

Année Universitaire: 2019/2020

Filière: MIP, Section 2

Module: C121

Département de chimie Pr. Ahmed AIT HOU

TD - Série 1: ATOMISTIQUE

Exercice 1

- 1- Combien y a t-il de grammes de H₂S dans 0,4 mol de H₂S ?
- 2- Combien y a t-il de moles de H et de moles de S dans 0,4 mol de H₂S?
- 3- Combien y a t-il de grammes de H et de grammes de S dans 0,4 mol de $_{H_2S}$
- 4- Combien y a t-il de molécules de H₂S dans 0,4 mol de H₂S?
- 5- Combien y a t-il d'atomes de H et d'atomes de S dans 0,4 mol de H_2S ? On donne H:1,0079 et S:32,06

Exercice 2

Complétez le tableau suivant :

	⁵⁹ Co	127 53	²⁰ Ne	²³⁸ U	²⁰⁷ Pb	⁵⁵ ₂₅ Mn ²⁺	³⁵ Cl
Nombre de protons							
Nombre de neutrons							
Nombre d'électrons							

Exercice 3

La masse atomique du chlore est 35,453. Sachant que le chlore est un mélange des isotopes ^{35}Cl Et ^{37}Cl dont les masses valent respectivement 34,96885 et 36,9659.

- 1- Donner dans chaque cas, le nombre de protons, d'électrons et de neutrons
- 2- Calculer les proportions de ces deux isotopes dans le chlore naturel

Exercice 4

- 1- Définir l'unité de masse atomique (u.m.a.)
- 2- Calculer en u.m.a, les masses du proton, du neutron et de l'électron
- 3- Calculer le contenu énergétique d'une u.m.a. exprimé en Joules, ergs et MeV
- 4- Calculer le défaut de masse des noyaux suivants : ${}_{2}^{4}$ \mathcal{L}_{2}^{13} ${}_{6}^{13}$ C
- 5- En déduire l'énergie de cohésion des noyaux en Joule et en MeV

On donne: M(He) = 4,0026 u.m.a. ET M(C) = 13,0034 u.m.a.

	Proton	Neutron	Electron
Masse en g	1,673.10 ⁻²⁴	1,675.10 ⁻²⁴	9,109.10 ⁻²⁸