

Département de Mathématiques et Informatique

Cours de Géométrie Différentielle

Courbes Gauches -suite-Filière: SMA S6 2019-2020

Courbes Gauches

2. Invariance par isométries:

Proposition 2.1:

La courbure est la valeur absolue de la torsion sont invariantes par les isométries de \mathbb{R}^3 .

Démonstration:

Les isométries de \mathbb{R}^3 sont engendrées par les translations et les matrices orthogonales. Il est claire que l'action d'une translation laisse invariant la courbure et la torsion. Soient $\mathcal{A} \in O(3)$ une matrice orthogonale, et $\Gamma \subset \mathbb{R}^3$ une courbe paramétrée par son abscisse curviligne: $\varphi: I \longrightarrow \mathbb{R}^3$.

Et soit Γ_2 la courbe paramétrée par $\psi = \mathcal{A} \circ \varphi$. Alors

$$||\psi'(s)|| = ||\mathcal{A}\varphi'(s)|| = 1$$
 , $Car \ \mathcal{A} \in O(3)$

Donc Γ_2 est paramétrée par son abscisse curviligne, et on a:

$$T_2(s) = \mathcal{A}T(s)$$

Et par dérivation, on obtient:

$$\kappa_2(s)N_2) = \kappa(s)\mathcal{A}N(s)$$

Comme AN(s) est un vecteur unitaire, donc:

$$\kappa_2(s) = \kappa(s) \qquad et \qquad \mathcal{A}N(s) = N_2(s)$$

On en déduit que

$$B_2(s) = T_2(s) \land N_2(s)$$

= $\mathcal{A}T(s) \land \mathcal{A}N(s)$
= $det \mathcal{A}.\mathcal{A}(T(s) \land N(s))$

 $Or \quad det \mathcal{A} = \pm 1 \quad donc \quad \forall \omega \in \mathbb{R}^3$

$$\langle \mathcal{A}T \wedge \mathcal{A}N | \omega \rangle = \det \mathcal{A}. \langle T \wedge N | \mathcal{A}^{-1}\omega \rangle$$
$$= \det \mathcal{A}. \langle \mathcal{A}(T \wedge N) | \omega \rangle$$

Donc

$$B_2(s) = \pm \mathcal{A}B(s)$$

En dérivant cette expression (et puisque $AN(s) = N_2(s)$), on obtient:

$$\tau_2(s) = \tau(s) \quad si \quad det \mathcal{A} = 1$$

$$\tau_2(s) = -\tau(s) \quad si \quad det \mathcal{A} = -1$$

Théorème 2.2:

Soient Γ_1 , Γ_2 deux courbes paramétrées par leurs abscisses curvilignes. Si elles ont même courbure et torsion et si la courbure ne s'annule pas. Alors il existe une isométrie de \mathbb{R}^3 qui envoie une courbe sur l'autre.

Démonstration:

Soient φ_1 , φ_2 les paramétrisations de Γ_1 , Γ_2 . Supposons que $0 \in I$.

$$\varphi_1: I \longrightarrow \mathbb{R}^3$$
 , $\varphi_2: I \longrightarrow \mathbb{R}^3$

Comme le groupe O(3) opère transitivement sur \mathbb{R}^3 . Donc il existe $A \in O(3)$ telle que:

$$\mathcal{A}T_1(0) = T_2(0)$$
 , $\mathcal{A}N_1(0) = N_2(0)$, $\mathcal{A}B_1(0) = B_2(0)$

Puisque les bases: $\{T_1(0), N_1(0), B_1(0)\}\$ et $\{T_2(0), N_2(0), B_2(0)\}\$ sont directes et orthonormées. Alors

$$det \mathcal{A} = 1$$

Soient $\mathcal{V} = \varphi_2(0) - \mathcal{A}\varphi_1(0) \in \mathbb{R}^3$ et ψ l'isométrie définie par:

$$\psi(X) = \mathcal{A}X + \mathcal{V}$$

On pose: $\phi = \psi \circ \varphi_1$.

Montrons que: $\phi = \varphi_2$.

On note: $(T_2(s), N_2(s), B_2(s))$ le repère de Frenet de Γ_2 et (T(s), N(s), B(s)) celui de Γ_1 . On a:

$$\phi(0) = \varphi_2(0)$$
 et $(T_2(0), N_2(0), B_2(0)) = (T(0), N(0), B(0))$

D'après la proposition précédente que la courbure et la torsion (notées κ et τ) de ϕ sont égales à celles de Γ_1 , Γ_2 . Soit

$$f(s) = \langle T(s)|T_2(s)\rangle + \langle N(s)|N_2(s)\rangle + \langle B(s)|B_2(s)\rangle$$

En dérivant f et on utilisant les formules de Frenet, on obtient:

$$f'(s) = \langle T'(s)|T_2(s)\rangle + \langle T(s)|T_2'(s)\rangle + \langle N'(s)|N_2(s)\rangle + \langle N(s)|N_2'(s)\rangle + \langle B'(s)|B_2(s)\rangle + \langle B(s)|B_2'(s)\rangle$$

$$= \kappa[\langle N(s)|T_2(s)\rangle + \langle T(s)|N_2(s)\rangle] - \kappa[\langle T(s)|N_2(s)\rangle + \langle N(s)|T_2(s)\rangle]$$

$$+ \tau[\langle B(s)|N_2(s)\rangle + \langle N(s)|B_2(s)\rangle] - \tau[\langle N(s)|B_2(s)\rangle + \langle B(s)|N_2(s)\rangle]$$

$$= 0$$

Donc f est constante. (ie)

$$\forall s \in I$$
 $f(s) = f(0) = 3$

Alors, $\forall s \in I$

$$T(s) = T_2(s)$$
 , $N(s) = N_2(s)$, $B(s) = B_2(s)$

Parsuite

$$\phi = \varphi_2$$

Remarques:

- i)- Si la courbure est nulle le repère de Frenet n'est pas bien définie.
- ii)- Le théorème 2.2 est un résultat d'unicité. On peut démontrer un résultat d'existence. C'est à dire: Étant données deux fonctions assez lisses

$$\kappa \ \& \ \tau : I \longrightarrow \mathbb{R}^3 \qquad Avec \quad \kappa > 0$$

Il existe une courbe quuche $\Gamma \in \mathbb{R}^3$ dont $\kappa \& \tau$ sont la courbure et la torsion.

3. Tangente, plan normal, plan osculateur:

Soit $\varphi: I \longrightarrow \mathbb{R}^3$ une courbe paramétrée Γ par :

$$\varphi(t) = (x(t), y(t), z(t))$$

Les équations d'une droite affine de \mathbb{R}^3 dépendent de quatre paramètres. Exemple:

$$y = ax + b$$
 & $z = cx + d$

On peut voir cette droite comme intersection de deux plans. Un plan affine de \mathbb{R}^3 admet pour équation cartésienne:

$$ax + by + cz + d = 0$$

$D\'{e}finition 3.1:$

La tangente en un point régulier $(x, y, z) \in \Gamma$ est donnée par les équations:

$$\begin{cases} y'(X-x) = x'(Y-y) \\ z'(Y-y) = y'(Z-z) \end{cases}$$

Il s'agit de la droite

$$\varphi(t) + R\varphi'(t) = \varphi(t) + RT(t)$$

Où T(t) désigne le vecteur tangent unitaire à Γ au point $\varphi(t)$.

Définition 3.2:

Le plan perpendiculaire à la tangente en un point régulier est appelé plan normal et a pour équation cartésienne:

$$x'(X - x) + y'(Y - y) + z'(Z - z) = 0$$

C'est le plan: $\varphi(t) + Vect(N(t), B(t))$

Remarque:

Un plan affine de \mathbb{R}^3 admet pour équation cartésienne:

$$ax + by + cz + d = 0$$

Il dépend donc de trois paramètres qui peuvent être choisis de manière à avoir un ordre de contact, au moins trois avec la courbe Γ . Le plan correspondant s'appelle la plan osculateur.

Proposition 3.3:

Le plan osculateur est donné par l'équation

$$\det \begin{bmatrix} X - x & Y - y & Z - z \\ x' & y' & z' \\ x'' & y'' & z'' \end{bmatrix} = 0$$

C'est le plan: $\varphi(t) + Vect(T(t), N(t))$

Démonstration:

Soit: aX + bY + cZ + d = 0 l'équation d'un plan qui passe par le point $\varphi = (x, y, z)$. Donc

$$ax + by + cz + d = 0$$

On effectue un développement de Taylor-Young des fonctions coordonnées de $\varphi(s)$ au point $\varphi(t)=(x(t),y(t),z(t))$. Donc

$$x(s) = x(t) + x'(t)(s-t) + \frac{x''(t)}{2}(s-t)^{2} + o((s-t)^{2})$$

De même pour y(s) et z(s).

Le plan a un contact d'ordre au moins trois au point $\varphi(t)$ si

$$ax(s) + by(s) + cz(s) + d = o((s-t)^2)$$

On obtient alors

$$\begin{cases} ax + by + cz + d = 0 \\ ax' + by' + cz' = 0 \\ ax'' + by'' + cz'' = 0 \end{cases}$$

On retranche à la première équation aX+bY+cZ+d=0 . On obtient alors le système homogène

$$\begin{cases} a(x - X) + b(y - Y) + c(z - Z) = 0\\ ax' + by' + cz' = 0\\ ax'' + by'' + cz'' = 0 \end{cases}$$

Ce système admet une solution non nulle, donc son déterminant est nul.

(i.e)
$$\det \begin{bmatrix} X - x & Y - y & Z - z \\ x' & y' & z' \\ x'' & y'' & z'' \end{bmatrix} = 0$$

Le cercle osculateur3.4:

Les équations d'un cercle C dans \mathbb{R}^3 dépendent de sept paramètres. On note (α, β, γ) son centre, R son rayon et (u, v, w) les coordonnées d'un vecteur normal au plan qui contient le cercle C.

Les équations de C sont alors:

$$\begin{cases} (x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 - R^2 = 0\\ u(x - \alpha) + v(y - \beta) + w(z - \gamma) = 0 \end{cases}$$

Soit Γ une courbe gauche paramétrée par

$$\varphi: I \longrightarrow \mathbb{R}^3$$

$$t \longmapsto (x(t), y(t), z(t))$$

 \mathcal{C} a un contact d'ordre au moins trois avec Γ au point $\varphi(t)$ si et seulement si les équations suivantes sont satisfaites:

$$(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 - R^2 = 0$$
 (1)

$$x'(x - \alpha) + y'(y - \beta) + z'(z - \gamma) = 0$$
 (2)

$$x''(x-\alpha) + y''(y-\beta) + z''(z-\gamma) + x^2 + y^2 + z^2 = 0$$
(3)

$$u(x - \alpha) + v(y - \beta) + w(z - \gamma) = 0 \tag{4}$$

$$ux' + vy' + wz' = 0 (5)$$

$$ux'' + vy'' + wz'' = 0 (6)$$

Les trois dernières équations montrent que le centre (α, β, γ) appartient au plan osculateur. puisque

$$\det \left[\begin{array}{ccc} x - \alpha & y - \beta & z - \gamma \\ x' & y' & z' \\ x'' & y'' & z'' \end{array} \right] = \left| \begin{array}{ccc} x - \alpha & y - \beta & z - \gamma \\ x' & y' & z' \\ x'' & y'' & z'' \end{array} \right| = 0$$

Les trois équations (1), (2) et (3) forment un système linéaire de trois équations en trois inconnus: $x - \alpha, y - \beta, z - \gamma$.

Si on pose alors: A = (y'z'' - z'y''), B = (z'x'' - x'z'') et C = (x'y'' - y'x''). On obtient:

$$\begin{cases} x - \alpha = (Cy' - Bz') \frac{x'^2 + y'^2 + z'^2}{A^2 + B^2 + C^2} \\ y - \beta = (Az' - Cx') \frac{x'^2 + y'^2 + z'^2}{A^2 + B^2 + C^2} \\ z - \gamma = (Bx' - Ay') \frac{x'^2 + y'^2 + z'^2}{A^2 + B^2 + C^2} \end{cases}$$

Et

$$R = \sqrt{(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2} = \frac{(x'^2 + y'^2 + z'^2)^{\frac{3}{2}}}{\sqrt{A^2 + B^2 + C^2}}$$

On remarque que A, B et C sont les coordonnées du vecteur $\varphi' \wedge \varphi''$. Donc le rayon du cercle osculateur R est l'inverse de la courbure à Γ au point (x,y,z). Les coordonnées du centre de C vérifiant

$$(\alpha, \beta, \gamma) = \varphi(t) + \frac{||\varphi'||^2}{||\varphi' \wedge \varphi''||^2} \varphi' \wedge (\varphi' \wedge \varphi'')$$
$$= \varphi(t) + \frac{||\varphi'||^2}{||\varphi' \wedge \varphi''||^2} (\langle \varphi', \varphi'' \rangle \varphi' - ||\varphi'||^2 \varphi'')$$