / 0.025).^2); % P wave
q_wave = -0.15 * exp(-((t - 0.2) / 0.010).^2); % Q wave
r_wave = 1.0 * exp(-((t - 0.25) / 0.015).^2); % R wave
s_wave = -0.2 * exp(-((t - 0.3) / 0.010).^2); % S wave
t_wave = 0.3 * exp(-((t - 0.4) / 0.050).^2); % T wave
u_wave = 0.05 * exp(-((t - 0.6) / 0.030).^2); % U wave
% Combine the waves to create one ECG cycle
ecg_signal = p_wave + q_wave + r_wave + s_wave + t_wave + u_wave;
% Repeat the ECG cycle multiple times to simulate multiple beats
num_beats = 5; % Number of heartbeats
full_ecg = repmat(ecg_signal, 1, num_beats);
full_t = linspace(0, num_beats, length(full_ecg));
% Simulate baseline wander (low-frequency sinusoidal drift < 0.5 Hz)
baseline_wander = 0.3 * sin(2 * pi * 0.2 * full_t); % 0.2 Hz sinusoidal drift
% Add baseline wander to the ECG signal
noisy_ecg = full_ecg + baseline_wander;
% Plot the original and noisy ECG signals
figure;
subplot(2,1,1);
plot(full_t, full_ecg, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original ECG Signal');
grid on;
subplot(2,1,2);
plot(full_t, noisy_ecg, 'r', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG Signal with Baseline Wander (0.2 Hz)');
grid on;
Paste your screenshot and analyze the result

Task 2.2 Add a Powerline interference (50/60 Hz).
Copy this code run it and screenshot the result
clc; clear; close all;
% Define the time axis
fs = 1000; % Sampling frequency (Hz)
t = -0.5:1/fs:1.5; % Time vector (for one heartbeat)
% Define ECG waves using Gaussian functions
p_wave = 0.1 * exp(-((t - 0.1) / 0.025).^2); % P wave
q_wave = -0.15 * exp(-((t - 0.2) / 0.010).^2); % Q wave
r_wave = 1.0 * exp(-((t - 0.25) / 0.015).^2); % R wave
s_wave = -0.2 * exp(-((t - 0.3) / 0.010).^2); % S wave
t_wave = 0.3 * exp(-((t - 0.4) / 0.050).^2); % T wave
u_wave = 0.05 * exp(-((t - 0.6) / 0.030).^2); % U wave
% Combine the waves to create one ECG cycle
ecg_signal = p_wave + q_wave + r_wave + s_wave + t_wave + u_wave;
% Repeat the ECG cycle multiple times to simulate multiple beats
num_beats = 5; % Number of heartbeats
full_ecg = repmat(ecg_signal, 1, num_beats);
full_t = linspace(0, num_beats, length(full_ecg));
% Simulate baseline wander (low-frequency sinusoidal drift < 0.5 Hz)
baseline_wander = 0.3 * sin(2 * pi * 0.2 * full_t); % 0.2 Hz sinusoidal drift
% Simulate powerline interference (sinusoidal noise at 50 Hz)
powerline_noise = 0.1 * sin(2 * pi * 50 * full_t); % 50 Hz sinusoidal noise
% Add baseline wander to the ECG signal
ecg_with_baseline_wander = full_ecg + baseline_wander;
% Add both baseline wander and powerline interference
ecg_with_noise = ecg_with_baseline_wander + powerline_noise;
% Plot the signals
figure;
subplot(3,1,1);
plot(full_t, full_ecg, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original ECG Signal');
grid on;
subplot(3,1,2);
plot(full_t, ecg_with_baseline_wander, 'r', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG Signal with Baseline Wander (0.2 Hz)');
grid on;
subplot(3,1,3);
plot(full_t, ecg_with_noise, 'k', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG Signal with Baseline Wander and Powerline Interference (50 Hz)');
grid on;
Paste your result and analyze it

Task 2.3. Muscle artifact
Copy this code run it and analyze it
clc; clear; close all;
% Define the time axis
fs = 1000; % Sampling frequency (Hz)
t = -0.5:1/fs:1.5; % Time vector (for one heartbeat)
% Define ECG waves using Gaussian functions
p_wave = 0.1 * exp(-((t - 0.1) / 0.025).^2); % P wave
q_wave = -0.15 * exp(-((t - 0.2) / 0.010).^2); % Q wave
r_wave = 1.0 * exp(-((t - 0.25) / 0.015).^2); % R wave
s_wave = -0.2 * exp(-((t - 0.3) / 0.010).^2); % S wave
t_wave = 0.3 * exp(-((t - 0.4) / 0.050).^2); % T wave
u_wave = 0.05 * exp(-((t - 0.6) / 0.030).^2); % U wave
% Combine the waves to create one ECG cycle
ecg_signal = p_wave + q_wave + r_wave + s_wave + t_wave + u_wave;
% Repeat the ECG cycle multiple times to simulate multiple beats
num_beats = 5; % Number of heartbeats
full_ecg = repmat(ecg_signal, 1, num_beats);
full_t = linspace(0, num_beats, length(full_ecg));
% Simulate Baseline Wander (low-frequency sinusoidal drift < 0.5 Hz)
baseline_wander = 0.3 * sin(2 * pi * 0.2 * full_t); % 0.2 Hz drift
% Simulate Powerline Interference (sinusoidal noise at 50 Hz)
powerline_noise = 0.1 * sin(2 * pi * 50 * full_t); % 50 Hz noise
% Simulate Muscle Artifacts (high-frequency random noise > 100 Hz)
muscle_artifacts = 0.05 * randn(size(full_ecg)); % Random high-freq noise
% Add baseline wander to the ECG signal
ecg_with_baseline_wander = full_ecg + baseline_wander;
% Add both baseline wander and powerline interference
ecg_with_powerline_noise = ecg_with_baseline_wander + powerline_noise;
% Add all three types of noise (baseline, powerline, and muscle artifacts)
ecg_with_all_noise = ecg_with_powerline_noise + muscle_artifacts;
% Plot the signals
figure;
subplot(4,1,1);
plot(full_t, full_ecg, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original ECG Signal');
grid on;
subplot(4,1,2);
plot(full_t, ecg_with_baseline_wander, 'r', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG with Baseline Wander (0.2 Hz)');
grid on;
subplot(4,1,3);
plot(full_t, ecg_with_powerline_noise, 'k', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG with Baseline Wander + Powerline Interference (50 Hz)');
grid on;
subplot(4,1,4);
plot(full_t, ecg_with_all_noise, 'm', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG with Baseline Wander + Powerline Interference + Muscle Artifacts');
grid on;
Paste your screenshot and analyze it

Task 3 combine all noises
Copy this code run then screenshot the result
clc; clear; close all;
% Define sampling parameters
fs = 1000; % Sampling frequency (Hz)
t = -0.5:1/fs:1.5; % Time vector covering one full cycle
% --- Define ECG waves using Gaussian functions ---
p_wave = 0.1 * exp(-((t - 0.1) / 0.025).^2); % P wave
q_wave = -0.15 * exp(-((t - 0.2) / 0.010).^2); % Q wave
r_wave = 1.0 * exp(-((t - 0.25) / 0.015).^2); % R wave (highest peak)
s_wave = -0.2 * exp(-((t - 0.3) / 0.010).^2); % S wave
t_wave = 0.3 * exp(-((t - 0.4) / 0.050).^2); % T wave
u_wave = 0.05 * exp(-((t - 0.6) / 0.030).^2); % U wave
% Sum all waves to create a complete ECG cycle
ecg_cycle = p_wave + q_wave + r_wave + s_wave + t_wave + u_wave;
% Repeat the ECG cycle multiple times to simulate multiple heartbeats
num_beats = 5; % Number of heartbeats
full_ecg = repmat(ecg_cycle, 1, num_beats);
full_t = linspace(0, num_beats, length(full_ecg));
% --- Add Noise ---
% 1. Baseline Wander (low-frequency drift < 0.5 Hz)
baseline_wander = 0.3 * sin(2 * pi * 0.2 * full_t); % 0.2 Hz sinusoidal drift
% 2. Powerline Interference (50 Hz sinusoidal noise)
powerline_noise = 0.1 * sin(2 * pi * 50 * full_t);
% 3. High-frequency Muscle Artifacts (>100 Hz random noise)
muscle_artifact = 0.05 * randn(size(full_t));
% Combine all noise sources
noisy_ecg = full_ecg + baseline_wander + powerline_noise + muscle_artifact;
% Plot Original ECG
subplot(3,1,1);
plot(full_t, full_ecg, 'b', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('Original ECG Signal');
grid on;
% Plot Noisy ECG
subplot(3,1,2);
plot(full_t, noisy_ecg, 'r', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Amplitude');
title('ECG Signal with Noise (Baseline Wander, Powerline, and Muscle Artifacts)');
grid on;
Screen shot the result and analyze it

Task 4
Put comments to this this code (explain the signification)
fs = 500;
T = 3;
t = 0:1/fs:T;
Task 4.1, simulate an ECG signal
Copy this code then run it
% Define heartbeat frequency
HR = 60; % Heart rate (bpm)
f = HR / 60; % Convert to Hz (cycles per second)
% ECG wave components using Gaussian pulses
P_wave = 0.1 * exp(-((t - 0.2) / 0.05).^2);
Q_wave = -0.15 * exp(-((t - 0.3) / 0.02).^2);
R_wave = 1.0 * exp(-((t - 0.32) / 0.01).^2);
S_wave = -0.25 * exp(-((t - 0.35) / 0.02).^2);
T_wave = 0.2 * exp(-((t - 0.6) / 0.1).^2);
% Sum the components to form the ECG cycle
ECG_cycle = P_wave + Q_wave + R_wave + S_wave + T_wave;
% Create 3 cycles by repeating the waveform
ECG_signal = repmat(ECG_cycle, 1, 3);
% Adjust time vector accordingly
t = linspace(0, 3, length(ECG_signal));
% Plot ECG signal
figure;
plot(t, ECG_signal, 'k');
xlabel('Time (s)');
ylabel('Amplitude');
title('Simulated ECG Signal (3 Heartbeats)');
grid on;
Extract the typical ECG wave characteristics in the table bellow
	Wave
	Amplitude (mV)
	Duration (s)
	Description

	P
	
	
	

	Q
	
	
	

	R
	
	
	

	S
	
	
	

	T
	
	
	

Task 4.2, add a noise
clc; clear; close all;

fs = 500; % Sampling frequency (Hz)
T = 3; % Duration (seconds)
t = 0:1/fs:1; % One heartbeat duration (1s for 60 BPM)

% ECG wave components (fine-tuned)
P_wave = 0.15 * exp(-((t - 0.2) / 0.045).^2); % P wave
Q_wave = -0.2 * exp(-((t - 0.3) / 0.015).^2); % Q wave
R_wave = 1.0 * exp(-((t - 0.32) / 0.012).^2); % R wave
S_wave = -0.3 * exp(-((t - 0.35) / 0.015).^2); % S wave
[bookmark: _GoBack]T_wave = 0.35 * exp(-((t - 0.62) / 0.1).^2); % T wave

% Summing the waves to form a single ECG heartbeat
ECG_cycle = P_wave + Q_wave + R_wave + S_wave + T_wave;

% Repeat for 3 heartbeats
ECG_signal = repmat(ECG_cycle, 1, 3);

% Adjust time vector for 3 seconds
t = linspace(0, 3, length(ECG_signal));

% --- Adding Noise ---

% 1. Baseline Wander (low-frequency sinusoidal drift, simulating respiration)
baseline_wander = 0.1 * sin(2 * pi * 0.5 * t); % 0.5 Hz slow drift

% 2. Powerline Interference (50 Hz noise)
powerline_noise = 0.05 * sin(2 * pi * 50 * t);

% 3. White Gaussian Noise (simulating muscle noise)
gaussian_noise = 0.02 * randn(size(t));

% Combine ECG signal with noise
ECG_noisy = ECG_signal + baseline_wander + powerline_noise + gaussian_noise;

% Plot ECG signal
figure;
plot(t, ECG_noisy, 'k', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Simulated ECG Signal with Noise (3 Heartbeats)');
grid on;
axis([0 3 -0.7 1.2]); % Set axis limits for clarity
What are the noise we added at the original signal?
You can use this code form more details
% --- Adding Noise ---
% 1. Baseline Wander (low-frequency sinusoidal drift, simulating respiration)
baseline_wander = 0.1 * sin(2 * pi * 0.5 * t); % 0.5 Hz slow drift
% 2. Powerline Interference (50 Hz noise)
powerline_noise = 0.05 * sin(2 * pi * 50 * t);
% 3. White Gaussian Noise (simulating muscle noise)
gaussian_noise = 0.02 * randn(size(t));
figure;
plot(t, baseline_wander, 'r', 'LineWidth', 1); hold on;
plot(t, powerline_noise, 'b', 'LineWidth', 1);
plot(t, gaussian_noise, 'g', 'LineWidth', 1);
legend('Baseline Wander', 'Powerline Noise (50 Hz)', 'White Gaussian Noise');
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Added Noise Components');
grid on;
Task 5, filter the signal
Task 5.1, add one noise (power line noise)
To make it easy we will add just one noise at the simulated ECG signal, you can use this code
clc; clear; close all;
fs = 500; % Sampling frequency (Hz)
T = 3; % Duration (seconds)
t = 0:1/fs:1; % One heartbeat duration (1s for 60 BPM)
% ECG wave components (fine-tuned)
P_wave = 0.15 * exp(-((t - 0.2) / 0.045).^2); % P wave
Q_wave = -0.2 * exp(-((t - 0.3) / 0.015).^2); % Q wave
R_wave = 1.0 * exp(-((t - 0.32) / 0.012).^2); % R wave
S_wave = -0.3 * exp(-((t - 0.35) / 0.015).^2); % S wave
T_wave = 0.35 * exp(-((t - 0.62) / 0.1).^2); % T wave
% Summing the waves to form a single ECG heartbeat
ECG_cycle = P_wave + Q_wave + R_wave + S_wave + T_wave;
% Repeat for 3 heartbeats
ECG_signal = repmat(ECG_cycle, 1, 3);
% Adjust time vector for 3 seconds
t = linspace(0, 3, length(ECG_signal));
% --- Adding Noise ---
% 2. Powerline Interference (50 Hz noise)
powerline_noise = 0.05 * sin(2 * pi * 50 * t);
% Combine ECG signal with noise
ECG_noisy = ECG_signal + powerline_noise;
% Plot ECG signal
figure;
plot(t, ECG_noisy, 'k', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Simulated ECG Signal with Noise (3 Heartbeats)');
grid on;
axis([0 3 -0.7 1.2]); % Set axis limits for clarity
Task 5.2, filter the noise
We can design a low pass filter for this task use the flowing code
clc; clear; close all;
pkg load signal; % Load the signal processing package
graphics_toolkit("gnuplot"); % Ensure plotting works in Octave

fs = 500; % Sampling frequency (Hz)
T = 3; % Duration (seconds)
t = 0:1/fs:1; % One heartbeat duration (1s for 60 BPM)

% --- ECG Wave Components ---
P_wave = 0.15 * exp(-((t - 0.2) / 0.045).^2);
Q_wave = -0.2 * exp(-((t - 0.3) / 0.015).^2);
R_wave = 1.0 * exp(-((t - 0.32) / 0.012).^2);
S_wave = -0.3 * exp(-((t - 0.35) / 0.015).^2);
T_wave = 0.35 * exp(-((t - 0.62) / 0.1).^2);

% --- Summing the waves ---
ECG_cycle = P_wave + Q_wave + R_wave + S_wave + T_wave;
ECG_signal = repmat(ECG_cycle, 1, 3); % Repeat for 3 heartbeats
t = linspace(0, 3, length(ECG_signal)); % Adjust time vector

% --- Adding Noise ---
powerline_noise = 0.05 * sin(2 * pi * 50 * t); % 50 Hz interference
ECG_noisy = ECG_signal + powerline_noise;

% --- Low-Pass Filter Design ---
fc = 40; % Cutoff frequency (Hz) - Keeps important ECG features
order = 4; % Filter order
[b, a] = butter(order, fc / (fs / 2), 'low'); % Low-pass Butterworth filter

% --- Apply the Low-Pass Filter ---
ECG_filtered = filter(b, a, ECG_noisy);

% --- Plot Results ---
figure(1);
subplot(2,1,1);
plot(t, ECG_noisy, 'r', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Noisy ECG Signal (with 50 Hz interference)');
grid on;
axis([0 3 -0.7 1.2]);

subplot(2,1,2);
plot(t, ECG_filtered, 'b', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Filtered ECG Signal (Low-Pass Filter Applied)');
grid on;
axis([0 3 -0.7 1.2]);

drawnow; % Force plot update in Octave

Compare the filtered signal and the noisy signal

Task 6, perform an FFT to the signal
You can use this code
clc; clear; close all;
pkg load signal; % Load the signal processing package
graphics_toolkit("gnuplot"); % Ensure plotting works in Octave

fs = 500; % Sampling frequency (Hz)
T = 3; % Duration (seconds)
t = 0:1/fs:1; % One heartbeat duration (1s for 60 BPM)

% --- ECG Wave Components ---
P_wave = 0.15 * exp(-((t - 0.2) / 0.045).^2);
Q_wave = -0.2 * exp(-((t - 0.3) / 0.015).^2);
R_wave = 1.0 * exp(-((t - 0.32) / 0.012).^2);
S_wave = -0.3 * exp(-((t - 0.35) / 0.015).^2);
T_wave = 0.35 * exp(-((t - 0.62) / 0.1).^2);

% --- Summing the waves ---
ECG_cycle = P_wave + Q_wave + R_wave + S_wave + T_wave;
ECG_signal = repmat(ECG_cycle, 1, 3); % Repeat for 3 heartbeats
t = linspace(0, 3, length(ECG_signal)); % Adjust time vector

% --- Adding Noise ---
powerline_noise = 0.05 * sin(2 * pi * 50 * t); % 50 Hz interference
ECG_noisy = ECG_signal + powerline_noise;

% --- Low-Pass Filter Design ---
fc = 40; % Cutoff frequency (Hz) - Keeps important ECG features
order = 4; % Filter order
[b, a] = butter(order, fc / (fs / 2), 'low'); % Low-pass Butterworth filter

% --- Apply the Low-Pass Filter ---
ECG_filtered = filter(b, a, ECG_noisy);

% --- FFT Analysis ---
N = length(ECG_noisy); % Length of the signal
f = (0:N-1) * fs / N; % Frequency vector
ECG_noisy_fft = abs(fft(ECG_noisy)); % FFT of noisy signal
ECG_filtered_fft = abs(fft(ECG_filtered)); % FFT of filtered signal

% --- Plot Time Domain and Frequency Domain ---
figure;

% Time Domain Plot
subplot(2,1,1);
plot(t, ECG_noisy, 'r', 'LineWidth', 1.2);
hold on;
plot(t, ECG_filtered, 'b', 'LineWidth', 1.2);
xlabel('Time (s)');
ylabel('Amplitude (mV)');
title('Noisy ECG vs Filtered ECG in Time Domain');
legend('Noisy ECG', 'Filtered ECG');
grid on;
axis([0 3 -0.7 1.2]);

% Frequency Domain Plot
subplot(2,1,2);
plot(f, ECG_noisy_fft, 'r', 'LineWidth', 1.2);
hold on;
plot(f, ECG_filtered_fft, 'b', 'LineWidth', 1.2);
xlabel('Frequency (Hz)');
ylabel('Amplitude');
title('Frequency Spectrum of Noisy and Filtered ECG');
legend('Noisy ECG FFT', 'Filtered ECG FFT');
xlim([0 100]); % Focus on the relevant frequency range
grid on;
drawnow; % Force plot update in Octave

Which figure shows the frequency domain?
Does the bottom plot show the frequency spectrum for both the noisy and the filtered signals?
Do we limit the x-axis to 100 Hz to zoom in on the frequency range of interest (e.g., powerline noise at 50 Hz)?
Does the top plot show both the noisy and filtered signals in the time domain?
In the time domain, can you observe the difference between the noisy and filtered ECG signals?
In the frequency domain, can you identify the powerline interference at 50 Hz in the noisy signal (visible as a spike at 50 Hz)? After filtering, should this spike be reduced or removed, confirming the effectiveness of the low-pass filter?
Does this analysis allow you to understand how the low-pass filter reduces high-frequency noise and preserves the important components of the ECG signal?

Conclusion

image1.png
()

Jetlowl Yosdnals | pylall ail 4
Fo@AEF L3S OCATH | el |1L.00,C
UNIVERSITE MOULAY ISMAIL | FACULTE DES SCIENCES

image2.png

