Correction de TD Algèbre III: Les Matrices Youness Mazigh

Exercice 16: Soit E l'ensemble des matrices $M(a,b,c) = \begin{pmatrix} a & -c & -b \\ b & a & -c \\ c & b & a \end{pmatrix}$ avec a,b,c dans \mathbb{C} .

- 1. Montrer que E est un espace vectoriel sur $\mathbb C$ dont on précisera une base et la dimension.
- 2. Montrer que $(E, +, \times)$ est une sous-algèbre commutative de l'algèbre $(\mathcal{M}_3(\mathbb{C}), +, \times)$.

Solution:

1. (a) Montrons que E est un espace vectoriel sur \mathbb{C} . En effet, on sait que $\mathcal{M}_3(\mathbb{C})$ est un \mathbb{C} -espace vectoriel, et comme $E \subset \mathcal{M}_3(\mathbb{C})$, il suffit de montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$.

de
$$\mathcal{M}_3(\mathbb{C})$$
.

On a $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = M(0, 0, 0)$, donc $E \neq \emptyset$. Soient $M(a, b, c), M(a', b', c') \in E$ et $\alpha, \beta \in \mathbb{C}$, on a

$$\alpha.M(a,b,c) + \beta.M(a',b',c') = \alpha. \begin{pmatrix} a & -c & -b \\ b & a & -c \\ c & b & a \end{pmatrix} + \beta. \begin{pmatrix} a' & -c' & -b' \\ b' & a' & -c' \\ c' & b' & a' \end{pmatrix}$$

$$= \begin{pmatrix} \alpha.a + \beta.a' & -\alpha.c - \beta.c' & -\alpha.b - \beta.b' \\ \alpha.b + \beta.b' & \alpha.a + \beta.a' & -\alpha.c - \beta.c' \\ \alpha.c + \beta.c' & \alpha.b + \beta.b' & \alpha.a + \beta.a' \end{pmatrix}$$

$$= M(\alpha.a + \beta.a', \alpha.b + \beta.b', \alpha.c + \beta.c').$$

Donc $\alpha.M(a,b,c) + \beta.M(a',b',c') \in E$. D'où E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{C})$.

(b) Déterminons une base de E. Soit $M(a,b,c) \in E$, on a

$$M(a,b,c) = \begin{pmatrix} a & -c & -b \\ b & a & -c \\ c & b & a \end{pmatrix}$$

$$= \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 0 & -b \\ b & 0 & -0 \\ 0 & b & 0 \end{pmatrix} + \begin{pmatrix} 0 & -c & 0 \\ 0 & 0 & -c \\ c & 0 & 0 \end{pmatrix}$$

$$= a \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -0 \\ 0 & 1 & 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= a \cdot M(1,0,0) + b \cdot M(0,1,0) + c \cdot M(0,0,1),$$

et donc $\{M(1,0,0),M(0,1,0),M(0,0,1)\}$ est une famille génératrice de E. Soit $\alpha,\beta,\gamma\in\mathbb{C}$ tel que

$$\alpha.M(1,0,0) + \beta.M(0,1,0) + \gamma.M(0,0,1) = M(0,0,0).$$

Alors

 $\begin{pmatrix} \alpha & -\gamma & -\beta \\ \beta & \alpha & -\gamma \\ \gamma & \beta & \alpha \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Donc

$$\begin{cases} \alpha = 0 \\ \gamma = 0 \\ \beta = 0 \end{cases}$$

D'où la famille (M(1,0,0),M(0,1,0),M(0,0,1)) est une famille libre. On en déduit que (M(1,0,0),M(0,1,0),M(0,0,1)) est une base de E, et par suite $\dim_{\mathbb{C}} E=3$.

- 2. Montrons que $(E, +, \times)$ est une sous-algèbre commutative de l'algèbre $(\mathcal{M}_3(\mathbb{C}), +, \times)$. En effet, soient $M(a, b, c), M(a', b', c') \in E$ et $\alpha \in \mathbb{C}$. D'après la question 1, on a
 - (a) $0_{\mathcal{M}_3(\mathbb{C})} \in E$
 - (b) $M(a,b,c) + M(a',b',c') \in E$, puisque E est un espace vectoriel.
 - (c) $\alpha.M(a,b,c) \in E$, puisque E est un \mathbb{C} -espace vectoriel.

Reste à montrer que $M(a,b,c) \times M(a',b',c') \in E$. En effet, on a

$$M(a,b,c) \times M(a',b',c') = \begin{pmatrix} a & -c & -b \\ b & a & -c \\ c & b & a \end{pmatrix} \times \begin{pmatrix} a' & -c' & -b' \\ b' & a' & -c' \\ c' & b' & a' \end{pmatrix}$$

$$= \begin{pmatrix} aa' - cb' - bc' & -ac' - ca' - bb' & -ab' + cc' - ba' \\ ba' + ab' - cc' & -bc' + aa' - cb' & -bb' - ac' - ca' \\ ca' + bb' + ac' & -cc' + ba' + ab' & -cb' - bc' + aa' \end{pmatrix}$$

$$= M(aa' - cb' - bc', ba' + ab' - cc', ca' + bb' + ac')$$

Donc $M(a, b, c) \times M(a', b', c') \in E$.

Exercice 17: Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice non nulle.

- 1. Développer et simplifier le produit $(I_n A)(I_n + A + A^2 + \dots + A^{p-1})$ pour $p \in \mathbb{N}^*$.
- 2. On dit que la matrice A est nilpotente s'il existe un entier $k \ge 1$ tel que $A^k = 0$. Le plus petit entier p tel que $A^p = 0$ s'appelle l'indice de nilpotence de A, c'est-à-dire, $A^p = 0$ et $A^{p-1} \ne 0$. Montrer que si A est nilpotente, alors la matrice $I_n A$ est inversible et donner son inverse $(I_n A)^{-1}$.

Solution:

1. Simplifions le produit $(I_n - A)(I_n + A + A^2 + \cdots + A^{p-1})$. On a

$$(I_n - A)(I_n + A + A^2 + \dots + A^{p-1}) = I_n(I_n + A + A^2 + \dots + A^{p-1}) - A(I_n + A + A^2 + \dots + A^{p-1})$$

$$= I_n + A + A^2 + \dots + A^{p-1} - (A + A^2 + \dots + A^p)$$

$$= I_n - A^p.$$

D'où

$$(I_n - A)(I_n + A + A^2 + \dots + A^{p-1}) = I_n - A^p$$

2. Montrons si A est nilpotente, alors $I_n - A$ est inversible. Supposons que A est une matrice nilpotente d'indice de nilpotence p. Alors d'après 1, on a

$$(I_n - A)(I_n + A + A^2 + \dots + A^{p-1}) = I_n - A^p = I_n$$

puisque $A^p = 0$, et donc $I_n - A$ est une matrice inversible, d'après [1, Corollaire 3.4.18], et son inverse est

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{p-1}.$$

Exercice 18: Soit la matrice
$$A = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$$

- 1. Décomposer A sous forme aI + bJ où I et J sont deux matrices à déterminer.
- 2. Montrer que la matrice J est nilpotente.
- 3. En déduire A^n pour tout $n \in \mathbb{N}$ à l'aide de la formule du binôme de Newton.

Solution:

1. Décomposons A sous forme aI+bJ où I et J sont deux matrices à déterminer. On a

$$A = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$$

$$= \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= a \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\text{Donc } A = aI + bJ, \text{ avec } I = I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ et } J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

2. Montrons que $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ est nilpotente. On a

$$J^{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

et

Donc J est une matrice nilpotente d'indice de nilpotence 4.

3. Calculons A^n . On a A = aI + bJ, et comme IJ = JI, on obtient par la formule du binôme de Newton pour les matrices que

$$A^{n} = (aI + bJ)^{n} = \sum_{k=0}^{n} C_{n}^{k} (aI)^{n-k} (bJ)^{k}.$$

Ainsi,

$$A^{n} = \begin{cases} \sum_{k=0}^{n} C_{n}^{k} (aI)^{n-k} (bJ)^{k}, & \text{si } n \leq 4 \\ \\ a^{n}I + C_{n}^{1} a^{n-1} bJ + C_{n}^{2} a^{n-2} b^{2} J^{2} + C_{n}^{3} a^{n-3} b^{3} J^{3}, & \text{si } n > 4, \end{cases}$$

puisque J est une matrice nilpotente d'indice de nilpotence 4.

Exercice 19: Soit E un espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$ et $f \in \mathcal{L}(E)$ l'endomorphisme de E dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$.

Soit $\mathcal{B}' = (e'_1, e'_2, e'_3)$ la famille définie par $e'_1 = e_1 + e_2 - e_3$, $e'_2 = e_1 - e_3$, $e'_3 = e_1 - e_2$.

- 1. Montrer que \mathcal{B}' est une base de E. Former la matrice D de f dans la base \mathcal{B}' .
- 2. Écrire la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' et calculer son inverse P^{-1} .
- 3. Quelle relation lie les matrices A, D, P et P^{-1} ?
- 4. Calculer D^n pour tout $n \in \mathbb{N}$, puis déduire A^n .
- 5. Vérifier que Tr(D) = Tr(A) et rang(D) = rang(A). Pourquoi a-t-on ces égalités?

Solution:

1. (a) Montrons que \mathcal{B}' est une base de E. En effet, soit $\alpha, \beta, \gamma \in \mathbb{K}$ tel que

$$\alpha e_1' + \beta e_2' + \gamma e_3' = 0.$$

Donc

$$\alpha \cdot (e_1 + e_2 - e_3) + \beta (e_1 - e_3) + \gamma (e_1 - e_2) = (\alpha + \beta + \gamma)e_1 + (\alpha - \gamma)e_2 + (-\alpha - \beta)e_3 = 0.$$

Comme \mathcal{B} est une base de E, on obtient

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \alpha - \gamma = 0 \\ -\alpha - \beta = 0 \end{cases} \iff \begin{cases} \gamma = \alpha \\ \beta = -\alpha \\ \alpha = 0 \end{cases} \iff \begin{cases} \gamma = 0 \\ \beta = 0 \\ \alpha = 0 \end{cases}$$

D'où \mathcal{B}' est une famille libre. Or dim E=3 et $\operatorname{card}(\mathcal{B}')=3$, on en déduit que \mathcal{B}' est une base de E.

(b) Formons la matrice D de f dans la base \mathcal{B}' . Comme dim E=3, la matrice D est de la forme $D=\begin{pmatrix} d_{1,1} & d_{1,2} & d_{1,3} \\ d_{2,1} & d_{2,2} & d_{2,3} \\ d_{3,1} & d_{3,2} & d_{3,3} \end{pmatrix}$, donc $f(e_i')=d_{1,i}e_1'+d_{2,i}e_2'+d_{3,i}e_3'$ pour i=1,2,3;

$$\begin{cases}
f(e'_1) = d_{1,1}e'_1 + d_{2,1}e'_2 + d_{3,1}e'_3 \\
f(e'_2) = d_{1,2}e'_1 + d_{2,2}e'_2 + d_{3,2}e'_3 \\
f(e'_3) = d_{1,3}e'_1 + d_{2,3}e'_2 + d_{3,3}e'_3
\end{cases}$$

D'une part, on a

$$\begin{cases} f(e_1) = 2e_1 - 2e_2 + e_3 \\ f(e_2) = -e_1 + e_2 + e_3 \\ f(e_3) = -2e_2 + 3e_3 \end{cases}$$

puisque $A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$ est la matrice de f dans la base \mathcal{B} , et donc

$$\begin{cases} f(e_1') = f(e_1 + e_2 - e_3) = f(e_1) + f(e_2) - f(e_3) = e_1 + e_2 - e_3 \\ f(e_2') = f(e_1 - e_3) = f(e_1) - f(e_3) = 2e_1 - 2e_3 \\ f(e_3') = f(e_1 - e_2) = f(e_1) - f(e_2) = 3e_1 - 3e_2 \end{cases}$$

D'autre part, on a

$$\begin{cases} d_{1,1}e'_1 + d_{2,1}e'_2 + d_{3,1}e'_3 = d_{1,1}(e_1 + e_2 - e_3) + d_{2,1}(e_1 - e_3) + d_{3,1}(e_1 - e_2) \\ f(e'_2) = d_{1,2}e'_1 + d_{2,2}e'_2 + d_{3,2}e'_3 = d_{1,2}(e_1 + e_2 - e_3) + d_{2,2}(e_1 - e_3) + d_{3,2}(e_1 - e_2) \\ f(e'_3) = d_{1,3}e'_1 + d_{2,3}e'_2 + d_{3,3}e'_3 = d_{1,3}(e_1 + e_2 - e_3) + d_{2,3}(e_1 - e_3) + d_{3,3}(e_1 - e_2). \end{cases}$$

Ainsi, on obtient

$$\begin{cases} e_1 + e_2 - e_3 = (d_{1,1} + d_{2,1} + d_{3,1})e_1 + (d_{1,1} - d_{3,1})e_2 + (-d_{1,1} - d_{2,1})e_3 \\ 2e_1 - 2e_3 = (d_{1,2} + d_{2,2} + d_{3,2})e_1 + (d_{1,2} - d_{3,2})e_2 + (-d_{1,2} - d_{2,2})e_3 \\ 3e_1 - 3e_2 = (d_{1,3} + d_{2,3} + d_{3,3})e_1 + (d_{1,3} - d_{3,3})e_2 + (-d_{1,3} - d_{2,3})e_3 \end{cases}$$

Par suite

$$\begin{cases} d_{1,1} + d_{2,1} + d_{3,1} = 1 \\ d_{1,1} - d_{3,1} = 1 \\ -d_{1,1} - d_{2,1} = -1 \end{cases}, \begin{cases} d_{1,2} + d_{2,2} + d_{3,2} = 2 \\ d_{1,2} - d_{3,2} = 0 \\ -d_{1,2} - d_{2,2} = -2 \end{cases}$$
 et
$$\begin{cases} d_{1,3} + d_{2,3} + d_{3,3} = 3 \\ d_{1,3} - d_{3,3} = -3 \\ -d_{1,3} - d_{2,3} = 0 \end{cases}$$

Ce qui entraîne,

$$\begin{cases} d_{3,1} = 0 \\ d_{1,1} = 1 + d_{3,1} \\ d_{2,1} = -d_{1,1} + 1 \end{cases}, \begin{cases} d_{3,2} = 0 \\ d_{1,2} = d_{3,2} \\ d_{2,2} = -d_{1,2} + 2 \end{cases}$$
 et
$$\begin{cases} d_{3,3} = 3 \\ d_{1,3} = d_{3,3} - 3 \\ d_{2,3} = -d_{1,3} \end{cases}$$

Donc

$$\begin{cases} d_{1,1} = 1 \\ d_{2,1} = 0 \\ d_{3,1} = 0 \end{cases}, \quad \begin{cases} d_{1,2} = 0 \\ d_{2,2} = 2 \\ d_{3,2} = 0 \end{cases} \text{ et } \begin{cases} d_{1,3} = 0 \\ d_{2,3} = 0 \\ d_{3,3} = 3 \end{cases}.$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

2. Écrivons la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' . On a

$$\begin{cases} e'_1 = e_1 + e_2 - e_3 \\ e'_2 = e_1 - e_3 \\ e'_3 = e_1 - e_2 \end{cases}$$

Donc

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

Calculons P^{-1} . Puisque P est la matrice de passage de \mathcal{B} à la base \mathcal{B}' , alors elle inversible et son inverse P^{-1} est la matrice de passage de \mathcal{B}' à la base \mathcal{B} . On a

$$\begin{cases} e_1 + e_2 - e_3 = e'_1 \\ e_1 - e_3 = e'_2 \\ e_1 - e_2 = e'_3 \end{cases} \iff \begin{cases} e_2 = e'_1 - e'_2 \\ e_3 = -e'_2 + e_1 \\ e_1 = e_2 + e'_3 \end{cases} \iff \begin{cases} e_1 = e'_1 - e'_2 + e'_3 \\ e_2 = e'_1 - e'_2 \\ e_3 = e'_1 - 2e'_2 + e'_3 \end{cases}$$

D'où

$$P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

3. La relation lie les matrices A, D, P et P^{-1} est $A = PDP^{-1}$, d'après [1, Proposition 3.5.13]. On vérifie que

$$PDP^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -3 \\ -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix} = A.$$

4. Calculons D^n , $n \in \mathbb{N}$. On a $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \operatorname{diag}(1,2,3)$ est une matrice diagonale, et donc

$$D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} \quad \text{pour tout } n \in \mathbb{N}.$$

Calculons A^n . On a d'après 3, $A = PDP^{-1}$, et donc

$$A^{n} = (PDP^{-1})^{n}$$

$$= PD^{n}P^{-1}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2^{n} & 3^{n} \\ 1 & 0 & -3^{n} \\ -1 & -2^{n} & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - 2^{n} + 3^{n} & 1 - 2^{n} & 1 - 2^{n+1} + 3^{n} \\ 1 - 3^{n} & 1 & 1 - 3^{n} \\ -1 + 2^{n} & -1 + 2^{n} & -1 + 2^{n+1} \end{pmatrix}$$

D'où

$$A^{n} = \begin{pmatrix} 1 - 2^{n} + 3^{n} & 1 - 2^{n} & 1 - 2^{n+1} + 3^{n} \\ 1 - 3^{n} & 1 & 1 - 3^{n} \\ -1 + 2^{n} & -1 + 2^{n} & -1 + 2^{n+1} \end{pmatrix}.$$

5. (a) Vérifions que $\operatorname{Tr}(A) = \operatorname{Tr}(D)$. On a $A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$, donc $\operatorname{Tr}(A) = 2 + 1 + 3 = 6$, et on a $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $\operatorname{Tr}(A) = 1 + 2 + 3 = 6$. D'où

$$Tr(A) = Tr(D) = 6.$$

(b) Vérifions que rang(A) = rang(D). Calculons le rang de A, en effet, la matrice A est la matrice dont les colonnes sont les coordonnées des vecteurs $f(e_1)$, $f(e_2)$ et $f(e_3)$ dans la base \mathcal{B} . Donc

$$rang(A) = rang(f(e_1), f(e_2), f(e_3)).$$

Soit $\alpha, \beta, \gamma \in \mathbb{K}$ tel que

$$\alpha f(e_1) + \beta f(e_2) + \gamma f(e_3) = 0.$$

Donc

$$\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} 2\alpha - \beta = 0 \\ -2\alpha + \beta - 2\gamma = 0 \\ \alpha + \beta + 3\gamma = 0 \end{cases}$$

$$\iff \begin{cases} -2\gamma = 0 \\ \beta = 2\alpha \\ \alpha + \beta + 3\gamma = 0 \end{cases}$$

$$\iff \begin{cases} \gamma = 0 \\ \beta = 2\alpha \\ 3\alpha = 0 \end{cases}$$

$$\iff \begin{cases} \gamma = 0 \\ \beta = 0 \end{cases}$$

$$\iff \begin{cases} \gamma = 0 \\ \beta = 0 \end{cases}$$

D'où la famille $(f(e_1), f(e_2), f(e_3))$ est libre, et comme dim E = 3, on en déduit que $(f(e_1), f(e_2), f(e_3))$ est une base de E. Par suite $\operatorname{rang}(A) = 3$.

Calculons le rang de D. La matrice D est la matrice dont les colonnes sont les coordonnées des vecteurs $f(e'_1), f(e'_2)$ et $f(e'_3)$ dans la base \mathcal{B}' . Donc

$$rang(D) = rang(f(e'_1), f(e'_2), f(e'_3)).$$

Soit $\alpha, \beta, \gamma \in \mathbb{K}$, alors

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

D'où la famille $(f(e_1'), f(e_2'), f(e_3'))$ est libre, et comme dim E=3, on en déduit que $(f(e_1'), f(e_2'), f(e_3'))$ est une base de E. Par suite $\operatorname{rang}(D)=3$. On en déduit que

$$rang(A) = rang(D) = 3.$$

(c) On a les égalités $\operatorname{rang}(A) = \operatorname{rang}(D)$ et $\operatorname{Tr}(A) = \operatorname{tr}(D)$, car les matrices A et D sont semblables, $A = PDP^{-1}$.

Exercice 20: Soit $n \in \mathbb{N}^*$. Soit l'application $f : \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X], P(X) \longmapsto P(X+1) + P(X)$.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer la matrice de f dans la base canonique $\mathcal{B} = (1, X, \dots, X^{n-1})$ de $\mathbb{R}_n[X]$. f est-il un automorphisme?

Solution:

1. Montrons que f est un endomorphisme de $\mathbb{R}_n[X]$. Soient $\alpha, \beta \in \mathbb{R}$ et $P(X), Q(x) \in \mathbb{R}_n[X]$, on a

$$\begin{split} f(\alpha P(X) + \beta Q(X)) &= f((\alpha P + \beta Q)(X)) \\ &= (\alpha P + \beta Q)(X+1) + (\alpha P + \beta Q)(X) \\ &= \alpha P(X+1) + \beta Q(X+1) + \alpha P(X) + \beta Q(X) \\ &= \alpha f(P(X)) + \beta f(Q(X)), \end{split}$$

et donc f est un endomorphisme.

2. Déterminations de la matrice $M(f, \mathcal{B})$. Soit m < n, on a

$$f(X^m) = (X+1)^m + X^m = \sum_{k=0}^{m-1} C_m^k X^k + 2X^m.$$

D'où

$$M(f,\mathcal{B}) = \begin{pmatrix} 2 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 2 & C_2^1 & C_3^1 & \cdots & C_{n-1}^1 \\ 0 & 0 & 2 & C_3^2 & \cdots & C_{n-1}^2 \\ 0 & 0 & 0 & 2 & \cdots & C_{n-1}^3 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{pmatrix}.$$

L'endomorphisme f est bijectif. En effet, soit $\alpha_0, \alpha_1, \dots, \alpha_{n-1} \in \mathbb{R}$ tel que

$$\begin{pmatrix} 2 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 2 & C_2^1 & C_3^1 & \cdots & C_{n-1}^1 \\ 0 & 0 & 2 & C_3^2 & \cdots & C_{n-1}^2 \\ 0 & 0 & 0 & 2 & \cdots & C_{n-1}^3 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_{n-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

on obtient le système

$$\begin{cases}
2\alpha_{n-1} = 0 \\
2\alpha_{n-2} + C_{n-1}^{n-2}\alpha_{n-1} = 0 \\
2\alpha_{n-3} + C_{n-2}^{n-3}\alpha_{n-2} + C_{n-1}^{n-3}\alpha_{n-1} = 0 \\
2\alpha_{n-4} + C_{n-3}^{n-4}\alpha_{n-3} + C_{n-2}^{n-4}\alpha_{n-2} + C_{n-1}^{n-4}\alpha_{n-1} = 0 \\
\vdots \\
2\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_{n-1} = 0
\end{cases}$$

D'où $\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0$. Par suite, f est injectif. Comme $\mathbb{R}_n[X]$ est de dimension finie, on en déduit que f est bijectif. \square

Exercice 21 : On considère la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- 1. Calculer $A^2-3A+2I_2$. En déduire que A est inversible et calculer son inverse.
- 2. Pour $n \geq 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire l'expression de la matrice A^n .

Solution:

1. Calculons $A^2 - 3A + 2I_2$. On a

$$A^{2} - 3A + 2I_{2} = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} - 3 \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -5 & -6 \\ 9 & 10 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ -9 & -10 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

D'où

$$A^2 - 3A + 2I_2 = 0.$$

On a $A^2-3A+2I_2=0,\,\mathrm{donc}\,\,3A-A^2=2I_2.$ D'où

$$A(\frac{3}{2}I_2 - \frac{1}{2}A) = I_2$$

Par suite, A est une matrice inversible dont l'inverse $A^{-1} = \frac{3}{2}I_2 - \frac{1}{2}A$.

2. Déterminons le reste de la division euclidienne de X^n par X^2-3X+2 , pour $n \geq 2$. En effet, soit R(X) le reste de la division euclidienne de X^n par X^2-3X+2 . Comme $P(X)=X^2-3X+2$ est un polynôme de degré 2, il existe $a, b \in \mathbb{R}$ tel que

$$R(X) = aX + b.$$

Or P(1) = P(2) = 0, on obtient

$$\begin{cases} a+b=1\\ 2a+b=2^n \end{cases}$$

puisque, il existe Q(X) tel que $X^n = Q(X)P(X) + R(X)$. Ainsi, $a = 2^n - 1$ et $b = 2 - 2^n$. Par suite

$$R(X) = (2^n - 1)X + 2 - 2^n$$

3. Déduisons l'expression de la matrice A^n . D'après la question 2, on a

$$X^n = Q(X)(X^2 - 3X + 2) + (2^n - 1)X + 2 - 2^n, \quad n \ge 2$$

et comme $A^2 - 3A + 2I_2 = 0$, on obtient

$$A^n = (2^n - 1)A + (2 - 2^n)I_2$$
, pour tout $n \ge 2$.

 $\underline{Exercice\ 22}$: Trouver le rang de chacune des matrices suivantes à l'aide de la méthode de Gauss .

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & -3 & -4 \\ 3 & 1 & 5 \\ -1 & 0 & -1 \\ 0 & 2 & 4 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ -1 & 0 & -1 & -3 \end{pmatrix}, D = \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix}$$

Solution:

1. Calculons le rang de A. On a

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \xrightarrow{L_2 + \frac{1}{2}L_1} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 3/2 & -3/2 \\ -1 & -1 & 2 \end{pmatrix} \xrightarrow{L_3 + \frac{1}{2}L_1} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 3/2 & -3/2 \\ 0 & -3/2 & 3/2 \end{pmatrix}$$

$$\xrightarrow{L_3 + L_2} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 3/2 & -3/2 \\ 0 & 0 & 0 \end{pmatrix}$$

D'où rang(A) = 2.

2. Calculons le rang de B. On a

$$B = \begin{pmatrix} 2 & -3 & -4 \\ 3 & 1 & 5 \\ -1 & 0 & -1 \\ 0 & 2 & 4 \end{pmatrix} \xrightarrow{L_2 - \frac{3}{2}L_1} \begin{pmatrix} 2 & -3 & -4 \\ 0 & 11/2 & 17/2 \\ -1 & 0 & -1 \\ 0 & 2 & 4 \end{pmatrix} \xrightarrow{L_3 + \frac{1}{2}L_1} \begin{pmatrix} 2 & -3 & -4 \\ 0 & 11/2 & 17/2 \\ 0 & -3/2 & -3 \\ 0 & 2 & 4 \end{pmatrix}$$

$$\xrightarrow{L_3 + \frac{3}{11}L_2} \begin{pmatrix} 2 & -3 & -4 \\ 0 & 11/2 & 17/2 \\ 0 & 0 & -15/22 \\ 0 & 2 & 4 \end{pmatrix} \xrightarrow{L_4 - \frac{4}{11}L_2} \begin{pmatrix} 2 & -3 & -4 \\ 0 & 11/2 & 17/2 \\ 0 & 0 & -15/22 \\ 0 & 0 & 16/11 \end{pmatrix} \xrightarrow{L_4 + \frac{15}{32}L_2} \begin{pmatrix} 2 & -3 & -4 \\ 0 & 11/2 & 17/2 \\ 0 & 0 & -15/22 \\ 0 & 0 & 0 \end{pmatrix}$$

D'où rang(B) = 3.

3. Calculons le rang de C. On a

$$C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ -1 & 0 & -1 & -3 \end{pmatrix} \xrightarrow{L_2 - 2L_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 1 & 2 & -1 & 1 \\ -1 & 0 & -1 & -3 \end{pmatrix} \xrightarrow{L_3 - L_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & -1 & -3 \end{pmatrix}$$

$$\xrightarrow{L_4 + L_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 \end{pmatrix} \xrightarrow{L_3 + L_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 1 & -1 & -2 \end{pmatrix} \xrightarrow{L_4 + L_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{c_3 \leftrightarrow c_4} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

D'où rang(C) = 3.

4. Calculons le rang D. On a

$$D = \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix} \xrightarrow{L_2 - L_1} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix} \xrightarrow{L_3 - 2L_1} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 0 & -3 & -6 & -3 & 3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix}$$

$$\xrightarrow{L_4 - 3L_1} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 0 & -3 & -6 & -3 & 3 \\ 0 & 2 & -2 & -1 & 1 \end{pmatrix} \xrightarrow{L_3 + 3L_2} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & -2 & -1 & 1 \end{pmatrix} \xrightarrow{L_4 - 2L_2} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -6 & -3 & -3 \end{pmatrix}$$

$$\xrightarrow{L_3 \leftrightarrow L_4} \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & -6 & -3 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

D'où rang(D) = 3.

Exercice 23 : A l'aide de la méthode de Gauss, déterminer si les matrices suivantes sont inversibles, et déterminer leurs inverses lorsque elles sont inversibles:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 & 5 \\ -1 & 1 & -1 \\ 0 & 3 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 0 & 3 & 2 & 1 \end{pmatrix}$$

Solution:

1. Calculons le rang de A. On a

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix} \quad \xrightarrow{L_3 - 2L_1} \quad \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \quad \xrightarrow{L_3 - 2L_2} \quad \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

D'où rang(A) = 3. Par suite A est une matrice inversible. Déterminons l'inverse de A. On a

$$\begin{pmatrix}
1 & -1 & 0 & : & 1 & 0 & 0 \\
0 & 1 & 2 & : & 0 & 1 & 0 \\
2 & 0 & 3 & : & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{L_3 - 2L_1}
\begin{pmatrix}
1 & -1 & 0 & : & 1 & 0 & 0 \\
0 & 1 & 2 & : & 0 & 1 & 0 \\
0 & 2 & 3 & : & -2 & 0 & 1
\end{pmatrix}
\xrightarrow{L_3 - 2L_2}$$

$$\begin{pmatrix}
1 & -1 & 0 & : & 1 & 0 & 0 \\
0 & 1 & 2 & : & 0 & 1 & 0 \\
0 & 0 & -1 & : & -2 & -2 & 1
\end{pmatrix}
\xrightarrow{C_2 + C_1}
\begin{pmatrix}
1 & 0 & 0 & : & 1 & 1 & 0 \\
0 & 1 & 2 & : & 0 & 1 & 0 \\
0 & 0 & -1 & : & -2 & -4 & 1
\end{pmatrix}$$

$$\xrightarrow{C_3 - 2C_2}
\begin{pmatrix}
1 & 0 & 0 & : & 1 & 1 & -2 \\
0 & 1 & 0 & : & 0 & 1 & -2 \\
0 & 0 & -1 & : & -2 & -4 & -9
\end{pmatrix}
\xrightarrow{-C_3}
\begin{pmatrix}
1 & 0 & 0 & : & 1 & 1 & 2 \\
0 & 1 & 0 & : & 0 & 1 & 2 \\
0 & 0 & 1 & : & -2 & -4 & -9
\end{pmatrix}$$

D'où

$$A^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ -2 & -4 & -9 \end{pmatrix}$$

2. Calculons le rang de B. On a

$$\begin{pmatrix} 2 & 1 & 5 \\ -1 & 1 & -1 \\ 0 & 3 & 3 \end{pmatrix} \xrightarrow{L_2+1/2L_1} \begin{pmatrix} 2 & 1 & 5 \\ 0 & 3/2 & 3/2 \\ 0 & 3 & 3 \end{pmatrix} \xrightarrow{L_3-2L_2} \begin{pmatrix} 2 & 1 & 5 \\ 0 & 3/2 & 3/2 \\ 0 & 0 & 0 \end{pmatrix}$$

D'où rang(B) = 2 et donc B n'est pas inversible.

3. Calculons le rang de C. On a

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 1 \\
0 & 3 & 2 & 1
\end{pmatrix}
\xrightarrow{L_2 - L_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 2 & 3 & 1 \\
0 & 3 & 2 & 1
\end{pmatrix}
\xrightarrow{L_3 - L_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 2 & 3 & 1 \\
0 & 3 & 2 & 1
\end{pmatrix}
\xrightarrow{L_3 - 2L_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 3 & 2 & 1
\end{pmatrix}$$

$$\xrightarrow{L_4 - 3L_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}
\xrightarrow{L_4 + L_3}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

D'où $\mathrm{rang}(C)=4$ et donc C est une matrice inversible.

Déterminons l'inverse de C. On a

$$\begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & : & 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 1 & : & 0 & 0 & 1 & 0 \\ 0 & 3 & 2 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_2 - L_1} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & : & 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_3 - L_1} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 1 & 2 & 3 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_3 - 2L_2} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & : & -1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 & : & -1 & 0 & 1 & 0 \\ 0 & 3 & 2 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_4 - 3L_2} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & : & -1 & 1 & 0 & 0 \\ 0 & 3 & 2 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_4 - 3L_2} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & : & -1 & 1 & 0 & 0 \\ 0 & 3 & 2 & 1 & : & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{L_4 - 3L_2} \begin{pmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & : & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & : & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & : & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & : & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & -3 & : & 4 & -5 & 1 & 0 \end{pmatrix} \xrightarrow{C_3 - C_2}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & : & -1 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & : & 1 & -2 & 3 & 0 \\
0 & 0 & 0 & -3 & : & 4 & -5 & 6 & 0
\end{pmatrix}
\xrightarrow{C_4 - C_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & : & -1 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 & : & 1 & -2 & 3 & 2 \\
0 & 0 & 0 & -3 & : & 4 & -5 & 6 & 5
\end{pmatrix}
\xrightarrow{C_4 + C_3}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & : & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & : & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & : & -1 & 1 & -1 & -2 \\
0 & 0 & 1 & 0 & : & -1 & 1 & -1 & 2/3 \\
0 & 0 & 1 & 0 & : & 1 & -2 & 3 & -5/3 \\
0 & 0 & 0 & 1 & : & 4 & -5 & 6 & -11/3
\end{pmatrix}
\xrightarrow{C_4 + C_3}$$

D'où

$$C^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 2/3 \\ 1 & -2 & 3 & -5/3 \\ 4 & -5 & 6 & -11/3 \end{pmatrix}$$

Bibliography

[1] **Bentaleb. A.** Cours d'Algèbre III du deuxième semestre SMIA. Université Moulay Ismail, Faculté des sciences 2020.