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Corrections series 2 

Exercise 1  

1. What is the primary purpose of using a 

filter in signal processing? 

 A) To remove noise and unwanted 

components 

 B) To increase signal amplitude 

 C) To convert an analog signal to a digital 

signal 

 D) To change the signal’s sampling rate 

2 How does a high-pass filter differ from a 

low-pass filter? 

 A) A high-pass filter removes high 

frequencies 

 B) A low-pass filter removes low 

frequencies 

 C) A high-pass filter allows high 

frequencies to pass through 

 D) Both (B) and (C) 

3 What type of filter is best for removing 

low-frequency baseline wander in ECG 

signals? 

 A) Notch Filter 

 B) High-pass Filter 

 C) Low-pass Filter 

 D) Band-stop Filter 

4. What is the main difference between 

FIR and IIR filters? 

 A) FIR filters have feedback, IIR filters 

do not 

 B) IIR filters have feedback, FIR filters do 

not 

 C) FIR filters use recursion, IIR filters do 

not 

 D) FIR filters require fewer coefficients 

than IIR filters 

5. What is an advantage of FIR filters over 

IIR filters? 

 A) Always more efficient than IIR filters 

 B) Always require fewer computations 

 C) Always have a linear phase response 

 D) Can approximate analog filters exactly 

6. How do you determine the order of a 

digital filter? 

 A) By the highest power of the 

denominator polynomial 

 B) By the number of taps in an FIR filter 

 C) By the number of poles and zeros in 

the transfer function 

 D) All of the above 

7. How does the wavelet transform differ 

from the Fourier transform? 

 A) Wavelet transform provides both time 

and frequency information 

 B) Fourier transform provides time 

information only 

 C) Wavelet transform does not decompose 

signals into frequencies 

 D) Both are the same 

8. What is a major application of wavelet 

transform? 

 A) Image compression 

 B) DC voltage regulation 

 C) Digital modulation 

 D) Time-domain convolution 

9. Why is multi-resolution analysis useful 

in wavelet transform? 

 A) It allows for zooming into different 

frequency components 

 B) It improves the speed of the Fourier 

Transform 

 C) It enhances the power spectrum 

 D) It only works for stationary signals 

10. What is the delta function δ[n] in 

discrete-time signals? 

 A) A unit step function 

 B) A function that is 1 for n=0 and 0 

otherwise 
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 C) A function used only in Fourier 

analysis 

 D) A function that is 1 for all n 

11. How is the delta transform used in 

signal processing? 

 A) To transform discrete signals into the 

frequency domain 

 B) To simplify difference equations 

 C) To represent impulse responses 

 D) All of the above 

12. What is the region of convergence 

(ROC) in Z-transform analysis? 

 A) The region where the Fourier series 

converges 

 B) The set of values for which the Z-

transform is finite 

 C) The area in a Fourier transform plot 

 D) The phase response of a signal 

13. What is a notch filter commonly used 

for? 

 A) Removing high-frequency noise 

 B) Removing a specific frequency band 

 C) Amplifying low frequencies 

 D) Removing low-frequency noise 

14. What type of noise does a 60 Hz 

Notch Filter remove from an EEG signal? 

 A) Muscle artifact noise 

 B) Power line interference 

 C) Electrode movement noise 

 D) High-frequency noise 

15. How does a notch filter affect the 

frequency response of a signal? 

 A) It amplifies all frequencies equally 

 B) It removes a specific frequency while 

preserving others 

 C) It increases the overall power of the 

signal 

 D) It applies a low-pass filtering effect 

16. What does the Fourier Transform do? 

 A) Converts a signal into the time domain 

 B) Converts a time-domain signal into its 

frequency components 

 C) Increases the amplitude of a signal 

 D) Reduces the length of a signal 

17. What is the difference between the 

Fourier Transform and the Laplace 

Transform? 

 A) Fourier Transform is used only for 

continuous signals 

 B) Laplace Transform includes complex 

frequency analysis 

 C) Fourier Transform cannot be applied to 

biomedical signals 

 D) There is no difference 

18. How does the DTFT differ from the 

DFT? 

 A) DTFT is continuous, DFT is discrete 

 B) DTFT is computed only for finite-

length signals 

 C) DTFT is periodic in time 

 D) DFT and DTFT are identical 

19. How does the sampling frequency 

affect the DTFT spectrum? 

 A) Higher sampling frequency reduces 

aliasing 

 B) Lower sampling frequency improves 

resolution 

 C) Sampling frequency has no effect on 

DTFT 

 D) DTFT works only at Nyquist rate 

20. What is the advantage of using FFT 

instead of DFT? 

 A) FFT is faster and computationally 

efficient 

 B) FFT provides more accurate results 

 C) FFT requires fewer memory resources 

 D) Both (A) and (C) 

21. How is the DFT matrix constructed? 

 A) Using exponential functions 

 B) Using sine and cosine functions 

 C) Using convolution operations 

 D) By applying Laplace Transform 

22. What are the two main properties of a 

Linear Time-Invariant (LTI) system? 

 A) Linearity and Stability 

 B) Time-invariance and Causality 

 C) Linearity and Time-invariance 

 D) Causality and Boundedness 
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23. How can convolution be used to 

analyze LTI systems? 

 A) It determines the system's frequency 

response 

 B) It finds the system's impulse response 

 C) It calculates the system's stability 

 D) It is not used for LTI analysis 

24. Why is the impulse response important 

in LTI systems? 

 A) It determines how the system behaves 

for all inputs 

 B) It is only useful for continuous-time 

signals 

 C) It cannot be used for FIR filters 

 D) It is only used in electrical circuits 

Exercise2 Quiz Questions: 

1. The primary purpose is to remove unwanted noise or frequency components while 

preserving the desired signal. 

2. A high-pass filter allows high frequencies to pass and attenuates low frequencies. 

A low-pass filter allows low frequencies to pass and attenuates high frequencies. 

3. Low-pass filter (LPF), High-pass filter (HPF), Band-pass filter (BPF), Band-stop filter 

(Notch filter), All-pass filter 

4.  

Feature FIR IIR 

Feedback No Yes 

Stability Always stable Can be unstable 

Phase Response Linear (predictable) Nonlinear (distorted) 

Order Higher order required Lower order sufficient 

5. FIR filters have a linear phase response, meaning they do not introduce 

phase distortion, which is crucial for some applications like image and audio 

processing. 

6. The order of a filter is determined by: 

The number of past input (FIR) or past output (IIR) terms in the difference equation. 

The steepness of the transition band (higher order = sharper cutoff). 

Design criteria like stopband attenuation and passband ripple. 

7. The key differences between the Wavelet Transform (WT) and the Fourier 

Transform (FT) are: 

Feature Fourier Transform (FT) Wavelet Transform (WT) 

Representation 
Uses sinusoids (global basis 

functions) 

Uses wavelets (localized basis 

functions) 
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Feature Fourier Transform (FT) Wavelet Transform (WT) 

Time-Frequency 

Resolution 

Provides only frequency 

information, no time localization 

Provides both time and 

frequency information 

Best for 

Analyzing stationary signals 

(where frequency content does not 

change over time) 

Analyzing non-stationary signals 

(where frequency content changes 

over time) 

Drawback Loses time-domain information Requires more computation 

 FT is useful for signals with consistent frequency content, such as pure tones. 

 WT is better for analyzing transients, sharp changes, and irregular patterns, 

making it ideal for real-world signals like EEG and ECG. 

8. Wavelet Transform is widely used in biomedical signal processing due to its 

ability to analyze signals with time-varying frequency content. Some key 

applications include: 

ECG (Electrocardiogram) Analysis 

o Detecting R-peaks and arrhythmias 

o Removing baseline wander and noise 

EEG (Electroencephalogram) Processing 

o Identifying epileptic seizures 

o Detecting brain wave abnormalities 

EMG (Electromyogram) Analysis 

o Identifying muscle fatigue 

o Detecting neuromuscular disorders 

Medical Imaging 

o Wavelet-based image compression (JPEG 2000) 

o Noise reduction in MRI & CT scans 

9.  Multi-resolution analysis (MRA) is one of the biggest advantages of the 

Wavelet Transform. It allows us to analyze a signal at different levels of detail 

by decomposing it into: 

 Low-frequency components (approximation coefficients) → Capture global trends 

 High-frequency components (detail coefficients) → Capture sharp changes 
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Key Advantages of Multi-Resolution Analysis: 

Better Feature Extraction 

o Helps detect both slow and fast changes in the signal. 

Improved Noise Removal 

o Can selectively remove unwanted noise while keeping important features. 

Efficient Data Compression 

o Reduces data size without losing important information (used in JPEG 2000). 

Example in ECG Processing: 

 Low-frequency wavelets capture baseline drift (slow changes). 

 High-frequency wavelets detect QRS complexes and arrhythmias (fast changes). 

10.  The unit impulse function, denoted as δ[n], is a discrete-time signal that is 

zero for all values of n except for n=0 1. Mathematically: 

𝛿[𝑛] = {
1 𝑖𝑓 𝑛 = 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

It is often used in signal processing to model sudden or instantaneous changes and is the 

discrete equivalent of the Dirac delta function in continuous time. 

11. The Delta Transform is closely related to the Z-Transform and is used to analyze signals 

by converting them from the time domain to the frequency domain. It helps represent discrete-

time signals in terms of their impulse responses and allows for the analysis of system 

behaviors (such as stability and frequency response) by examining their Z-domain 

representations. 

12. The Delta Transform (also known as the Z-Transform) and the Fourier Transform are 

both used for signal analysis, but they differ in the following ways: 

 Delta Transform (Z-Transform): 

The Z-Transform is a generalized form of the Fourier Transform that uses a complex 

variable 𝑧 = 𝑟𝑒𝑗𝜔 It is used to analyze discrete-time signals with respect to both time 

and frequency, and can handle non-periodic signals as well as causal and stable 

systems. 

 Fourier Transform: 

The Fourier Transform is a special case of the Z-Transform with = 𝑟𝑒𝑗𝜔, and it is 

used primarily to analyze periodic signals in terms of their frequency content. It only 

works for signals that are periodic and can be applied in both continuous-time and 

discrete-time domains. 
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In summary: 

 Z-Transform: More general, handles all types of signals. 

 Fourier Transform: Special case of Z-Transform, focused on periodic signals. 

13. The DTFT (Discrete-Time Fourier Transform) and the DFT (Discrete Fourier 

Transform) are related in that both transform a discrete-time signal from the time domain to 

the frequency domain. The key differences between the two are: 

 DTFT: The DTFT of a discrete-time signal is continuous and periodic in the 

frequency domain. It provides a frequency spectrum for an infinite sequence (or a 

long sequence, if we consider a periodic extension), and the result is a continuous 

function of frequency. 

 DFT: The DFT is a discrete approximation of the DTFT, used to compute the 

frequency spectrum for a finite sequence. It is a sampled version of the DTFT, where 

the signal is discretized in both time and frequency. The DFT is periodic, and the 

frequency resolution is limited by the length of the signal. 

In short, the DFT is a sampled version of the DTFT. When the length of the signal increases 

and the sampling rate is high, the DFT approaches the continuous DTFT. 

14. The sampling frequency affects the DTFT spectrum by determining the frequency 

resolution of the transformed signal. When sampling a continuous-time signal, the DTFT 

captures the frequency content over a continuous range of frequencies. The sampling frequency 

dictates how finely this spectrum is "sampled." 

 Higher sampling frequency: Results in a more finely sampled DTFT spectrum, 

allowing for better frequency resolution and a more detailed representation of the 

signal's frequency components. 

 Lower sampling frequency: Reduces the frequency resolution and can lead to 

aliasing, where high-frequency components of the signal fold back into the lower 

frequency range, distorting the DTFT. 

In summary, the sampling frequency impacts the spacing between the frequency components 

in the DTFT spectrum, and it must be sufficiently high to avoid aliasing and capture all relevant 

frequency components. 

15. The periodicity of the DTFT is one of its fundamental properties. Specifically, the DTFT 

of any discrete-time signal is periodic with a period of 2π. This means that after every 2π 

radians, the frequency content repeats itself. 

This periodicity arises because the underlying discrete-time signal is periodic in nature (due to 

sampling), and thus, its frequency spectrum must also repeat at regular intervals. The 

periodicity of the DTFT allows us to analyze the signal over a single interval (usually from −π-

\pi−π to π\piπ) and understand its frequency content fully without needing to analyze the entire 

spectrum. 
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16. A Notch Filter is primarily used to remove specific narrow-band interference in biomedical 

signal processing, such as power line noise (50/60 Hz), electromyographic (EMG) artifacts, 

or any other frequency components that can distort the physiological signal. In EEG and ECG, 

the Notch Filter removes unwanted interference without significantly affecting the signal of 

interest. 

17. A Notch Filter is designed to attenuate a narrow range of frequencies around a central 

notch frequency, leaving the other frequencies largely unaffected. It works by creating a deep 

dip in the frequency response at the specified frequency (e.g., 60 Hz) and passing all other 

frequencies. This characteristic allows it to effectively remove noise at a specific frequency 

while preserving the rest of the signal. 

18. Notch Filters have several practical applications, including: 

 Power line interference removal in biomedical signals, such as EEG, ECG, and 

EMG. 

 Audio processing to remove hum noise at specific frequencies (e.g., 50 Hz or 60 Hz). 

 Communication systems, where specific interference frequencies need to be filtered 

out. 

 Signal processing in electrical systems to remove undesirable noise or harmonics at 

specific frequencies. 

19. Fourier Transform is typically used to analyze periodic signals and represents 

a signal as a sum of sinusoidal components with specific frequencies. It works 

only for signals that are stable and decay to zero as t→∞ (i.e., they are absolutely 

integrable). The Fourier Transform maps a signal from the time domain to the 

frequency domain, providing information about the signal's frequency content. 

  Laplace Transform is more general and can be used for a broader range of signals, 

including those that are non-periodic and have transient behaviors (e.g., decaying or 

growing exponentially). It works in both the s-domain (complex frequency) and can 

describe signals that are not absolutely integrable. The Laplace Transform provides 

both magnitude and phase information of the signal, and it is particularly useful for 

analyzing systems and their stability. 

20. The Fourier Transform represents a signal as a sum of sinusoidal waves 

(sines and cosines), each corresponding to a particular frequency. The result is 

a spectrum where the frequency (or angular frequency) corresponds to the 

components of the signal, and the amplitude of each frequency component 

represents how much of that frequency is present in the original signal. This 

transforms a time-domain signal into a frequency-domain signal, showing the 

distribution of energy or signal strength at different frequencies. 

In other words, it breaks down the signal into its constituent sinusoidal components, 

allowing us to see how much of each frequency is contributing to the overall signal. 

This is particularly useful for analyzing periodic behavior and identifying frequency 

components like noise or harmonics. 

21. Magnitude Spectrum: This tells you how much of each frequency is present 

in the signal. It provides information about the strength or amplitude of the 

frequency components. The magnitude spectrum is often used to understand 

the power distribution across frequencies in a signal. 
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Phase Spectrum: This describes the phase shift (or timing) of each frequency 

component relative to a reference point. It provides insight into how the 

signal's frequency components are aligned with respect to one another in time. 

The phase spectrum is essential for reconstructing the original signal from its 

frequency components and is particularly important in signal transmission and 

modulation. 

Together, the magnitude and phase spectra completely characterize the frequency 

content of the signal. The magnitude spectrum gives information about the signal's 

intensity across frequencies, while the phase spectrum provides information about the 

temporal alignment of those frequencies. 

22. The primary difference between the Discrete Time Fourier Transform 

(DTFT) and the Discrete Fourier Transform (DFT) is: 

 DTFT is a continuous frequency transform that applies to discrete-time signals of 

infinite length, and it produces a continuous spectrum. It is defined for all real-

valued frequencies and is typically used for theoretical analysis. 

 DFT, on the other hand, is a finite-sampled version of the DTFT and is defined for 

periodic signals. The DFT computes the frequency content of a discrete-time signal 

that is sampled over a finite time duration, producing a finite set of frequency bins. It 

is used for practical signal processing and analysis with a finite set of data points. 

23.  Computational Efficiency: FFT significantly reduces the computational 

complexity of DFT. A direct DFT computation requires O(NXN), while FFT 

reduces it to O(NlogN), making it much faster for large datasets. 

  Real-time Processing: Due to its faster computation, FFT is ideal for real-time 

signal processing, especially when handling large datasets or signals. 

23. How is the DFT matrix constructed? 

The DFT matrix is a complex-valued matrix that is used to transform a sequence from 

the time domain to the frequency domain. The elements of the matrix are based on the 

complex exponential function, which encodes the frequency components of the signal. 

Each element of the matrix is a complex exponential, where: 

 

24.  
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25. Convolution is a mathematical operation used to analyze LTI systems by 

determining the output of the system when a given input signal is passed 

through it. The output of an LTI system can be calculated by convolving the 

input signal with the system's impulse response h[n]. The process of 

convolution for discrete-time signals is given by: 

 

This operation essentially sums the weighted contributions of past inputs to the current 

output, with the weights being determined by the impulse response of the system. 

 What is the significance of the impulse response? 

The impulse response h[n] of an LTI system is the system's output when the input is a unit 

impulse δ[n]. It is a key characteristic of the system because: 

 The impulse response completely characterizes the behavior of an LTI system. Once 

the impulse response is known, the system's output for any input can be determined 

using convolution. 

 It provides insight into how the system responds to different frequencies, as it 

encapsulates the system’s dynamics. 

 The impulse response is essential for system analysis in both the time domain and the 

frequency domain, as it can be related to the system’s transfer function or frequency 

response through the Fourier Transform. 

Exercise 3:  

1. Analog filters operate on continuous-time signals using electronic components 

(resistors, capacitors). 
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Digital filters operate on discrete-time signals using mathematical computations (FIR/IIR 

filters). 

2. IIR filters use past outputs (feedback) to create an infinite-duration response. 

FIR filters only use past inputs, so they do not need feedback, making them 

inherently stable. 

Describe one practical application of Wavelet Transform in bio signal. 

The ECG signal is non-stationary, meaning its frequency content changes over time. 

Traditional methods like Fourier Transform (FT) fail to analyze such signals effectively 

because FT provides only frequency information but no time localization. 

Wavelet Transform solves this problem by providing both time and frequency resolution. It 

allows multi-resolution analysis (MRA), which helps in detecting: 

Baseline Wander Removal 

 Low-frequency noise caused by respiration and electrode movement can be removed 

using low-pass wavelet coefficients. 

QRS Complex Detection 

 The QRS complex (the sharp peak in an ECG) contains high-frequency components, 

which can be identified using high-pass wavelet coefficients. 

Arrhythmia & Abnormality Detection 

 Different heart conditions (e.g., atrial fibrillation, tachycardia) cause specific 

changes in ECG waveforms, which can be detected through wavelet-based feature 

extraction. 

Example of Wavelet-Based ECG Processing 

✔ Denoising: Removing motion artifacts and power-line interference. 

✔ Feature Extraction: Identifying P-waves, QRS complexes, and T-waves. 

✔ Classification: Using wavelet coefficients for diagnosing heart diseases. 

Why Use Wavelet Transform for ECG Analysis? 

Feature Fourier Transform (FT) Wavelet Transform (WT) 

Time-Frequency 

Resolution 

Only frequency, no time 

information 
Both time and frequency 
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Feature Fourier Transform (FT) Wavelet Transform (WT) 

Best for Stationary signals 
Non-stationary signals like 

ECG 

Noise Removal Less effective Highly effective 

Feature Extraction Limited 
Superior for detecting cardiac 

events 

Conclusion 

Wavelet Transform is a powerful tool in ECG analysis, enabling accurate detection of heart 

abnormalities, noise removal, and feature extraction. It is widely used in wearable heart 

monitors, hospital ECG machines, and AI-driven heart disease detection systems. 

3. Explain the significance of the unit impulse function in system analysis. 

The unit impulse function δ[n]\delta[n]δ[n] plays a crucial role in system analysis because it 

is used to determine the system's response to an instantaneous input. The response of a system 

to δ[n]\delta[n]δ[n] is called the impulse response, denoted as h[n]h[n]h[n]. By knowing the 

impulse response of a system, we can predict how the system will respond to any arbitrary 

input using convolution. The impulse function is fundamental in linear time-invariant (LTI) 

system analysis, as it serves as a building block for analyzing and understanding the behavior 

of complex systems. The impulse response can be used to characterize system properties such 

as stability, causality, and frequency response. 

4. Why is a Notch Filter commonly used in ECG and EEG signal processing? 

A Notch Filter is commonly used in ECG (electrocardiogram) and EEG 

(electroencephalogram) signal processing to remove power line interference (typically at 50 

Hz or 60 Hz). This interference, often caused by the electrical mains, can obscure the 

physiological signals of interest. A Notch Filter effectively removes this interference while 

leaving the underlying heart or brain activity largely unaffected, thereby improving the signal 

quality and making it easier to analyze. 

5. Why is the Fourier Transform useful in signal processing? 

The Fourier Transform is essential in signal processing because it allows us to analyze a 

signal in the frequency domain, which is crucial for understanding and manipulating the 

signal's frequency content. By transforming a signal from the time domain to the 

frequency domain, we can easily identify and filter out noise, detect periodic components, 

and understand the signal's characteristics in terms of its frequency components. It also 

plays a key role in compression, modulation, and signal analysis, making it a foundational 

tool in many areas of engineering, communications, and physics. 

6. How does the DTFT differ from the Fourier Transform? 
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The DTFT (Discrete-Time Fourier Transform) and the Fourier Transform both decompose 

signals into their frequency components, but they apply to different types of signals: 

 DTFT: The DTFT is used for discrete-time signals (sequences). It transforms a 

sequence into a continuous frequency spectrum. The result is a periodic spectrum with 

infinite resolution, which is typically represented in the range from −π-\pi−π to π\piπ. 

The DTFT is especially useful for analyzing signals that are already sampled or 

inherently discrete. 

 Fourier Transform (FT): The Fourier Transform is generally used for continuous-

time signals. It converts a time-domain signal into a continuous spectrum, which 

represents the signal's frequency content over all possible frequencies. 

In essence, the DTFT is a special case of the Fourier Transform applied to discrete-time 

signals, where the frequency spectrum is periodic and continuous, whereas the Fourier 

Transform applies to continuous-time signals and produces a continuous, non-periodic 

spectrum. 

7. Why is the DFT always computed using the FFT algorithm? 

The DFT is often computed using the FFT algorithm because the FFT provides a much 

more efficient method for calculating the DFT. The FFT reduces the time complexity 

from O(NXN) (for the direct DFT calculation) to O(NlogN), making it significantly 

faster, especially for large datasets. This efficiency gain allows for real-time processing of 

signals and large-scale computations, which would be computationally expensive with the 

direct DFT method. 

8. How does superposition help determine if a system is linear? 

The principle of superposition helps determine if a system is linear by verifying whether 

the system satisfies the additivity and homogeneity properties. In simple terms, a system 

is linear if the response to a combination of inputs is the same as the combination of the 

responses to each input individually. 

 Additivity: If a system responds to two signals x1[n] and x2[n], then the system's 

response to x1[n]+x2[n] should be the sum of the individual responses. 

 Homogeneity: If the system responds to a signal x[n], then for any constant a, the 

response to a⋅x[n] should be a times the original response. 

By testing these properties, superposition ensures that the system is linear. If a system 

violates either property, it is not linear. 

Exercise 4 

We can use a Finite Impulse Response (FIR) filter using the window method or an Infinite 

Impulse Response (IIR) filter like a Butterworth filter. 

Using this code (Hamming windows) is a FIR filter 

pkg load signal  % Load the signal processing package 
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fs = 2000;          % Sampling frequency in Hz 

fc = 500;           % Cutoff frequency in Hz 

N = 50;             % Filter order 

wn = fc / (fs / 2); % Normalized cutoff frequency (0 to 1) 

 

% Design low-pass FIR filter using Hamming window 

b = fir1(N, wn, 'low', hamming(N+1)); 

 

% Frequency response 

freqz(b, 1, 1024, fs);  % Plot frequency response 

title('Low-pass FIR Filter (Cutoff = 500 Hz)'); 

 

Using this code (Butterworth) is an IIR filter 

pkg load signal  % Load the signal package 

 

fs = 2000;          % Sampling frequency (Hz) 

fc = 500;           % Cutoff frequency (Hz) 

N = 4;              % Filter order (adjustable) 

 

% Normalize the cutoff frequency 

wn = fc / (fs / 2);  % Normalize with respect to Nyquist freq 

 

% Design Butterworth filter 

[b, a] = butter(N, wn, 'low'); 

 

% Plot frequency response 

freqz(b, a, 1024, fs); 

title('Butterworth Low-pass Filter (Cutoff = 500 Hz)'); 
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 IIR filters are more efficient because they require fewer coefficients. 

 The Butterworth filter provides a maximally flat response. 

Justification: 

 FIR is used when linear phase is required. 

 IIR is used when computational efficiency is preferred. 

Exercise 5: 

This is an IIR (Infinite Impulse Response) filter because:  

The equation contains a recursive term (0.5y[n-1]), meaning the output depends on past 

outputs. IIR filters always have feedback, while FIR filters do not. 

Compute the output for x[n]={1,2,3,4}, assuming y[−1]=0  

We compute the output step by step: 

n y[n] Calculation Result 

0 y[0]=0.5⋅y[−1]+x[0]−x[−1]=0.5⋅0+1−0=1 1 

1 y[1]=0.5⋅y[0]+x[1]−x[0]=0.5⋅1+2−1=1.5 1.5 

2 y[2]=0.5⋅y[1]+x[2]−x[1]=0.5⋅1.5+3−2=1.75 1.75 

3 y[3]=0.5⋅y[2]+x[3]−x[2]=0.5⋅1.75+4−3=1.875 1.875 

use this code to compute the results 

 
pkg load signal  % Load signal package 

% Input signal 
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x = [1, 2, 3, 4]; 

% Filter coefficients 

b = [1, -1];      % Numerator (x[n] - x[n-1]) 

a = [1, -0.5];    % Denominator (y[n] - 0.5*y[n-1]) 

% Compute output 

y = filter(b, a, x); 

% Display result 

disp('Output y[n]:'); 

disp(y); 

Exercises 6. Wavelet Transform 

The Haar wavelet transform is the simplest wavelet transform, often used in signal 

processing. It is particularly useful for analyzing signals with sharp changes because of its 

step-like nature. 

Wavelet transforms decompose a signal into different frequency components while 

preserving time-domain information, unlike the Fourier Transform, which only provides 

frequency information. 

Wavelet transforms analyze signals at multiple scales by breaking them down into: 

 Low-frequency components (Approximation coefficients) → Capture the general 

trend of the signal. 

 High-frequency components (Detail coefficients) → Capture rapid changes in the 

signal. 

Unlike the Fourier Transform, which represents signals as sums of sinusoids, wavelets are 

localized in both time and frequency, allowing better detection of transient features. 

Octave Code for Haar Wavelet Transform 

Let's generate a signal, apply the Haar wavelet transform, and visualize the results. 

% Define a sample signal (e.g., step-like signal) 

x = [1 2 3 4 4 3 2 1]; 

N = length(x); 

 

% Initialize coefficient vectors 

cA = zeros(1, N/2);  % Approximation coefficients (low frequencies) 

cD = zeros(1, N/2);  % Detail coefficients (high frequencies) 
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% Perform 1-level Haar wavelet transform 

for k = 1:2:N 

    i = (k+1)/2; 

    cA(i) = (x(k) + x(k+1)) / sqrt(2);  % Average 

    cD(i) = (x(k) - x(k+1)) / sqrt(2);  % Difference 

end 

 

% Plotting results 

subplot(3,1,1); 

stem(x, 'b', 'filled'); 

title('Original Signal'); 

xlabel('Sample'); 

ylabel('Amplitude'); 

 

subplot(3,1,2); 

stem(cA, 'r', 'filled'); 

title('Approximation Coefficients (cA)'); 

xlabel('Index'); 

ylabel('Amplitude'); 

 

subplot(3,1,3); 

stem(cD, 'g', 'filled'); 

title('Detail Coefficients (cD)'); 

xlabel('Index'); 

ylabel('Amplitude');Explanation of Results 

1. Original Signal: The input signal is displayed as a sequence of discrete points. 

2. Approximation Coefficients: Represent the low-frequency part, capturing the 

smooth structure of the signal. 

3. Detail Coefficients: Represent the high-frequency part, detecting sharp transitions 

in the signal. 

Wavelet transforms are useful in denoising, feature extraction, and image compression (like 

JPEG 2000). 

Exercise 7: Z-Transform of the Given Sequence 

The Z-Transform of a sequence x[n] is defined as: 𝑋(𝑧) = ∑ 𝑥[𝑛]𝑍−𝑛∞
𝑛=−∞   

Since the sequence x[n]=δ[n]+2δ[n−1]−δ[n−2]  consists of impulse functions, we can compute 

the Z-Transform of each term separately: 

1. Z-Transform of δ[n]: 𝑍{𝛿[𝑛]} = 1  
2. Z-Transform of δ[n−1]: 𝑍{𝛿[𝑛 − 1]} = 𝑧−1  
3. Z-Transform of δ[n−2]]:{𝛿[𝑛 − 2]} = 𝑧−2  
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Thus, the Z-Transform of x[n] is: 𝑋(𝑧) = 1 + 2𝑧−1  − 𝑧−2   

The Region of Convergence (ROC) for the Z-Transform of a signal depends on its causality 

and stability. For this sequence, it is composed of a finite number of impulses, which means 

the ROC is typically the entire complex plane, excluding any singularities of X(z). 

Since X(z)  polynomial in 𝑧−1, it has no poles, so the ROC is: ∣z∣>0 

This indicates that the Z-Transform converges for all values of z except at z=0 

Exercise 8 Notch filters: 

Use this code: 

pkg load signal  % Load the signal processing package 

% Parameters 

fs = 250;        % Sampling frequency in Hz 

f_notch = 60;    % Notch frequency (power line frequency) in Hz 

Q = 30;          % Quality factor (higher Q means a narrower notch) 

% Normalize the notch frequency to Nyquist frequency 

Wn = [f_notch - 1, f_notch + 1] / (fs / 2);  % Create a frequency band around 60 Hz 

% Design a band-stop (Notch) filter using butterworth 

[b, a] = butter(2, Wn, 'stop'); % Band-stop filter 

% Display the filter coefficients 

disp('Filter Coefficients:'); 

disp('Numerator (b):'); 

disp(b); 

disp('Denominator (a):'); 

disp(a); 

% Generate a test EEG signal with 60 Hz interference 

n = 0:499;  % Create 500 samples 

x = sin(2 * pi * 60 * n / fs) + randn(size(n));  % 60 Hz signal with noise 

% Apply the band-stop (Notch) filter to remove 60 Hz interference 

y = filter(b, a, x); 

% Plot the original and filtered signal 

subplot(2, 1, 1); 

plot(n, x); 

title('Original Signal with 60 Hz Interference'); 

xlabel('Time (samples)'); 

ylabel('Amplitude'); 

subplot(2, 1, 2); 

plot(n, y); 

title('Filtered Signal (60 Hz Removed)'); 

xlabel('Time (samples)'); 

ylabel('Amplitude'); 
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To remove the 60 Hz interference, we will design a Notch Filter (a type of band-stop filter) 

with a narrow bandwidth around 60 Hz. The goal of this filter is to attenuate frequencies around 

60 Hz without significantly affecting the rest of the signal spectrum. 

1. Cutoff Frequency: The notch filter should be centered around 60 Hz, i.e., the notch 

filter's frequency is at 60 Hz. 

2. Bandwidth: The bandwidth of the notch filter determines how wide the attenuation 

region is around 60 Hz. A narrower bandwidth provides more precise removal of the 

interference. Typically, a bandwidth of 1-10 Hz is used for this application to ensure 

minimal signal distortion. 

3. Sampling Frequency: The signal is sampled at fs=250. To design the filter, we need 

to convert the frequency specifications to the normalized digital frequency (between 0 

and 1) by dividing by the sampling frequency fs. 

Normalized frequency 𝑓𝑛𝑜𝑡𝑐ℎ = 60 250⁄ = 0.24 f (in cycles per sample). 

4. Filter Type: A second-order notch filter is typically used to remove narrow-band 

interference like power line noise. The filter can be implemented using a IIR (Infinite 

Impulse Response) filter or FIR (Finite Impulse Response) filter, but IIR filters are 

more efficient for this type of design. 

Exrcise 9:  Fourier Transform 

Since u(t) is the unit step function, x(t) = {
0, 𝑡 < 0

𝑒−2𝑡, 𝑡 ≥ 0
 

Apply the Fourier Transform: 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
𝑑𝑡 = ∫ 𝑒−2𝑡𝑒−𝑗2𝜋𝑓𝑡∞

0
𝑑𝑡 

Simplify the Integral Combine the exponentials: 𝑋(𝑓) = ∫ 𝑒−(2+𝑗2𝜋𝑓)𝑡∞

0
𝑑𝑡 =

1

2+𝑗2𝜋𝑓
 

This represents the frequency-domain representation of the signal x(t). 
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Plot the frequency domain as magnitude and phase since 𝑋(𝑓) it is a complex result  

 

We did use this code 

% Define frequency range 

f = linspace(-10, 10, 1000); 

% Analytical Fourier Transform of x(t) = e^(-2t) * u(t) 

Xf = 1 ./ (2 + j*2*pi*f); 

% Plot magnitude and phase 

figure; 

subplot(2,1,1); 

plot(f, abs(Xf), 'b', 'LineWidth', 2); 

xlabel('Frequency (Hz)'); 

ylabel('|X(f)|'); 

title('Magnitude of the Fourier Transform'); 

grid on; 

subplot(2,1,2); 

plot(f, angle(Xf), 'r', 'LineWidth', 2); 

xlabel('Frequency (Hz)'); 

ylabel('Phase of X(f) (radians)'); 
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title('Phase of the Fourier Transform'); 

grid on; 

Exercise 10. DTFT (Discrete-Time Fourier Transform) 

Since the sequence is finite (x[n]={1,2,3,4} for n=0,1,2,3), the DTFT simplifies to: 

𝑋(𝑒𝑗𝜔) =  𝑥[0] + 𝑥[1]𝑒−𝑗𝜔 + 𝑥[2]𝑒−2𝑗𝜔 + 𝑥[3]𝑒−3𝑗𝜔 = 1 + 2𝑒−𝑗𝜔 + 3𝑒−2𝑗𝜔 + 4𝑒−3𝑗𝜔 

Magnitude Spectrum: 

The magnitude spectrum |𝑋(𝑒𝑗𝜔)| = |1 + 2𝑒−𝑗𝜔 + 3𝑒−2𝑗𝜔 + 4𝑒−3𝑗𝜔|is simply the 

magnitude of the DTFT: 

To sketch the magnitude spectrum, you would compute this expression numerically for values 

of ω ranging from –π to π. In practice, this is often done by sampling ω at different points and 

plotting the resulting magnitude. 

Octave Code for DTFT Calculation and Plot: 

You can use Octave (or MATLAB) to compute and plot the DTFT and its magnitude spectrum. 

Here's a simple implementation: 

% Define the sequence x[n] 

x = [1, 2, 3, 4]; 

 

% Define the frequency range for DTFT 

omega = linspace(-pi, pi, 1000); % 1000 points from -pi to pi 

 

% Initialize the DTFT result 

X_omega = zeros(1, length(omega)); 

 

% Compute the DTFT using the formula 

for k = 1:length(omega) 

    X_omega(k) = sum(x .* exp(-1j * omega(k) * (0:length(x)-1))); 

end 

 

% Compute the magnitude spectrum 

magnitude_spectrum = abs(X_omega); 

 

% Plot the magnitude spectrum 

figure; 

plot(omega, magnitude_spectrum); 

title('Magnitude Spectrum of x[n] = {1, 2, 3, 4}'); 

xlabel('\omega'); 

ylabel('|X(e^{j\omega})|'); 

grid on; 
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Explanation of the Plot: 

The plot you generate with this code will show how the magnitude of the DTFT varies with 

frequency. The frequency variable ω\omegaω ranges from −π-\pi−π to π\piπ, and the magnitude 

spectrum shows the strength of each frequency component in the signal. 

 The peaks in the magnitude spectrum correspond to the frequency components where 

the signal has the most energy. 

 The shape of the magnitude spectrum is influenced by the values of the sequence and 

their relative positions in time. 

This visualization helps to analyze the frequency content of the sequence x[n]. 

Exercise 11. DFT (Discrete Fourier Transform) 

Compute the DFT of the sequence: x[n]={0.5,0,1.0,1.5} using 

matrix multiplication and definition of DFT (Discrete 

Fourier Transform). For the sequence x[n] of length N is given 

by the formula 
 

Where: X[k] is the k-th component of the DFT (for k=0,1,2,...,N−1), x[n] is the input sequence 

(for n=0,1,2,...,N−1), N is the length of the sequence. 

The DFT as a matrix multiplication:  
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Where: X is the vector of DFT 

coefficients, x is the input signal 

vector, 𝑊𝑁 is the DFT matrix of 

size N×N, defined as:  

  

For N=4  is: 𝑊4: 

 

 

The input sequence is: 

 

 

we perform the matrix 

multiplication 𝑋 = 𝑊4. 𝑥 to 

compute the DFT 

 

To plot the magnitude spectrum, we calculate the magnitude of each DFT component: 

 

We get then the magnitude spectrum as ∣X∣={3.0,1.58,0.0,1.58}  

To plot the result we can use octave code 

% Define the input sequence 

x = [0.5; 0; 1.0; 1.5];  % Column vector 

N = length(x); 

% Construct the DFT matrix 

W = zeros(N, N); 

for k = 0:N-1 

    for n = 0:N-1 
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        W(k+1, n+1) = exp(-j*2*pi*k*n/N); 

    end 

end 

% Compute the DFT using matrix multiplication 

X = W * x; 

% Display the result 

disp('DFT Coefficients X[k]:'); 

disp(X); 

% Plot the magnitude and phase 

figure; 

subplot(2,1,1); 

stem(0:N-1, abs(X), 'filled'); 

xlabel('k'); ylabel('|X[k]|'); 

title('Magnitude Spectrum'); 

grid on; 

subplot(2,1,2); 

stem(0:N-1, angle(X), 'filled'); 

xlabel('k'); ylabel('∠X[k] (rad)'); 

title('Phase Spectrum'); 

grid on; 
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Exercise 12 Linear Systems 

A system is linear if it satisfies: Additivity: T{x1[n]+x2[n]}=T{x1[n]}+T{x2[n]}and 

Homogeneity (scaling): T{a⋅x[n]}=a⋅T{x[n]} 

Let’s consider: x1[n]: a signal with output y1[n] and : x2[n]: a signal with output y2[n] 

Now apply input x[n]=a⋅x1[n]+b⋅x2 , the output becomes: 

y[n] = 0.5⋅y[n−1]+a⋅x1[n]+b⋅x2[n] = 0.5⋅y[n−1]+a⋅x1[n]+b⋅x2[n]  

  

A system is time-invariant if delaying the input delays the output by the same amount. We 

suppose: 

Input: x[n]→y[n] then the Delayed input: x[n−n0]→y′[n]=0.5⋅y′[n−1]+x[n−n0]]. However, if 

we assume the system is initially at rest (zero initial state), the output is simply a shifted 

version of the original output. 

To find the impulse response, apply x[n]=δ[n], the unit impulse: 

Assume initial rest: y[−1]=0, we compute: 

h[0] = δ[0]+0.5⋅y[−1]=1+0 =1 

h[1] = δ[1]+0.5⋅h[0] = 0+0.5⋅1= 0.5 

h[2] = 0.5⋅h[1] = 0.25 

h[3]=0.5⋅h[2] = 0.125 

. 

. 

. 

h[n]=(0.5)n for n≥0  
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We can use the Octave code  

% Define system parameters 

N = 20;                  % Length of response 

x = zeros(1, N);         % Input: Impulse signal 

x(1) = 1;                % Delta[n] = 1 at n = 0 

y = zeros(1, N);         % Output (impulse response) 

% Apply the difference equation: y[n] = 0.5*y[n-1] + x[n] 

for n = 2:N 

    y(n) = 0.5 * y(n-1) + x(n); 

end 

y(1) = x(1);  % Initial condition (y[0] = x[0]) 

% Display and plot the impulse response 

disp('Impulse response h[n]:'); 

disp(y); 

stem(0:N-1, y, 'filled'); 

xlabel('n'); ylabel('h[n]'); 

title('Impulse Response of the System'); 

grid on; 

 

Exercise 13 

Step 1: Compute the Convolution y[n] 

The convolution sum is:  
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] 

Writing the sequences explicitly: x[n]={1,2,3,4},h[n]={1,−1,2} Perform the convolution 

manually: 

n Computation y[n] 

0 1(1) 1 

1 1(−1)+2(1) 1 

2 1(2)+2(−1)+3(1)  3 

3 2(2)+3(−1)+4(1) 5 

4 3(2)+4(−1)  2 

5 4(2) 8 

Thus, the output sequence is: y[n]={1,1,3,5,2,8} 

Step 2: Check Symmetry of h[n]h[n]h[n] 

A kernel function h[n] is symmetric if: h[n]=h[−n]  

Given: h[n]={1,−1,2}  reversing the sequence: h[−n]={2,−1,1}  

Since h[n]≠h[−n], the kernel is not symmetric. 

Step 3: Modification for a Smoothing Filter 

To use the kernel as a smoothing filter, it should have equal-weighted or low-pass 

characteristics (e.g., an averaging filter). A good modification would be: 

 

This modified kernel will smooth the input signal rather than introducing large variations. 


