[bookmark: _Toc175942854][bookmark: _Toc178022377][image:]
[image:]

O. ELOUTASSI: 	o.eloutassi@vac.ueuromed.org

Lab 4
Advanced Biomedical Signal and Image Processing
Master: Plasturgy & Biomedical Engineering
Pr. Omar ELOUTASSI

Group:

Names:

7
O. ELOUTASSI: 	o.eloutassi@umi.ac.ma

1. [bookmark: _Toc205186224]Purpose
Read carefully the whole text then write in few sentences the purpose of this lab
	

2. [bookmark: _Toc205186225]Tasks
[bookmark: _Toc205186226]Task1
Run the bellow code in octave Gnu paste the result picture then analyze it. Note as usual alter your code to suite your directory also do not forget to change the name of the picture you loaded.
% Parameters
image_width = 256; % Width of the image
image_height = 256; % Height of the image
noise_level = 0.3; % Level of noise to add
% Generate a synthetic image
% Create a circular region to simulate a structure (e.g., a cyst or organ)
[X, Y] = meshgrid(1:image_width, 1:image_height);
center_x = image_width / 2;
center_y = image_height / 2;
radius = 40;
% Create a circular mask
circular_mask = ((X - center_x).^2 + (Y - center_y).^2) <= radius^2;
% Generate the base image with a structure
base_image = zeros(image_height, image_width);
base_image(circular_mask) = 1; % Set the circular region to a higher intensity
% Add random noise to simulate ultrasound noise
noise = noise_level * rand(image_height, image_width);
ultrasound_image = base_image + noise;
% Normalize the image to the range [0, 1]
ultrasound_image = ultrasound_image / max(ultrasound_image(:));
% Display the image
imshow(ultrasound_image, []);
colormap(gray); % Set colormap to gray
title('Simulated Ultrasound Image');
% Save the image
imwrite(ultrasound_image, 'simulated_ultrasound_image.png');
	Paste the created image

[bookmark: _Toc205186227]Task 2
In order to analyze the loaded picture above we should filter it first we can use this code to filter the picture or you can use any other technic to filter your pics: I advise you to read my courses in biomedical signal processing to learn more about noise and signal filtering process.
% Load the image package
pkg load image;
% Parameters
image_width = 256; % Width of the image
image_height = 256; % Height of the image
noise_level = 0.3; % Level of noise to add
% Generate a synthetic image
% Create a circular region to simulate a structure (e.g., a cyst or organ)
[X, Y] = meshgrid(1:image_width, 1:image_height);
center_x = image_width / 2;
center_y = image_height / 2;
radius = 40;
% Create a circular mask
circular_mask = ((X - center_x).^2 + (Y - center_y).^2) <= radius^2;
% Generate the base image with a structure
base_image = zeros(image_height, image_width);
base_image(circular_mask) = 1; % Set the circular region to a higher intensity
% Add random noise to simulate ultrasound noise
noise = noise_level * rand(image_height, image_width);
ultrasound_image = base_image + noise;
% Normalize the image to the range [0, 1]
ultrasound_image = ultrasound_image / max(ultrasound_image(:));
% Apply a Gaussian filter to smooth the image
filtered_image = imfilter(ultrasound_image, fspecial('gaussian', [5 5], 2)); % Adjust size and sigma as needed
% Display the filtered image
imshow(filtered_image, []);
colormap(gray); % Set colormap to gray
title('Filtered Eloutassi Simulated Ultrasound Image');
% Save the filtered image to the specified directory
output_directory = 'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\';
imwrite(filtered_image, fullfile(output_directory, 'Filtered_Eloutassi_simulated_ultrasound_image.png'));
Insert your filtered picture then analyze it
	

[bookmark: _Toc205186228]Task 3
For more accuracy, we will use python to analyze ultrasound biomedical pictures. For this purpose, you can use the code bellow:
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageEnhance
import cv2

Step 1: Create a simulated ultrasound image
def create_simulated_ultrasound_image(width, height):
 # Create a random noise image
 image = np.random.rand(height, width) * 255 # Random noise
 image = image.astype(np.uint8)

 # Add some shapes to simulate tissue structures
 cv2.circle(image, (int(width * 0.3), int(height * 0.5)), 30, (255), -1) # White circle
 cv2.rectangle(image, (int(width * 0.6), int(height * 0.4)), (int(width * 0.9), int(height * 0.6)), (255), -1) # White rectangle

 return image

Generate the simulated ultrasound image
width, height = 640, 480
simulated_image = create_simulated_ultrasound_image(width, height)

Step 2: Analyze the simulated image
Convert to PIL Image for enhancement
simulated_image_pil = Image.fromarray(simulated_image)

Enhance contrast
enhancer = ImageEnhance.Contrast(simulated_image_pil)
enhanced_image = enhancer.enhance(2.0) # Increase contrast

Convert enhanced image to array for further processing
enhanced_array = np.array(enhanced_image)

Apply Gaussian Blur to reduce noise
blurred_image = cv2.GaussianBlur(enhanced_array, (5, 5), 0)

Apply global thresholding
_, thresholded_image = cv2.threshold(cv2.cvtColor(blurred_image, cv2.COLOR_GRAY2BGR), 50, 255, cv2.THRESH_BINARY)

Display the original, enhanced, and thresholded images
plt.figure(figsize=(18, 6))

plt.subplot(1, 3, 1)
plt.imshow(simulated_image, cmap='gray')
plt.title('Eloutassi Simulated Ultrasound Image')
plt.axis('off')

plt.subplot(1, 3, 2)
plt.imshow(enhanced_array, cmap='gray')
plt.title('Eloutassi Enhanced Image')
plt.axis('off')

plt.subplot(1, 3, 3)
plt.imshow(thresholded_image, cmap='gray')
plt.title('Eloutassi Thresholded Image')
plt.axis('off')

plt.show()

Analyze the image: Calculate basic statistics
mean_intensity = np.mean(thresholded_image)
std_deviation = np.std(thresholded_image)
min_intensity = np.min(thresholded_image)
max_intensity = np.max(thresholded_image)

Print the analysis results
print(f"Mean Intensity: {mean_intensity:.2f}")
print(f"Standard Deviation: {std_deviation:.2f}")
print(f"Minimum Intensity: {min_intensity}")
print(f"Maximum Intensity: {max_intensity}")
	Paste the analyzed picture.

[bookmark: _Toc205186229]Task 4
Transform your image to data readable using excel files. You can whether choose your own method to transform your analyzed picture to data or you can use the code bellow:
import numpy as np
import pandas as pd
from PIL import Image

Load the image
image_path = r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB4\ELOUTASSIUltrasound.jpg'
image = Image.open(image_path)

Convert image to grayscale (optional)
image_gray = image.convert('L')

Convert image data to a numpy array
image_data = np.array(image_gray)

Create a DataFrame from the image data
df = pd.DataFrame(image_data)

Save the DataFrame to an Excel file
excel_path = r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB4\ELOUTASSIUltrasound_data.xlsx'
df.to_excel(excel_path, index=False, header=False)

print("Image data has been saved to Excel.")
[bookmark: _Toc205186233]Task 5
pkg load image; % Load the image package
% Read the image from the specified path
img = imread('D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\EloutassiMNBrain.jpg');
imshow(img);
title('Original Image');
% Convert to grayscale
gray_img = rgb2gray(img);
figure;
imshow(gray_img);
title('Grayscale Image');
% Gaussian Blur
h = fspecial('gaussian', [5 5], 2); % Create a Gaussian filter
blurred_img = imfilter(gray_img, h);
figure;
imshow(blurred_img);
title('Blurred Image');
% Sobel Edge Detection
sobel_x = fspecial('sobel'); % Sobel filter in x direction
sobel_y = sobel_x'; % Sobel filter in y direction
edges_x = imfilter(double(gray_img), sobel_x);
edges_y = imfilter(double(gray_img), sobel_y);
edges = sqrt(edges_x.^2 + edges_y.^2); % Combine the edges
figure;
imshow(edges, []);
title('Edge Detected Image');
	Use the code bellow to analyze any scanned picture of your choice. Note that you should alter your code to ensure it works on your directory. Past the pictures then analyze them carefully while you are reading your code.

[bookmark: _Toc205186234]Task 6
	Alter your last code to save the generated filtered pictures in your directory. You can use the code bellow to help you alter your code.
% Save the grayscale image
imwrite(gray_img, strcat(output_dir, 'Grayscale_Image.jpg'));

[bookmark: _Toc205186235]Task 7
In general, Python libraries are more efficient and practical to analyze and generate filtered pictures. In this purpose, use the code bellow to analyze a picture of your choice. You should alter slightly the code hat can be run properly on your director
import cv2
import numpy as np
Define the path to the image
image_path = r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\EloutassiMNBrain.jpg'
Read the image
img = cv2.imread(image_path)
cv2.imshow('Original Image', img)
Save the original image
cv2.imwrite(r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\Original_Image.jpg', img)
Convert to grayscale
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('Grayscale Image', gray_img)
Save the grayscale image
cv2.imwrite(r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\Grayscale_Image.jpg', gray_img)
Apply Gaussian Blur
blurred_img = cv2.GaussianBlur(gray_img, (5, 5), 2)
cv2.imshow('Blurred Image', blurred_img)
Save the blurred image
cv2.imwrite(r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\Blurred_Image.jpg', blurred_img)
Apply Sobel Edge Detection
sobel_x = cv2.Sobel(gray_img, cv2.CV_64F, 1, 0, ksize=5) # Sobel in x direction
sobel_y = cv2.Sobel(gray_img, cv2.CV_64F, 0, 1, ksize=5) # Sobel in y direction
edges = np.sqrt(sobel_x**2 + sobel_y**2) # Combine the edges
edges = np.uint8(edges) # Convert to uint8 for saving
Show and save the edge-detected image
cv2.imshow('Edge Detected Image', edges)
cv2.imwrite(r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\Edge_Detected_Image.jpg', edges)
Wait for a key press and close all windows
cv2.waitKey(0)
cv2.destroyAllWindows()
[bookmark: _Toc205186236]Task 8
Use the code bellow to save your generated picture:
Save the original image cv2.imwrite(r'D:\2025-2026\UEMEF 2025 2026\Medical Imaging 2025 2026\TP 2025 2026\LAB5\Original_Image.jpg', img)
Note that I am using my own directory and my own image.
3. [bookmark: _Toc205186237]Conclusion
	Write in few sentences an accurate conclusion

[bookmark: _GoBack]
image1.png
()

Jetlowl Yosdnals | pylall ail 4
Fo@AEF L3S OCATH | el |1L.00,C
UNIVERSITE MOULAY ISMAIL | FACULTE DES SCIENCES

image2.png

