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Preface

Our motivation when we started to write the Handbook was to provide a reference
book easily accessible without needing too much background knowledge, but at
the same time containing the fundamental notions of the probability theory.

We believe the primary audience of the book is split into two main categories
of readers.

The first category consists of students who already completed their graduate
work and are ready to start their thesis research in an area that needs applications
of probability concepts. They will find this book very useful for a quick reminder
of correct derivations using probability. We believe these student should reference
the present handbook frequently as opposed to taking a probability course offered
by an application department. Typically, such preparation courses in application
areas do not have the time or the knowledge to go into the depth provided by the
present handbook.

The second intended audience consists of professionals working in the industry,
particularly in one of the many fields of application of stochastic processes. Both
authors’ research is concentrated in the area of applications to Finance, and thus
some of the chapters contain specific examples from this field. In this rapidly
growing area the most recent trend is to obtain some kind of certification that will
attest the knowledge of essential topics in the field. Chartered Financial Analyst
(CFA) and Financial Risk Manager (FRM) are better known such certifications,
but there are many others (e.g., CFP, CPA, CAIA, CLU, ChFC, CASL, CPCU).
Each such certificate requires completion of several exams, all requiring basic
knowledge of probability and stochastic processes. All individuals attempting these
exams should consult the present book. Furthermore, since the topics tested during
these exams are in fact the primary subject of their future work, the candidates
will find the Handbook very useful long after the exam is passed.

xvii
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thank their colleagues at all these universities with whom they shared the teaching
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Introduction

The probability theory began in the seventeenth century in France when two great
French mathematicians, Blaise Pascal and Pierre de Fermat, started a correspon-
dence over the games of chance. Today, the probability theory is a well-established
and recognized branch of mathematics with applications in most areas of Science
and Engineering.

The Handbook is designed from an introductory course in probability. How-
ever, as mentioned in the Preface, we tried to make each chapter as independent
as possible from the other chapters. Someone in need of a quick reminder can
easily read the part of the book he/she is concerned about without going through
an entire set of background material.

The present Handbook contains fourteen chapters, the final two being appen-
dices with more advanced material. The sequence of the chapters in the book
is as follows. Chapters 1 and 2 introduce the probability space, sigma algebras,
and the probability measure. Chapters 3, 4, and 5 contain a detailed study of
random variables. After a general discussion of random variables in Chapter 3,
we have chosen to separate the discrete and continuous random variables, which
are analyzed separately in Chapters 4 and 5 respectively. In Chapter 6 we discuss
methods used to generate random variables. In today’s world, where computers
are part of any scientific activity, it is very important to know how to simu-
late a random experiment to find out the expectations one may have about the
results of the random phenomenon. Random vectors are treated in Chapter 7.
We introduce the characteristic function and the moment-generating function
for random variables and vectors in Chapters 8 and 9. Chapter 10 describes the
Gaussian random vectors that are extensively used in practice. Chapters 11 and
12 describe various types of convergence for sequences of random variables and
their relationship (Chapter 11) and some of the most famous limit theorems (the
law of large numbers and the central limit theorems), their versions, and their
applications (Chapter 12). Appendices A and B (Chapters 13 and 14) focus on
the more general integration theory and moments of random variables with any
distribution. In this book, we choose to treat separately the discrete and continu-
ous random variables since in applications one will typically use one of these cases
and a quick consultation of the book will suffice. However, the contents of the
Appendices show that the moments of continuous and discrete random variables
are in fact particular cases of a more general theory.

xix



xx Introduction

Each chapter of the Handbook has the following general format:

• Introduction
• Historical Notes
• Theory and Applications
• Exercises

The Introduction describes the intended purpose of the chapter. The Historical
Notes section provides numerous historical comments, especially dealing with
the development of the theory exposed in the corresponding chapter. We chose
to include an introductory section in each chapter because we believe that in
an introductory text in probability, the main ideas should be closely related to
the fundamental ideas developed by the founding fathers of Probability. The
section Theory and Applications is the core of each chapter. In this section we
introduce the main notion and we state and prove the main results. We tried
to include within this section as many basic examples as was possible. Many of
these examples contain immediate applications of the theory developed within the
chapter. Sometimes, examples are grouped in a special section. Each chapter of the
Handbook ends with the Exercises section containing problems. We divided this
section into two parts. The first part contains solved problems, and the second part
has unsolved problems. We believe that the solved problems will be very useful
for the reader of the respective chapter. The unsolved problems will challenge and
test the knowledge gained through the reading of the chapter.



Chapter One

Probability Space

1.1 Introduction/Purpose of the Chapter

The most important object when working with probability is the proper defini-
tion of the space studied. Typically, one wants to obtain answers about real-life
phenomena which do not have a predetermined outcome. For example, when
playing a complex game a person may be wondering: What are my chances to
win this game? Or, am I paying too much to play this game, and is there perhaps a
different game I should rather play? A certain civil engineer wants to know what is
the probability that a particular construction material will fail under a lot of stress.
To be able to answer these and other questions, we need to make the transition
from reality to a space describing what may happen and to create consistent laws
on that space. This framework allows the creation of a mathematical model of the
random phenomena. This model, should it be created in the proper (consistent)
way, will allow the modeler to provide approximate answers to the relevant ques-
tions asked. Thus, the first and the most important step in creating consistent models
is to define a probability space which is capable of answering the interesting questions
that may be asked.

We denote with� the set that contains all the possible outcomes of a random
experiment. The set � is often called sample space or universal sample space. For
example, if one rolls a die,� = {1, 2, 3, 4, 5, 6}. The space� does not necessarily
contain numbers but rather some representation of the outcomes of the real
phenomena. For example, if one looks at the types of bricks which may be used
to build a house, a picture of each possible brick is a possible representation of
each element of �.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 CHAPTER 1 Probability Space

A generic element of � will be denoted by ω. Any collection of outcomes
(elements in �) is called an event. That is, an event is any subset of the sample
space �. We will use capital letters from the beginning of the alphabet (A, B, C ,
etc.) to denote events.

In probability, one needs to measure the size of these events. Since an event
is just a subset, we need to define those subsets of � that can be measured. The
concept of sigma algebra allows us to define a collection of subsets of the sample
space on which a measure can be defined. In this chapter we introduce the notion
of algebra and sigma algebra and we discuss their basic properties.

1.2 Vignette/Historical Notes

The first recorded notions of Probability Theory appear in 1654 in an exchange
of letters between the famous mathematicians Blaise Pascal and Pierre de Fermat.
The correspondence was prompted by a simple observation by Antoine Gombaud
Chevalier de Méré, a French nobleman with an interest in gambling and who was
puzzled by an apparent contradiction concerning a popular dice game. The game
consisted of throwing a pair of dice 24 times; the problem was to decide whether
or not to bet even money on the occurrence of at least one ‘‘double six’’ during
the 24 throws. A seemingly well-established gambling rule led de Méré to believe
that betting on a double six in 24 throws would be profitable (based on the
payoff of the game). However, his own calculations based on many repetitions
of the 24 throws indicated just the opposite. If we translate de Méré problem
in todays language, he was trying to establish if the event has probability greater
than 0.5. Today the confusion is easy to pinpoint to the proper definition of the
probability space. For example, the convention at the time was that rolling a three
(two and one showing on the dice) would be the same as rolling a two (a double
one). Puzzled by this and other similar gambling problems, de Méré wrote to
Pascal. The further correspondence between Fermat and Pascal is the first known
documentation of the fundamental principles of the theory of probability.

The first formal treatment of probability theory was provided by Pierre-
Simon, marquis de Laplace (1749–1827) in his Théorie Analytique des Proba-
bilités published in 1812. (Laplace, 1886, republished). In 1933 the monograph
Grundbegriffe der Wahrscheinlichkeitsrechnung by the Russian preeminent mathe-
matician Andrey Nikolaevich Kolmogorov (1903–1987) outlined the axiomatic
approach that forms the basis of the modern probability theory as we know it
today (Kolmogoroff, 1973, republished).

1.3 Notations and Definitions

The following notations will be used throughout the book for set (event) opera-
tions. In the following,ω is any element andA,B are any sets in the sample space�.



1.3 Notations and Definitions 3

• We describe a set or a collection of elements using a notation of the form

{x | x satisfy property P}.
The first part before the | describes the basic element in this collection, and
the part after | describes the property that all the elements in the collection
must satisfy.

• ∅ is a notation for the set that does not contain any element. This set is called
the empty set.

• ω ∈ A denotes that the element ω is in the set A; we say ‘‘ω belongs to A.’’
Obviously, ω /∈ A means that the element is not in the set.

• A ⊆ B denotes that A is a subset of B; that is, every element in A is also in
B. The set A may actually be equal to B. In contrast, the notation A ⊂ B
means that A is a proper subset of B; that is, A is strictly included in B.
Mathematically, A ⊆ B is equivalent to the following statement: Any x ∈ A
implies x ∈ B.

• Union of sets:

A ∪ B = {set of elements that are either in A or in B}
= {ω ∈ � | ω ∈ A or ω ∈ B}.

• Intersection of sets:

A ∩ B = AB = set of elements that are both in A and in B

= {ω ∈ � | ω ∈ A and ω ∈ B}.
• Complement of a set:

Ac = Ā = set of elements that are in � but not in A = {ω ∈ � | ω /∈ A}.
• Difference of two sets:

A \ B = set of elements that are in A but not in B

= {ω ∈ � | ω ∈ A,ω /∈ B}.
• Symmetric difference:

A�B = (A \ B) ∪ (B \ A).

• Two sets A, B such that A ∩ B = ∅ are called disjoint or mutually exclusive
sets.

• A collection of sets A1, A2, . . . , An such that A1 ∪ A2 ∪ · · · ∪ An = � and
Ai ∩ Aj = ∅ for any i /= j is called a partition of the space �.

Every set operation may be expressed in terms of basic operations. For
example,

A \ B = A ∩ Bc and (A \ B)c = Ac ∪ B.



4 CHAPTER 1 Probability Space

There is a distributive law for intersection over union. If A, B, C are included in
�, then

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

and

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ).

Furthermore, �c = ∅ and ∅c = �, and for all A ⊂ � we have

A ∪ Ac = �, A ∩ Ac = ∅, and (Ac )c = A.

The De Morgan laws are also very important:

(A ∪ B)c = Ac ∩ Bc,
(A ∩ B)c = Ac ∪ Bc. (1.1)

All of these rules may be extended to any finite number of sets in an obvi-
ous way. More details and further references about set operations may be found
in Billingsley (1995) or Chung (2000).

1.4 Theory and Applications

1.4.1 ALGEBRAS

We introduce the notion of �-algebra (or �-field ) to introduce a collection of
sets which we may measure. In other words, we introduce a proper domain of
definition for the (soon to be introduced) probability function. First let us denote

P(�) = {A | A ⊆ �};

that is, P(�) is the collection of all possible subsets of �, a set containing all
possible sets in �. This collection is called the parts of �.

An algebra on � is a collection of such sets in P(�) (including �) which is
closed under complementarity and finite union.

Definition 1.1 (Algebra on �) Let � be a nonempty space. A collection A

of events in � is called an algebra (or field) on � if and only if:

i. � ∈ A .

ii. If A ∈ A , then Ac ∈ A .

iii. If A, B ∈ A , then A ∪ B ∈ A .
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Let us list some immediate property of an algebra.

Proposition 1.2 Let A be an algebra on �. Then:

1. ∅ ∈ A .

2. If A, B ∈ A , then A ∩ B ∈ A .

3. For any n natural number in N, if A1, . . . , An ∈ A , then
⋃n
i=1 Ai ∈ A .

Proof: Note that these are properties of the collection of sets. The collection A

must contain these. Specifically, ∅ = �c and since � ∈ A the second point in
Definition 1.1 says that ∅ ∈ A . Since

(A ∩ B)c = Ac ∪ Bc,

by the DeMorgan laws (1.1), points ii and iii in Definition 1.1 imply that (A ∩ B)c

is in A and so A ∩ B is in A. The proof for the third part is a simple induction
on n ≥ 2, with the verification step already provided in iii of Definition 1.1. �

1.4.2 SIGMA ALGEBRAS

A �-algebra on � is a generalization of an algebra on �.

Definition 1.3 (�-Algebra on �) A �-algebra F on � is an algebra on �
and in addition it is closed under countable unions. That is, the first two points in
Definition 1.1 remain the same, and the third property is replaced with:

iii. If n ∈ N is a natural number and An ∈ F for all n, then

⋃
n∈N

An ∈ F.

Definition 1.3 implies other properties of a �-algebra. For example, if a sigma
algebra contains two elements A and B, it also contains A ∩ B and A ∪ B. The
fact that the intersection must be in the �-algebra is an easy consequence of point
ii in the above definitions. For the �-algebra case the intersection can be extended
to a countable number of events as the next result shows.

Proposition 1.4 Let F be a �-algebra on �. Then:

1. ∅ ∈ F.

2. If {Ai}i∈N are elements of the �-algebra F, then

⋂
i∈N
Ai ∈ F.
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Proof: Since ∅ = �c and � ∈ F, it follows that

∅ ∈ F.

For the second part, we note that

(⋂
i∈N
Ai

)c
=

⋃
i∈N
Aci

and since for every i ∈ N, Aci ∈ F from the second part of the definition, their
countable union is

⋃
i∈N A

c
i ∈ F, and thus its complement is

⋂
i∈N Ai ∈ F. �

The �-algebra is a very nice collection of sets. Using simple the operations
union, intersection, complementarity, and difference applied to any sets in the
�-algebra, we end up with a set still in the �-algebra. In fact, we may apply these
simple operations in any combination a countably infinite number of times and
we still end up with a set in the �-algebra.

However, a noncountable intersection or union of the elements of a �-algebra
does not necessarily belongs to it (although it may). This can only happen when
the index n is in some continuous set—for example, n ∈ (0, 1). Such situations are
advanced: however, they become relevant when talking about stochastic processes.
Extra care has to be observed in these cases. In the context of stochastic processes,
we will introduce filtrations, which are simply increasing �-algebras.

Because of these nice properties, a �-algebra provides a suitable domain of
definition for the probability function (and thus defines probabilities of random
events). However, a �-algebra is a very abstract concept which, in general, is hard
to work with. To simplify notions, we introduce the next definition. It will be
much easier to work with the generators of a �-algebra.

This will be a recurring theme in probability; in order to show a property for a
big class, we show the property for a small generating subset of the class and then use
standard arguments to extend the property to the entire class.

Definition 1.5 (�-algebra generated by a class C of sets in �) Let
C be any collection of sets in�. Then we define �(C ) as the smallest �-algebra on�
that contains C . That is, �(C ) satisfies the following properties:

1. It contains all the sets in C : C ⊆ �(C ).

2. �(C ) is a �-algebra.

3. It is the smallest �-algebra with this property: If C ⊆ G and G is another
�-field, then �(C ) ⊆ G .

The idea, as mentioned earlier, is to verify some statement on the set C .
Then, due to the properties that would be presented later, the said statement will
be extended and be valid for all the sets in �(C ).
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Proposition 1.6 Let C ⊂ P(�). Then

�(C ) =
⋂

F�-algebra;F⊃C

F.

Proof: The proof is left as an exercise (see Exercise 1.12). �

Proposition 1.7 (Properties of �-algebras) The following are true:

• P(�) is a �-algebra, the largest possible �-algebra on �.
• If the collection C is already a �-algebra, then �(C ) = C .
• If C = {∅} or C = {�}, then �(C ) = {∅, �}, the smallest possible �-algebra

on �.
• If C ⊆ C

′, then �(C ) ⊆ �(C
′).

• If C ⊆ C
′ ⊆ �(C ), then �(C

′) = �(C ).

Again, these properties are easy to derive directly from the definition and are
left as exercise.

In general, listing all the elements of a �-algebra explicitly is hard. Only in
simple cases is this is even possible. This explains why we prefer to work with the
generating collection C instead of directly with the �-algebra �(C ).

1.4.3 MEASURABLE SPACES

After introducing �-algebras, we are now able to give the notion of a space on
which we can introduce probability measure.

Definition 1.8 (Measurable space) A pair (�,F), where� is a nonempty
set and F is a �-algebra on � is called a measurable space.

On this type of space we shall introduce the probability measure.

1.4.4 EXAMPLES

EXAMPLE 1.1 The measurable space generated by a set

Suppose a set A ⊂ �. Let us calculate �(A). Clearly, by definition, � is in
�(A). Using the complementarity property, we clearly see that Ac and ∅ are
also in �(A). We only need to take unions of these sets and see that there
are no more new sets. Thus,

�(A) = {�, ∅, A, Ac}.
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EXAMPLE 1.2 The space modeling the rolls of a six sided die

Roll a six-sided die. Then use � = {1, 2, 3, 4, 5, 6} to denote the space of
outcomes of rolling the die. Let A = {1, 2}. Then

�(A) = {{1, 2}, {3, 4, 5, 6}, ∅, �}.

EXAMPLE 1.3 The measurable set generated by two sets

Suppose that C = {A, B}, whereA andB are two sets in� such thatA ⊂ B.
List all the sets in �(C ).

Solution: A common mistake made by students who learn these notions is the
following argument:
A ⊂ B; therefore, using the fourth property in the proposition above, we
obtain �(A) ⊆ �(B) and therefore the �-algebra asked is �(A, B) = �(B) =
{�, ∅, B, Bc}.

This argument is wrong on several levels. Firstly, the quoted property refers
to collections of sets and not to the sets themselves. While it is true that A ⊂ B, it
is not true that {A} ⊂ {B} as collections of sets. Instead, {A} ⊂ {A, B} and indeed
this implies �(A) ⊆ �(A, B) (and similarly for �(B)). But this just means that the
result should contain all the sets in �(A) (the sets in the previous example).

Second, as this example shows and as the following proposition says, it is not
true that �(A) ∪ �(B) = �(A, B), so we can’t just simply list all the elements in
�(A) and �(B) together. The only way to solve this problem is the hard way—that
is, actually calculating the sets.

Clearly, �(A, B) should contain the basic sets and their complements; thus

�(A, B) ⊃ {�, ∅, A, B, Ac, Bc}.
The �-algebra should also contain all their unions according to the definition.
Therefore, it must contain

A ∪ B = B,

A ∪ Bc,
Ac ∪ B = �,

Ac ∪ Bc = Ac,

where the equalities are obtained using that A ⊂ B. So the only new set to be
added is A ∪ Bc and thus its complement as well: (A ∪ Bc )c = Ac ∩ B. Now we
need to verify that by taking unions we do not obtain any new sets, a task left for
the reader. In conclusion, when A ⊂ B we have

�(A, B) = {�, ∅, A, B, Ac, Bc, A ∪ Bc, Ac ∩ B}.
�
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Remark 1.9 Experimenting with generated �-algebras is a very useful tool to
understand this idea in probability: We typically work with the generating sets of the
�-algebras, (A and B in Example 1.3), and then some standard arguments will take
over and generalize the work to the entire �-algebra automatically.

Proposition 1.10 (Intersection and union of �-algebras) Suppose
that F1 and F2 are two �-algebras on �. Then:

1. F1 ∩ F2 is a �-algebra.

2. F1 ∪ F2 is not a �-algebra. The smallest �-algebra that contains both of them
is �(F1 ∪ F2) and is denoted F1 ∨ F2

Proof: For part 2 there is nothing to show. A counterexample is immediate from
the previous exercise. Take F1 = �(A) and F2 = �(B). Example 1.3 calculates
�(A, B), and it is simple to see that F1 ∪ F2 needs more sets to become a �-
algebra. It is worth mentioning that in some trivial cases the union may be a
�-algebra, such as for example when F1 ⊆ F2 and they both contain a countable
number of elements.

For part 1 we need to verify the three properties in the definition of the
sigma algebra. For example, take A in F1 ∩ F2. So A belongs to both collections
of sets. Since F1 is a �-algebra by definition, we have Ac ∈ F1. Similarly, Ac ∈
F2. Therefore, Ac ∈ F1 ∩ F2. The rest of the definition is verified in a similar
manner. �

Remark 1.11 Part 1 of the proposition above may be generalized to any countable
intersection of �-algebras. That is, if {Fi}i∈I is any sequence of �-fields and I is
countable, then ⋂

i∈I
Fi

is a �-field.

1.4.5 THE BOREL �-ALGEBRA

Let � be a topological space (think geometry is defined in this space, and this
assures us that the open subsets exist in this space).

Definition 1.12 We define:

B (�) = The Borel �-algebra

= �-algebra generated by the class of open subsets of �. (1.2)

In the special case when � = R, we denote B = B (R), the Borel sets of
R. This B is the most important �-algebra. The reason is that most experiments
on abstract spaces�may be made equivalent with experiments on R (as we shall



10 CHAPTER 1 Probability Space

see later when we talk about random variables). Thus, if we define a probability
measure on B , we have a way to calculate probabilities for most experiments.

There is nothing special about using the open sets as generators, except for
the fact that the open sets can be defined in any topological space. The Borel sets
overRmay be generated by various other classes of intervals; in the end the result
is the same �-algebra. Please see problem 2.10 for these classes of generators.

Pretty much, any subset of R you can think about is in B . However, it
is possible (though very difficult) to explicitly construct a subset of R which is
not in B . See (Billingsley, 1995, page 45) for such a construction in the case
� = (0, 1]. These sets are generally constructed using a Cantor set argument.

EXAMPLE 1.4

Let � /= ∅ and let A1, . . . , An be a partition of � with a finite number of
sets. We denote

T =
⎧⎨
⎩

⋃
i∈J
Ai

∣∣∣∣∣∣ J ⊂ {1, 2, . . . , n}
⎫⎬
⎭ .

We will show that T is the�-algebra generated by the sets in the partition—
that is in fact the same as �(A1, . . . , An).

Solution: We start by proving that T is a �-algebra. First,

� =
n⋃
i=1

Ai,

which implies that � ∈ T.
Suppose that A = ⋃

i∈J Ai is an element of T . Then its complement is

Ac =
⋂
i∈J
Aci =

⋃
i∈J c

Ai.

This is easy to see since Ai form a partition of �. Thus Aci = ⋃
j /= i Aj and the

intersection of these gives exactly the sets not indexed by J . Therefore, Ac ∈ T .
Moreover, for any integer p ∈ N.⋃

p

⋃
i∈Jp
Ai =

⋃
i∈∪pJp

Ai

which implies that T is closed under finite number of unions, and T is an algebra.
Furthermore, since the total index set {1, 2, . . . , n} is finite, any countable union
∪∞
p=1Jp of subsets Jp is also included in {1, 2, . . . , n} and T is closed under

countable unions, thus it is in fact a �-algebra.
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Since T is a �-algebra which contains the events Ai , it must also contain the
sigma algebra generated by A1, . . . , An. This means that T ⊇ �(A1, . . . , An).

Conversely, �(A1, . . . , An) is a �-algebra, thus by definition it must contain
any countable (in particular finite) union of Ai ’s. But the set of finite unions is
precisely T , which shows that T ⊆ �(A1, . . . , An).

The double inclusion above then shows that T is the �-algebra generated
by A1, . . . , An. �

EXAMPLE 1.5 Examples of algebras and �-algebras on R

Let T be the �-algebra generated by the finite subsets ofR (i.e., all subsets
in R with a finite number of elements). Denote by C the set of subsets
A ⊆ R such that A is countable or Ac is countable.

1. Show that C is a �-algebra.

2. Show that T and C coincide.

3. Compare T and the Borel �-algebra B.

Solution: 1. We need to verify the three properties of a �-algebra. Clearly ∅ ∈ C ,
and by the definition of C we have Ac ∈ C if A ∈ C .

LetAn be a sequence of events included in C . We have two possibilities: Either
all An’s in the sequence are countable, or there exist an event in the sequence (An)n
which is not countable.

If every An is countable, then clearly

⋃
n

An

is countable (a countable union of countable sets is countable) and consequently⋃
n An is in C .

Suppose that there exists at least some set, say Ap, that is not countable. Since
Ap ∈ C , then Acp is countable. By DeMorgan laws (1.1) we have

(⋃
n

An

)c
=

⋂
n

Acn ⊂ Acp,

where the last inclusion holds because Acp is countable. Thus, the complement of

the set
(⋃

n An
)c

is at most countable and therefore it belongs to C .
2. Clearly T ⊆ C . Recall that any finite set is also countable and so C is a

�-algebra that contains all the finite parts ofR. Since T is the smallest �-algebra
that contains these finite parts, the inclusion follows.
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Conversely, we will prove that T contains every set A ⊆ R such that A or
Ac is finite or countable. Indeed, if A is countable, then A can be written as

A =
⋃
x∈A

{x}.

Since every singleton {x} is in T and T is stable under countable union, we
deduce that A ∈ T . If Ac is countable, the same argument applied to it will imply
that Ac ∈ T . But T is a �-algebra and so A ∈ T . In either case we deduce that
any set A in C belongs to T . Therefore C ⊆ T , and by double inclusion the
two are the same.

3. The Borel �-algebra contains all the finite subsets ofR. Therefore, we have
T ⊂ B . This inclusion is strict. Indeed, the interval (0, 1) is in B , but it is not
in C because neither (0, 1) nor its complement is countable. Since T is the same
as C , it is a proper subset (included strictly) of B . �

1.5 Summary

In this chapter we introduce the space on which probability is defined. This
beginning chapter introduces the notion of �-algebra, which is going to be the
domain of definition for the probability measure. We need to know what we
can measure and what we cannot. The sets that can be measured and given
a probability will always be in the �-algebra. Furthermore, this chapter intro-
duces the basic notions of the set operations such as inclusion, intersection, and
so on.

EXERCISES

1.1 Show that if A, B are two event in �, then

A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B).

1.2 If (Ai)i∈I is any collection of events in �, then show that(⋃
i∈I
Ai

)c
=

⋂
i∈I
Aci

and (⋂
i∈I
Ai

)c
=

⋃
i∈I
Aci .
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1.3 Roll a six-sided die. Use � = {1, 2, 3, 4, 5, 6} to denote the pos-
sible outcomes. An example of an event in this space � is A =
{Roll an even number} = {2, 4, 6}. Find the cardinality (total number of
elements) of P(�).

1.4 Suppose two events A and B are in some space�. List the elements of the
generated � algebra �(A, B) in the following cases:
(a) A ∩ B = ∅.
(b) A ⊂ B.
(c) A ∩ B /= ∅, A \ B /= ∅, and B \ A /= ∅.

1.5 An algebra which is not a �-algebra
Let B 0 be the collection of sets of the form (a1, a

′
1] ∪ (a2, a

′
2] ∪ · · · ∪

(am, a′
m], for any m ∈ N∗ = {1, 2 . . . } and all a1 < a′

1 < a2 < a′
2 <· · · < am < a′

m in � = (0, 1]. Verify that B 0 is an algebra. Show that
B 0 is not a �-algebra.

1.6 Let F = {A ⊆ � | A finite or Ac is finite}.
(a) Show that F is an algebra.
(b) Show that if � is finite, then F is a �-algebra.
(c) Show that if � is infinite, then F is not a �-algebra.

1.7 A �-algebra does not necessarily contain all the events in �
Let F = {A ⊆ � | A countable or Ac is countable}. Show that F is a
�-algebra.
Note that if � is uncountable, this implies that it contains a set A such
that both A and Ac are uncountable, thus A /∈ F.

1.8 Show that the Borel sets of RB = � ({(−∞, x] | x ∈ R}).
Hint: Show that the generating set is the same; that is, show that any set
of the form (−∞, x] can be written as countable union (or intersection)
of open intervals and vice versa that any open interval inR can be written
as countable union (or intersection) of sets of the form (−∞, x].

1.9 Show that the following classes all generate the Borel �-algebra; or, ex-
pressed differently, show the equality of the following collections of sets:

� ((a, b) : a < b ∈ R) = � ([a, b] : a < b ∈ R) = � ((−∞, b) : b ∈ R)

= � ((−∞, b) : b ∈ Q) ,

where Q is the set of all rational numbers.

1.10 Let A, B, C be three events in a probability space. Express the following
events in terms of elements in A, B, C using union, intersection, comple-
mentarity, etc.
(a) Only the event A happens.
(b) At least one of the three events happens.
(c) At least two event happen.
(d) At most one event happen.
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(e) Exactly two events happen.

Hint:
(a) A ∩ Bc ∩ C c
(b) A ∪ B ∪ C
(c) (A ∩ B) ∪ (A ∩ C ) ∪ (B ∩ C )
(d) ((A ∩ B) ∪ (A ∩ C ) ∪ (B ∩ C ))c

(e) ((A ∩ B) ∪ (A ∩ C ) ∪ (B ∩ C )) ∩ (A ∩ B ∩ C )c

(Note that these expressions are not the only way to write the sets.)

1.11 Let B, C be collections of subsets of �.
(a) If B ⊂ C, prove that �(B) ⊂ �(C).
(b) If B ⊂ �(C) ⊂ �(B), show that �(B) = �(C).

1.12 Give a proof for Proposition 1.6.

Hint. Use exercise 1.11 for one of the two inclusions (the other one is
obvious).

1.13 This problem gives the structure of the Borel �-algebra on R2.
(a) Let R be the set of open rectangles inR2 with extremities inQ—that
is, the set of the form (p, q) × (r, s), where p, q, r, s ∈ Q. Show that R is
countable.
(b) Let U be an open set in R2. Prove that

U =
⋃

R∈R,R⊂U
R;

that is, the open sets may be written as countable unions of elements
in R.
(c) Finally, conclude that the �-algebra generated by the open rectangles
in R2 coincides with the Borel �-algebra on R2.

1.14 Prove the claim stated in Remark 1.11.



Chapter Two

Probability Measure

2.1 Introduction/Purpose of the Chapter

The previous chapter presents the concept of measurable space. A measurable
space is a couple (�,F) with � a non-empty set and F a �-algebra. Such a
measurable space is ready for a probability measure. This is a measure defined on
the events in the �-algebra F, taking values in the unit interval [0, 1]. This setup
then can be applied to any random phenomena, from simple ones—for example,
rolling a dice or tossing a coin—to complex ones such as running a survey to
ascertain whether or not each person in a sample supports the death penalty, or
modeling a laboratory investigation to study the best amount of a certain chemical
and its effects on the yield of a product.

The probability measures the size of the events. Any probability measure is
defined by two properties: the probability of � must equal to 1 and the measure
must be countably additive. What is the reason for these two properties? The first
one implies that all possible outcomes of the experiment are accounted for in�—
the universe of the experiment. The second property is very logical. It is natural
to have P(A ∪ B) = P(A) + P(B) for two disjoint events A and B in F; that
is, probability that A or B is happening is equal to the sum of the probabilities
of A and B. The countable additivity is needed to extend this property to the
entire �-algebra as well as provide a way to go from calculating probability on the
generators to the entire �-algebra.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2.2 Vignette/Historical Notes

Any probability model has two essential components: (a) the sample space and its
associated �-algebra which defines what can be measured and (b) a probability law
which defines how to measure. A natural question to ask is, Where do the numerical
values for such a probability law come from? There are primarily three points of
view on this aspect of how to connect the theory and reality. The probabilities
could be assigned directly from data, following some models, or be assigned in a
subjective manner. The frequentist approach considers any given experiment as
one of a possible infinite replications of the experiment. The objectivist approach
sees probabilities as adapting to the real aspects of the universe; thus the experiment
in fact keeps changing and adapting itself to these laws of the universe. Finally,
the subjectivist view describes probabilities as a way of characterizing beliefs about
the world, rather than as having any external physical significance. The later two
view of probability adhere to the Bayesian principles.

Throughout this book we will present views and examples primarily from the
frequentist and objectivist perspective. In these historical notes we shall give an
example related to subjectively assigning probabilities. The example is reproduced
from Wild and Seber (1999).

The Tenerife airport disaster which occurred on March 27, 1977, when a Pan
Am jet collided with a KLM Boeing 747 jet on the airport’s runway in the Canary
Islands is the deadliest recorded accident in the aviation history. Five hundred
and eighty-three lives were lost in the accident. Naturally, the aviation officials
at the time were trying to calm potential passengers and educate them about the
dangers of flying. The famous Australian statistician, Terence Paul Speed, noticed
the following wire service report in ‘‘The West Australian’’ published shortly after
the accident.

‘‘NEW YORK, Mon: Mr. Webster Todd, Chairman of the American
National Transportation Safety Board said today statistics showed that
the chances of two jumbo jets colliding on the ground were about 6
million to one .....-AAP.’’

It seems clear from the report that the National Transportation Safety
Board has performed a scientifically based assessment based upon hard data
(‘‘. . . statistics showed. . .’’). The conclusion likewise is very definite. Terry Speed,
who has strong research interests in probability, was intrigued by this and won-
dered how the Board had calculated their figure. So Terry wrote to the Chairman.
He received the following reply from a high government official which Wild and
Seber (1999) reproduce in their book with Terry Speed’s permission:

Dear Professor Speed, In response to your aerogram of April 5, 1977, the
Chairman’s statement concerning the chances of two jumbo jets colliding
(6 million to one) has no statistical validity nor was it intended to be a
rigorous or precise probability statement. The statement was made to
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emphasize the intuitive feeling that such an occurrence indeed has a very
remote but not impossible chance of happening.

2.3 Theory and Applications

2.3.1 DEFINITION AND BASIC PROPERTIES

Definition 2.1 (Probability measure, probability space) Given a
measurable space (�,F), a probability measure is any function P : F → [0, 1] with
the following properties:

(i) P(�) = 1.

(ii) (Countable additivity) For any sequence {An}n∈N of disjoint events in F (i.e.
Ai ∩ Aj = ∅, for all i /= j):

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The triple (�,F,P) is called a probability space.

Note that the probability measure is a set function (i.e., a function defined
on sets). In many ways, probability measures behave in a way similar to that of
length, area, and volume measures. These analogies provide clues about model-
ing experiments and choosing the appropriate numbers between 0 and 1. Many
other reasonable properties follow from the definition of probability measure. For
example:

Proposition 2.2 (Elementary properties of probability measure)
Let (�,F,P) be a probability space. Then:

1. For all sets A, B ∈ F with A ⊆ B, then

P(B \ A) = P(B) − P(A).

2. We have ∀A, B ∈ F with A ⊆ B ,

P(A) ≤ P(B), P(Ac ) = 1 − P(A), P(∅) = 0.

3. P(A ∪ B) = P(A) + P(B) − P(A ∩ B), ∀A, B ∈ F.
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4. (General inclusion–exclusion formula, also named Poincaré’s formula):

P (A1 ∪ A2 ∪ · · · ∪ An) =
∑

I⊆{1,2,..,n}
(−1)|I |+1P

(⋂
i∈I
Ai

)
(2.1)

=
n∑
i=1

P(Ai) −
∑
i<j≤n

P(Ai ∩ Aj)

+
∑

i<j<k≤n
P(Ai ∩ Aj ∩ Ak) − · · · + (−1)nP(A1 ∩ A2 · · · ∩ An) (2.2)

Note that successive partial sums are alternating between over-and-under esti-
mating.

5. (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai), ∀A1, A2, . . . , An ∈ F.

Proof: 1. Since

B = A ∪ (B \ A)

and A, B \ A are disjoint, we immediately obtain

P(B) = P(A) + P(B \ A).

Property 2. follows from the first part directly.
For part 3., let A, B ∈ F and note that

A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B)

and since the sets (A \ B), (B \ A), (A ∩ B) are disjoint,

P(A ∪ B) = P(B \ A) + P(A \ B) + P(A ∩ B). (2.3)

Moreover,

P(A \ B) = P(A) − P(A ∩ B)

and

P(B \ A) = P(B) − P(A ∩ B).

Putting them together these last two relations into (2.3), we obtain the inclusion
exclusion with two sets.

Part 4. is an extension of part 3 to n sets. It is proven using induction over n.
We skip this part as it does not bring much in terms of ideas.

To show finite subadditivity, set

B1 = A1, B2 = A2 ∩ Ac1, . . . , Bn = An ∩ Acn−1 ∩ . . . ∩ Ac1.
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Then,

Bi ∩ Bj = ∅, if i /= j

and
n⋃
i=1

Bi =
n⋃
i=1

Ai.

Now, using point 2. we have P(Bi) ≤ P(Ai) for every i and

P

(
n⋃
i=1

Ai

)
= P

(
n⋃
i=1

Bi

)
=

n∑
i=1

P(Bi) ≤
n∑
i=1

P(Ai).

�

EXAMPLE 2.1 Simple operations with probabilities

A random experiment with a finite set of outcomes is modeled by the set
� and the probability P. Let A, B be two events in P(�) such that

P(A) = 0.6, P(B) = 0.4, and P(A ∩ B) = 0.2.

Calculate the probabilities of the following events:

A ∪ B, Ac, Bc, B ∩ Ac, A ∪ Bc, and Ac ∪ Bc.

Solution: We have

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.8,

P(Ac) = 1 − P(A) = 0.4,P(Bc) = 1 − P(B) = 0.6.

Since

B = B ∩� = B ∩ (A ∪ Ac) = (B ∩ A) ∪ (B ∩ Ac ),
we have

P(B) = P(B ∩ A) + P(B ∩ Ac )
so

P(B ∩ Ac ) = P(B) − P(A ∩ B) = 0.2.

Also

P(A ∪ Bc) = P((B ∩ Ac)c) = 1 − P(B ∩ Ac) = 0.8
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and

P(Ac ∪ Bc ) = P(A ∩ B)c = 1 − P(A ∩ B) = 0.8.

�

EXAMPLE 2.2 A coin example

Two fair coins are tossed; find the probability that two heads are obtained.

Solution: Each coin has two possible outcomes let us denote them H (heads) and
T (tails). The sample space � is given by

� = {(H,T ), (H,H ), (T,H ), (T,T )}.
Since we know that the coin is fair, then it is equally likely to land on either

outcome H or T . Let E be the event ‘‘two heads are obtained.’’
Then E = {(H,H )}. Since all are equally likely, we have

P(E ) = |E |
|�| = 1

4
.

�

EXAMPLE 2.3 Rolling two dies

In an experiment, two fair six-sided dice are rolled. Find the probability
that the sum of the numbers shown on the dice is

(a) equal to 1

(b) equal to 4

(c) less than 13

Solution: (a) The sample space � of the outcomes when rolling the two dice is
shown below.

� = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4),

(4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3),

(6, 4), (6, 5), (6, 6)}.
As in the previous example, since the dice are fair, all outcomes are equally likely
(have the same probability of occurrence).
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Let E be the event ‘‘sum equal to 1.’’ There are no outcomes which corre-
spond to a sum equal to 1, hence

P(E ) = |E |
|�| = 0

36
= 0.

(b), three possible outcomes give a sum equal to 4:

E = {(1, 3), (2, 2), (3, 1)}

hence

P(E ) = |E |
|�| = 3/36 = 1/12.

(c) All possible outcomes, E = S , give a sum less than 13, hence.

P(E ) = |E |
|�| = 36/36 = 1.

Next, we introduce the notion of partition of a space. �

Definition 2.3 (A partition of a set) A partition of any set� is any collection
of sets {�i}, which are disjoint (i.e., �i ∩�j = ∅, if i /= j) such that their union
recreates the original set:

⋃
i

�i = �.

The probability of an event can be expressed in terms of the intersections of
the event with a partition of the entire sample space �. This rule is also known
as the ‘‘law of total probability.’’

Proposition 2.4 (The law of total probability) Let (Ai)i∈I be a partition
of �. Then for every event B ∈ F, one has

P(B) =
∑
i∈I

P(B ∩ Ai).

Proof: We can write

B = B ∩� = B ∩
(⋃
i∈I
Ai

)
=
⋃
i∈I

(B ∩ Ai)
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by the distributive property of the intersection and union. Since the sets (B ∩ Ai)i
are disjoint, we obtain

P(B) =
∑
i∈I

P(B ∩ Ai).

�

2.3.2 UNIQUENESS OF PROBABILITY MEASURES

The results in this section are concerned with equality of two probability measures.
Let us start with the following definition.

Definition 2.5 A family of events U ⊆ P(�) is called a �-system if:

1. � ∈ U.

2. For any A, B ∈ U, with A ⊂ B, we also have B \ A ∈ U.

3. If (An)n ∈ U is any sequence of disjoint events (Ai ∩ Aj = ∅ if i /= j), then⋃
n

An ∈ U.

Sometimes, a�-system is called a Dynkin system (named after Eugene Boriso-
vich Dynkin, who introduced the concept).

Proposition 2.6 The following are true:

(a) A �-field is a �-system.

(b) Every �-system closed to finite intersections is a sigma-field.

Proof: Both parts a and b are immediate consequences of the definition of a
�-field. �

Definition 2.7 If a collection of sets M ⊆ P(�), then we denote by U(M) the
smallest �-system which contains M.

Theorem 2.8 If M ⊆ P(�) and M is closed under finite intersections, then

U(M) = �(M).

Proof: The inclusion

�(M) ⊇ U(M)

is immediate because �(M) is a �-system, being a �-algebra (Proposition 2.6)
and it contains M. For the converse inclusion, it suffices to check that U(M)
is a �-algebra (and so it will contain the smallest �-algebra �(M)). Due do



2.3 Theory and Applications 23

Proposition 2.6, it is enough to show that U(M) is closed under finite intersec-
tions. Let A ∈ U(M) and denote

UA = {B ∈ U(M) | A ∩ B ∈ U(M},
the collection of sets such that their intersection with A is in the �-system. To
show that U(M) is closed under finite intersections, it is enough to show that
A ∩ B ∈ U(M) for any A, B ∈ U(M). We note that by definition we have

B ∈ UA if and only if A ∈ UB.

It can be easily shown that the collection of sets UA is a �-system for any set A.
Now, take a generic set A ∈ M. Since we know from the hypothesis that M

is closed under finite intersections, by definition we then have UA ⊃ M. Since
UA is a �-system, we must then have

UA ⊃ U(M),

since U(M) is the smallest possible with this property. Hence UA ⊃ U(M) for
any A ∈ M. One can further show that UA ⊃ U(M) for any A ∈ U(M). We
conclude that U(M) is stable under finite intersections. �

Theorem 2.9 Consider P1,P2 two probability measures on (�,F). Assume that
a collection of sets M closed to finite intersections is given by

F = �(M).

Assume that P1 and P2 coincide on M. Then P1 and P2 coincide on F = �(M).

Proof: Let us define

U = {A ∈ F | P1(A) = P2(A)},
that is, the sets on which the measures coincide. This set U satisfies the following
properties:

1. � ∈ U.

2. For every A, B ∈ U, with A ⊆ B, we have B \ A ∈ U.

3. If (An)n ∈ U, with Ai ∩ Aj = ∅ if i /= j then
⋃
n An ∈ U.

Indeed, part 1 is clear since

P1(�) = P2(�) = 1.

Take two sets A, B ∈ U with A ⊆ B. Then

P1(B \ A) = P1(B) − P1(A) = P2(B) − P2(A) = P2(B \ A),

which implies B \ A ∈ U.
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For the last part consider (An)n ∈ U, with Ai ∩ Aj = ∅ if i /= j. Then

P1

(⋃
n

An

)
=
∑
n

P1(An) =
∑
n

P2(An) = P2

(⋃
n

An

)

and so
⋃
n An ∈ U.

Properties 1–3 show that U is a �-system (by definition). Recall that the
probabilities agree on M by hypothesis, thus U includes U(M) (the smallest �-
system containing M). Recall the result in Theorem 2.8 and that M is closed
for finite intersections. Therefore,

U ⊇ U(M) = �(M ).

Since M generates the entire �-algebra, we thus have

U = �(M) = F.
�

Corollary 2.10 Let P1,P2 be two probability measures on F. Then if

F = �(�)

where � = (Aj)j is a partition with a countable number of sets in � then P1 = P2

on the entire F if and only if

P1(Aj) = P2(Aj)

for every j.

Proof: We apply the previous theorem for M containing the sets in the partition
� augmented with the ∅. �

2.3.3 MONOTONE CLASS

This concept is a variant of the notion of �-system presented before in our expo-
sition. The concept of monotone class plays an important role in the probability
theory. For example, it is used in the proof of the Carathèodory theorem, and it
is also related to the uniqueness of probability measures.

Definition 2.11 (Monotone class) A class (collection) M of subsets in �
is monotone if it is closed under the formation of monotone unions and intersections,
i.e.:

(i) A1, A2, . . . ∈ M and An ⊆ An+1,
⋃
n An = A ⇒ A ∈ M .

(ii) A1, A2, . . . ∈ M and An ⊇ An+1 ⇒ ⋂
n An ∈ M .

The next theorem is only needed for the proof of the Carathèodory theorem.
However, the proof is interesting, and that is why it is presented here.
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Theorem 2.12 IfF0 is an algebra and M is a monotone class, then ifF0 ⊆ M ,
then �(F0) ⊆ M .

Proof: Let m(F0) = minimal monotone class over F0 = the intersection of all
monotone classes containing F0.

We will prove that

�(F0) ⊆ m(F0).

To show this, it is enough to prove thatm(F0) is an algebra. Then exercise 2.20
will show that m(F0) is a �-algebra. Since �(F0) is the smallest �-algebra which
contains M , the conclusion follows.

To this end, let

G = {A : Ac ∈ m(F0)}.

(i) Since m(F0) is a monotone class, so is G .

(ii) Since F0 is an algebra, its elements are in G ⇒ F0 ⊆ G .

(i) and (ii) ⇒ m(F0) ⊆ G . Thus m(F0) is closed under complementarity.

Now define

G 1 = {A : A ∪ B ∈ m(F0), ∀B ∈ F0}.
We show that G 1 is a monotone class:
Let An ↗ an increasing sequence of sets, An ∈ G 1. By definition of G 1, for

all n, An ∪ B ∈ m(F0), ∀B ∈ F0.
But

(An ∪ B) ⊇ (An−1 ∪ B)

and thus the definition of m(F0) implies

⋃
n

(An ∪ B) ∈ m(F0), ∀B ∈ F0 ⇒
(⋃

n

An

)
∪ B ∈ m(F0), ∀B,

and thus ⋃
n

An ∈ G 1.

This shows that G 1 is a monotone class. But since F0 is an algebra, its
elements (the contained sets) are in G 1,1 thus F0 ⊆ G 1. Since m(F0) is the
smallest monotone class containing F0, we immediately have m(F0) ⊆ G 1.

Let G 2 = {B : A ∪ B ∈ m(F0), ∀A ∈ m(F0)}
G 2 is a monotone class. (identical proof—see exercise 2.18).

1 One can just verify the definition of G 1 for this.
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Let B ∈ F0. Since m(F0) ⊆ G 1 for any set, we have

A ∈ m(F0) ⇒ A ∪ B ∈ m(F0).

Thus, by the definition of G 2 ⇒ B ∈ G 2 ⇒ F0 ⊆ G 2.
The previous implication and the fact that G 2 is a monotone class implies

that m(F0) ⊆ G 2.
Therefore,

∀A, B ∈ m(F0) ⇒ A ∪ B ∈ m(F0) ⇒ m(F0)

is an algebra. �

2.3.4 EXAMPLES

EXAMPLE 2.4 An “equally likely outcomes” probability
measure

Let � be a finite set, F = P (�), and define P : F → [0, 1] by

P(A) = |A|
|�| .

Then P is a probability measure.

Please note that in the previous example, since the space is finite, the number
of elements in� is finite, |�| < ∞. Thus, the probability of any outcome in the
space is the same; that is, for any ω ∈ � we have

P({ω}) = |{ω}|
|�| = 1

|�| .

EXAMPLE 2.5 Discrete probability space

Let � be a countable space. Let F = P (�). Let p : � → [0, N ) be a
function on � such that ∑

ω∈�
p(ω) = N < ∞,
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where N is a finite constant. Define:

P(A) = 1

N

∑
ω∈A

p(ω)

We can show that (�,F,P) is a Probability Space for any such p(ω). In
fact this way we may define any discrete probability space.

Solution: Indeed, from the definition we obtain

P(�) = 1

N

∑
ω∈�

p(ω) = 1

N
N = 1.

To show the countable additivity property, let A be a set in � such that A =⋃∞
i=1 Ai , with Ai disjoint sets in �. Since the space is countable, we may write

Ai = {ωi1, ωi2, . . .},

where any of the sets may be finite, butωij /= ωkl for all i, j, k, l where either i /= k

or j /= l . Then using the definition, we have

P(A) = 1

N

∑
ω∈⋃∞

i=1 Ai

p(ω) = 1

N

∑
i≥1,j≥1

p(ωij )

= 1

N

∑
i≥1

(
p(ωi1) + p(ωi2) + · · · )

=
∑
i≥1

P(Ai).

�

These simple examples show how to use the probability properties learned
thus far.

Remark 2.13 The previous exercise gives a way to construct discrete probability
measures (distributions).

For example, let us take � = N the natural numbers and take N = 1 in the
definition of probability of an event. Then

p(ω) =

⎧⎪⎨
⎪⎩

1 − p if ω = 0

p if ω = 1

0 otherwise
gives the Bernoulli(p) distribution.
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p(ω) =
{(n

ω

)
pω(1 − p)n−ω if ω ≤ n

0 otherwise
gives the Binomial(n, p) distribution.

p(ω) =
{(ω−1

r−1

)
pr (1 − p)ω−r if ω ≥ r

0 otherwise

gives the Negative Binomial(r, p)

distribution.

p(ω) = �ω

ω!
e−�, gives the Poisson (�) distribution.

See Chapter 5 for more details on these probability distributions.

EXAMPLE 2.6 Uniform distribution on (0,1)

As another example let� = (0, 1) andF = B ((0, 1)) the Borel �-algebra.
Define a probability measure � as follows. For any open interval (a, b) ⊆
(0, 1) let

�((a, b)) = b − a,

which is in fact the length of the interval. We can expand this definition to
any other open interval O as

�(O) = �(O ∩ (0, 1)).

Note that we did not specify �(A) for all Borel sets A. Rather, we specified
the measure only for the generators of the Borel �-field. This illustrates the prob-
abilistic concept mentioned before. In our specific situation, under very mild
conditions on the generators of the �-algebra any probability measure defined
only on the generators can be uniquely extended to a probability measure on
the whole �-algebra (Carathèodory extension theorem). In particular when the
generators are open sets, these conditions are true and we can restrict the defi-
nition to the open sets alone. This example is going to be expanded further in
Section 2.4.

2.3.5 MONOTONE CONVERGENCE PROPERTIES
OF PROBABILITY

The �-algebra differs from the regular algebra in that it allows us to deal with
countable (not finite) number of sets. In fact, this is a recurrent theme in probabil-
ity: learning to deal with infinity. On finite spaces, things are more or less simple.
One has to define the probability of each individual outcome and everything pro-
ceeds from there. However, even in these simple cases imagine that one repeats
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an experiment (such as a coin toss) over and over. Again, we are forced to cope
with infinity. This section introduces a way to deal with this infinity problem.

Let (�,F,P) be a probability space.

Lemma 2.14 The following are true:

1. If An, A ∈ F and An ↑ A (that notation means, A1 ⊆ A2 ⊆ . . . An ⊆ . . ., and
A = ⋃

n≥1 An), then P(An) ↑ P(A) as a sequence of numbers.

2. If An, A ∈ F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . . An ⊇ . . . and A = ⋂
n≥1 An),

then P(An) ↓ P(A) as a sequence of numbers.

3. (Countable subadditivity) If A1, A2, . . . , and
⋃∞
i=1 An ∈ F with Ai ’s not

necessarily disjoint, then

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An).

Proof: 1. LetB1 = A1, B2 = A2 \ A1, . . . , Bn = An \ An−1. Because the sequence
is increasing, we have that the Bi ’s are disjoint:

P(An) = P(B1 ∪ B2 ∪ · · · ∪ Bn) =
n∑
i=1

P(Bi).

Thus using countable additivity we obtain

P

(⋃
n≥1

An

)
= P

(⋃
n≥1

Bn

)

=
∞∑
i=1

P(Bi) = lim
n→∞

n∑
i=1

P(Bi)

= lim
n→∞ P(An)

2. Note that An ↓ A ⇔ An
c ↑ Ac , and from part 1 this means

1 − P(An) ↑ 1 − P(A).

3. Let

B1 = A1, B2 = A1 ∪ A2, . . . , Bn = A1 ∪ · · · ∪ An, . . . .

Recall that we proved the finite (not countable) subadditivity property in Propo-
sition 2.2. Applying that result, we obtain

P(Bn) = P(A1 ∪ · · · ∪ An) ≤ P(A1) + · · · + P(An).
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But {Bn}n≥1 is an increasing sequence of events, thus from part 1 we get that

P(
∞⋃
n=1

Bn) = lim
n→∞ P(Bn).

Combining the two relations above, we obtain

P(
∞⋃
n=1

An) = P(
∞⋃
n=1

Bn) ≤ lim
n→∞ (P(A1) + · · · + P(An))

=
∞∑
n=1

P(An).

�

Definition 2.15 (Null set) Any set N in the probability space (�,F,P)
which has the property

P(N ) = 0

is called a P-null set. If it is clear which probability measure is referred, the set may
just be named a null set.

Clearly, ∅ is a null set. However, it may not be the only one in the space �.
To see an example of this situation, we need to look at probability spaces which
are not finite. For instance, in Example 2.7 we introduced the Uniform measure.
For any set A = {p} where p is some number between zero and one, the measure
of A is equal to zero (because the length of the interval [p, p] is zero).

Lemma 2.16 The union of a countable number of P-null sets is a P-null set.

Proof: This lemma is a direct consequence of the countable subadditivity (Propo-
sition 2.14). �

The lemma is important in that it tells us that no matter how many zeros, they
never add to anything else but zero. In R and its associated Borel �-algebra B, it
also allows us to deal with those troublesome sets that could not be included in the
Borel sets. All those sets have probability zero, and by extending the probability
space definition a little we just include them all into the �-algebra, which means
we do not have to worry about them at all. The following definition is formalizing
this concept.

Definition 2.17 (Complete probability space) A probability space
(�,F,P) is said to be a complete probability space if all subsets of sets of proba-
bility 0 are in F. Mathematically, ifM ⊆ N for someN ∈ F with P(N ) = 0, then
M ∈ F.
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2.3.6 CONDITIONAL PROBABILITY

In some cases the probability of an event happening depends not just on the
experiment itself but on other information as well. Conditional probability forms
a framework in which this additional information can be incorporated.

Let (�,F,P) be a probability space. Then for A, B ∈ F with P(B) /= 0 we
define the conditional probability of A given B by

P(A|B) = P(A ∩ B)

P(B)
.

We note that the condition P(B) /= 0 is important not only mathematically
but also conceptually. The conditioning part means that B is given to have hap-
pened. But when we condition by a set of probability 0 (which cannot happen),
then any result is possible (even crazy and contradicting conclusions).

We can immediately rewrite the formula above to obtain the multiplicative
rule:

P (A ∩ B) = P(A|B)P(B),

P (A ∩ B ∩ C ) = P(A|B ∩ C )P(B|C )P(C )

P (A ∩ B ∩ C ∩ D) = P(A|B ∩ C ∩ D)P(B|C ∩ D)P(C |D)P(D), etc.

This multiplicative rule is very useful for stochastic processes and estimation of
parameters of a distribution.

EXAMPLE 2.7 An urn problem

We have two urns, I and II. Urn I contains 2 black balls and 3 white balls.
Urn II contains 1 black ball and 1 white ball. One of the two urns is chosen
at random and a ball is drawn at random from it. If a back ball is chosen,
what is the probability it came from urn I?

Solution: To start formalizing this problem, let B be the event ‘‘a black ball is
drawn,’’ and I the event ‘‘urn I is chosen.’’ To calculate the conditional, we need
the numerator in the formula.

The joint probability of both these events happening is

P(B ∩ I ) = P(B | I )P(I ) = 2

5

1

2
= 1

5
.

Here we used the multiplicative rule above since this simplifies the problem con-
siderably. Note that if we know the ball came from urn I, then it is very simple
to calculate the probability that the ball is black—that probability is exactly the
conditional probability P(B | I ).
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However, we need to calculate the other conditional (P(I | B)) using the
definition

P(I | B) = P(I ∩ B)

P(B)
= P(I ∩ B)

P(B ∩ I ) + P(B ∩ II )

=
1
5

1
5 + 1

4

= 4

9
.

�

The expression above is in fact Bayes’ formula, which we will see in a minute.
In the denominator we also used a particular case of the next proposition.

Proposition 2.18 (Total probability formula) Given A1, A2, . . . , An a
partition of� (i.e., the setsAi are disjoint and� = ⋃n

i=1 Ai), and suppose P(Ai) > 0
for every i = 1, . . . , n. Then

P(B) =
n∑
i=1

P(B|Ai)P(Ai), ∀B ∈ F (2.4)

Proof: The proof is immediate using Proposition 2.4 and the multiplicative
rule. �

EXAMPLE 2.8 Another conditional example

Stanley takes an oral exam in statistics by answering 3 questions written on
an examination card. There are 20 such examination cards and Stanley will
receive one of them drawn at random. Of the 20 there are 8 favorable cards
(Stanley knows the answers for all 3 questions written on the card), all the
others contain at least a question that Stanley has no clue how to answer.
Stanley will get an A if he answers all 3 questions on the card correctly.

What is the probability that Stanley gets an A if he draws the card

(i) first?

(ii) second?

(iii) third?

Solution: Let A denote the event that Stanley draws a favorable card (and conse-
quently gets an A).

(i) If he draws the card first, then clearly P(A) = 8/20 = 2/5.
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(ii) If Stanley draws second, then one card was already taken by the student
in front of him. That first card taken might have been favorable (call that
hypothesis H1) or unfavorable (hypothesis H2). Obviously, the hypotheses
H1 andH2 partition the sample space since no other type of cards is possible.
Note that the probabilities of H1 and H2 for that first card are 8/20 and
12/20, respectively.

Now, Stanley goes ahead and draws a second card after one card has
already been taken. IfH1 had happened, the probability of A is 7/19, and if
H2 had happened, the probability ofA is 8/19. But these are just conditional
probabilities P(A|H1) = 7/19 and P(A|H2) = 8/19, and using the total
probability formula, we obtain

P(A) = 7/19 × 8/20 + 8/19 × 12/20 = 8/20 = 2/5

(iii) This is very similar with the previous case but there are 4 possible hypotheses.
• H1 = both cards taken in front of Stanley were favorable,
• H2 = exactly one card was favorable
• H3 = none of the cards taken before him were favorable.

Using the same rule as before we readily see:

P(H1) = 8

20

7

19
, P(H3) = 12

20

11

19
, and P(H2) = 1 − P(H1) − P(H3).

Furthermore, P(A|H1) = 6/18, P(A|H2) = 7/18, and P(A|H3) =
8/18. Finally,

P(A) = 6/18 × 7/19 × 8/20 + 7/18 × · · · + 8/18 × 11/19 × 12/20 = 8/20.

Moral of this example: Stanley should concentrate more on the exam rather than
worrying about the order in which the examination cards are drawn.

Note that this analysis is done before any drawing takes place. If Stanley waits
and then checks with the person in front of him and finds out if the card was
favorable or not that changes the samples space to worse (7 good out of 19) if the
guy in front of him was lucky or better (8 out of 19) in the other situation. The
whole sample space is changed from the moment the situation is clarified. �

Proposition 2.19 (Bayes’ formula) Let A1, A2, . . . , An form a partition
of � with P(Ai) > 0 for every i = 1, . . . , n. Then for any set B ∈ F we can write

P(Aj |B) = P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

. (2.5)
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Proof: Using the definition of conditional probability and

P(B ∩ Aj) = P(B)P(Aj |B) = P(Aj)P(B|Aj),
we obtain

P(Aj |B) = P(Aj)P(B|Aj)
P(B)

= P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

.

�

This theorem can be interpreted as: All of a sudden we find out that B
happened. In the light of this new information there should be a simple way to
update all the probabilities of the sets in the partition (P(Aj |B)). Indeed, the Bayes
rule provides just that.

EXAMPLE 2.9

There are two urns each containing two types of colored balls. The first
urn contains 50 red balls and 50 blue balls. The second urn contains 30
red balls and 70 blue balls. One of the two urns is randomly chosen (both
urns have probability 50 percent of being chosen), and then a ball is drawn
at random from one of the two urns. If a red ball is drawn, what is the
probability that it comes from the first urn?

Solution: In probabilistic terms, what we know about this problem can be for-
malized as follows:

P(red | urn1) = 1

2
, P(red | urn2) = 3

10
,

P(urn1) = P(urn2) = 1

2
.

The unconditional probability of drawing a red ball can be derived using the law
of total probability:

P(red ) = P(red | urn1)P(red ) + P(red |urn2)P(urn2)

= 1

2

1

2
+ 3

10

1

2
= 2

5
.

Using Bayes’ rule, we obtain

P(urn1 | red ) = P(red | urn1)P(urn1)

P(red )
=

1
2

1
2

2
5

= 5

8
.

�
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EXAMPLE 2.10 De Mére’s paradox

As a result of extensive observation of dice games the French gambler
Chevaliér De Mére noticed that the total number of spots showing on
3 dice thrown simultaneously turn out to be 11 more often than 12. How-
ever, from his point of view this is not possible since 11 occurs in six ways:

(6 : 4 : 1); (6 : 3 : 2); (5 : 5 : 1); (5 : 4 : 2); (5 : 3 : 3); (4 : 4 : 3),

while 12 also in six ways:

(6 : 5 : 1); (6 : 4 : 2); (6 : 3 : 3); (5 : 5 : 2); (5 : 4 : 3); (4 : 4 : 4).

What is the fallacy in the argument?

Solution due to Pascal: The argument would be correct if these ‘‘ways’’ would
have the same probability. However, this is not true. For example, (6:4:1) occurs
in 3! ways, (5:5:1) occurs in 3, ways and (4:4:4) occurs in 1 way.

If we keep this in mind, we can easily calculate

P(11) = 27/216,

P(12) = 25/216.

Indeed De Mére’s observation is correct and he should bet on 11 rather than on
12 if they have the same game payoff. �

EXAMPLE 2.11 Another De Mére’s paradox

What is more probable?

1. Throw 4 dice and obtain at least one 6, or

2. Throw 2 dice 24 times and obtain at least once a double 6?

Solution: For option 1: 1 − P(No 6’s)= 1 − (5/6)4 = 0.517747.
For option 2: 1 − P(None of the 24 trials has a double 6)= 1 − (35/36)24 =

0.491404 �

EXAMPLE 2.12 Bertrand’s box paradox

This problem was first formulated by Joseph Louis François Bertrand in his
Calcul de Probabilités (Bertrand, 1889). Solving this problem is an exercise
on understanding Bayes’ formula.
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Suppose that we know that three boxes contain the following: One box
contains two gold coins, a second box contains two silver coins, and a third
box has one of each. We chose a box at random, and from that box we
chose a coin also at random. Then we look at the coin chosen. Given that
the coin chosen was gold, what is the probability that the other coin in the
box chosen is also gold? At a first glance it may seem that this probability
is 1/2, but after calculation this probability turns out to be 2/3.

Solution: We plot the sample space in Figure 2.1. Using this tree, we can calculate
the probability:

P(Second coin is gold|First coin is gold)

= P(Second coin is gold and First coin is gold)

P(First coin is gold)
.

Now, using the probabilities from the tree, we continue:

=
1
3

1
2 1 + 1

3
1
2 1

1
3

1
2 1 + 1

3
1
2 1 + 1

3
1
2 1

= 2

3
.

Now that we have seen the solution, we can recognize a logical solution to the
problem as well. Given that the coin seen is gold, we can throw away the middle
box. If this would be box 1 then we have two possibilities that the other coin is

SS

GS

GG

1/3

1/3

1/3

1

1

S

G

1

1

S

S

1

1
G

G

G

S

G

G

S

S

1/2

1/2

1/2

1/2

1/2

1/2

Box choice First coin Second coin

FIGURE 2.1 The tree diagram of conditional probabilities.
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gold (depending on which we have chosen in the first place). If this is box 2, then
there is one possibility (the remaining coin is silver). Thus the probability should
be 2/3 since we have two out of three chances. Of course this ‘‘logical’’ argument
does not work if we do not choose the boxes with the same probability. �

EXAMPLE 2.13 Disease testing instrument

A blood test is 95% effective in detecting a certain disease when it is in fact
present. However, the test yields also a false-positive result for 1% of the
people tested. If 0.5% of the population actually has the disease, what is
the probability that the person is diseased given that the test is positive?

Solution: This problem illustrates once again the application of Bayes’ rule. One
does not need to use the rule literally. Instead if we work from first principles
we will obtain Bayes’ rule every time without memorizing anything. We start by
describing the sample space. Refer to Figure 2.2 for this purpose.

So, ‘‘given that the test is positive’’ means that we have to calculate a condi-
tional probability. We may write

P(D|+) = P(D ∩ +)

P(+)
= P(+|D)P(D)

P(+)
= 0.95(0.005)

0.95(0.005) + 0.01(0.995)
= 0.323.

+

–

0.95

0.05

−

+

0.01

0.99

0.005

0.995

D

Dc

FIGURE 2.2 Blood test probability diagram.
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How about if only 0.05% (i.e., 0.0005) of the population has the disease?

P(D|+) = 0.95(0.0005)

0.95(0.0005) + 0.01(0.9995)
= 0.0454

This problem is an exercise in thinking. It is the same test device. In the first case
the disease is relatively common, and thus the test device is more or less reliable
(though 32% right is very low). In the second case, however, the disease is very
rare and thus the precision of the device goes way down. �

We shall see the next example many times throughout this book. We do not
know who to credit with the invention of the problem since it is so mentioned so
often in every probability treaties.2

EXAMPLE 2.14 Gambler’s ruin problem

The formulation of this problem is simple. A gambler plays a game of heads
or tails with a fair coin. The player wins 1 dollar if he successfully calls the
side of the coin which lands upwards and loses $1 otherwise. Suppose the
initial capital is N dollars and he intends to play until he wins M dollars
but no longer. What is the probability that the gambler will be ruined?

Solution: We will perform what is sometimes called a first step analysis. The idea
is to see to define a proper quantity and analyze what happens with this quantity
if one random step is taking place.

Let p(x) denote the probability that the player is going to be eventually ruined
if he starts with x dollars.

If he wins the next game, then he will have x + 1 dollars and he is ruined
from this position with prob p(x + 1).

If he loses the next game, then he will have x − 1 dollars so he is ruined from
this position with prob p(x − 1).

Let R be the event he is eventually ruined. Let W be the event he wins the
next toss. Let L be the event he loses the next toss. Using the total probability
formula we can write

P(R) = P(R|W )P(W ) + P(R|L)P(L).

Now from position x the same equation is

p(x) = p(x + 1)(1/2) + p(x − 1)(1/2).

However, this is true for almost all x. More precisely the relation is true for
x ≥ 1 and x ≤ M − 1. When x = 0 or x = M we obviously have p(0) = 1 and
p(M ) = 0, which give the boundary conditions for the equation above.

2 The formalization may be due to Huygens (1629–1695).
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This is a linear difference equation with constant coefficients. The theory on
how to solve these is similar to the theory on differential equations with constant
coefficients. One looks for solutions of the type p(x) = yx . Substituting gives a
characteristic equation which is then solved.

Applying this method in our case gives the characteristic equation

y = 1

2
y2 + 1

2
⇒ y2 − 2y + 1 = 0 ⇒ (y − 1)2 = 0 ⇒ y1 = y2 = 1.

In our case the two solutions are equal; thus we seek a solution of the
form p(x) = (C + Dx)1n = C + Dx. Using the initial conditions, we get p(0) =
1 ⇒ C = 1 and p(M ) = 0 ⇒ C + DM = 0 ⇒ D = −C/M = −1/M , thus
the general probability of ruin starting with wealth x is

p(x) = 1 − x

M
.

�

2.3.7 INDEPENDENCE OF EVENTS AND �-FIELDS

Let us now introduce the concept of probabilistic independence.

Definition 2.20 Two events A and B are called independent if and only if

P(A ∩ B) = P(A)P(B).

The events A1, A2, A3, . . . are called mutually independent (or sometimes sim-
ply independent) if for every subset J of {1, 2, 3, . . .} we have

P

⎛
⎝⋃
j∈J
Aj

⎞
⎠ =

∏
j∈J

P(Aj).

The events A1, A2, A3, . . . are called pairwise independent (sometimes jointly
independent) if

P
(
Ai ∪ Aj

) = P(Ai)P(Aj), ∀i, j.

Remark 2.21 Note that jointly independent does not imply independence. See the
Example 2.16 for a counterexample.

We now define the concept of independent for two �-algebras.

Definition 2.22 Two �-fields G ,H ∈ F are P–independent if

P(G ∪H ) = P(G)P(H ), ∀G ∈ G , ∀H ∈ H .
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The �-algebras F1, . . . ,Fk are mutually independent (or simply independent) if

P

(
k⋃
i=1

Ai

)
=

k∏
i=1

P(Ai)

for every Ai ∈ Fi , i = 1, .., k.

It is also possible to define the independent for an arbitrary (not necessary
finite or countable) family of �-fields.

Definition 2.23 An arbitrary family of �-fields (Fi)i∈I is independent if any
finite sub-family is independent in the sense of Definition 2.23.

We refer to Billingsley (1995) for the precise mathematical formulae for
independence of k ≥ 2 �-algebras.

EXAMPLE 2.15 Unbalanced Coin

Suppose that we have a coin which comes up heads with probability p,
and tails with probability q = 1 − p. Now suppose that this coin is tossed
twice. Using a frequency interpretation of probability, it is reasonable to
assign to the outcome (H,H ) the probability p2, to the outcome (H,T )
the probability pq, and so on. Let E be the event that heads turns up on
the first toss and F the event that tails turns up on the second toss. We will
now check that with the above probability assignments, these two events
are independent, as expected. We have

P(E ) = p2 + pq = p,P(F ) = pq + q2 = q.

Finally P(E ∩ F ) = pq, so

P(E ∩ F ) = P(E )P(F ).

The following criteria is useful in order to check the independence of a family
with an infinite number of elements.

Theorem 2.24 Let (Fi)i∈I be a family of �-fields on the probability space
(�,F,P). Assume that for every i ∈ I there exists a family Mi ⊆ Fi satisfying
the following:

i. Mi is closed to finite intersections and

Fi = �(Mi)

for every i ∈ I.



2.3 Theory and Applications 41

ii. For every n ≥ 1, for every i1, . . . , in ∈ I , and for everyAj ∈ Mij , j = 1, . . . , n,
it holds that

P

(
k⋃
i=1

Ai

)
=

k∏
i=1

P(Ai).

Then the family of �-fields (Fi)i∈I is independent.

Proof: Note first that we can assume that

� ∈ Mi , ∀i ∈ I.
Indeed, if we replace Mi by Mi ∩�, then properties i and ii are still satisfied.

Consider a finite subset of indices

J = {j1, . . . , jn} ⊆ I

and let us show that the indexed family (Fj)j∈J is independent. We consider the
events

Ai ∈ Mji , i = 1, . . . , n − 1 and A ∈ Fjn .

We will prove that

P (A1 ∩ . . . ∩ An−1 ∪ A) = P(A1) . . .P(An−1)P(A). (2.6)

If we have

P (A1 ∩ . . . ∩ An−1) = P(A1) . . .P(An−1) = 0,

then relation (2.6) is clearly satisfied. Therefore, suppose that

P (A1 ∩ . . . ∩ An−1) > 0.

We will show that the two probabilities P and P (·|A1 ∩ . . . ∩ An−1) coincide on
the �-field Fjn . It suffices to check that they coincide on Mjn . This is due to
Theorem 2.9 since Mjn generates Fjn and is closed under finite intersections.

We can write using property ii, for every A ∈ Mjn

P (A|A1 ∩ . . . ∩ An−1) = P (A ∩ A1 ∩ . . . ∩ An−1)
P (A1 ∩ . . . ∩ An−1)

= P(A)P(A1) . . .P(An−1)

P(A1) . . .P(An−1)
= P(A),

and this shows that P and P (·|A1 ∩ . . . ∩ An−1) coincide on Mjn . Therefore
relation (2.6) is satisfied. Following the same procedure, we can replace in (2.6)
An−1 ∈ Mjn−1 by An−1 ∈ Fjn−1 and we will obtain, step by step, that the equality
(2.6) is valid for Ai ∈ Fji , for every i = 1, . . . , n. �

We will show that the independence of �-fields is associative.
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Theorem 2.25 Let (Fi)i∈I be an independent family of �-fields and let (Ij)j∈J
be a partition of the set I (that is, Ik ∪ Il = ∅ if j /= l and

⋃
j∈J Ij = I ). For every

j ∈ J we define

Gj = �

⎛
⎝⋃
i∈Ij

Fi

⎞
⎠ .

Then the family of �-fields (Gj)j∈J is independent.
Thus no matter how we associate (or group) �-algebras which are independent

the groups still are independent as long as there is no overlap.

Proof: To prove the theorem, define for every j ∈ J
Mj := {A1 ∩ . . . ∩ Anj | Ai ∈ Fi , i ∈ Ij},

where nj is the number of � algebras Fi indexed by Ij . Then we have

�(Mj) = Gj
for every j ∈ J. Since the family (Mj)j satisfies assumptions i and ii from Theo-
rem 2.24), we only need to check that

P(Bj1 ∩ . . . Bjn) = P(Bj1 ) . . .P(Bjn ) (2.7)

for every Bjr ∈ Mjr for r = 1, . . . , n. Let us consider

Bjr = Ar1 ∩ . . . ∪ Ari(r)
with i1, . . . , ir ∈ Ijr , Ajr ∈ Fj , j ∈ Fjr . Then

P
(
Bj1 ∩ . . . ∩ Bjn

) = P

(
n⋂
r=1

i(r)⋂
u=1

Aru

)

=
n∏
r=1

i(r)∏
u=1

P(Aru) =
n∏
r=1

P

(
i(r)⋂
u=1

Aru

)

=
n∏
r=1

P(Bjr )

and thus (2.7) is true. �

The following property is usually called the disassociativity of the indepen-
dence.

Theorem 2.26 Let (Gj)j∈J be an independent family of �-fields and for every
j ∈ J let (Fi)i∈Ij ⊆ Gj be an independent family of �-fields where

Ij1 ∩ Ij2 = ∅ if j1 /= j2.
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Then the family

(Fi)i∈⋃j∈J Ij

is an independent family of �-fields.

Proof: Thus independent families included in bigger independent families remain
independent. It is in some way the reverse of the associativity property presented
earlier.

Let us set

I :=
⋃
j∈J
Ij

and let us consider the sets Ai ∈ Fi such that the set

{i ∈ I | Ai /= �}
is finite. Then ⋂

i∈Ij
Ai ∈ Gj for every j ∈ J

and the set

{j ∈ J |
⋂
i∈Ij
Ai /= �}

is also finite. We then have

P

(⋂
i∈I
Ai

)
= P

⎛
⎝⋂
j∈J

⋂
i∈Ij
Ai

⎞
⎠

=
∏
j∈J

P(
⋂
i∈Ij
Ai) =

∏
j∈J

∏
i∈Ij

P(Ai) =
∏
i∈I

P(Ai)

which shows the independence of the family (Fi)i∈⋃j∈J Ij . �

Let us return to the notion of independence for events. We next give an
extension of Definition 2.20 using what we learned in the meantime about inde-
pendence of �-algebras.

Definition 2.27 We will say that the events (Ai)i∈I are independent if and only
if the family of �-fields (�(Ai))i∈I is independent.

Remark 2.28 Recall that for any event A ∈ F its generated �-algebra is

�(A) = {∅, �, A, Ac}.
It follows that the events (Ai)i∈I are independent if and only if

P(Bi1 ∩ . . . ∩ Bik ) = P(Bi1 ) . . .P(Bik )
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for every i1, . . . , ik ∈ I and for every Bij ∈ {Aij , Acij , �}. We avoid the ∅ because the
result is trivially true in that case.

Remark 2.29 In the case of finite families, Definitions 2.20 and 2.27 are coherent.
That is, the events

A1, . . . , An, . . . .

are independent if and only if

P(Ai1 ∩ . . . ∩ Aik ) = P(Ai1 ) . . .P(Aik ) (2.8)

for every i1, . . . , ik . To see this, apply Theorem 2.24 to the sets Mi = {∅, Ai}.

Recall the definition of a partition of �, Definition 2.3.

Proposition 2.30 Let�1, . . . , �n be partitions of� with a countable number
of elements. Then the �-fields (�(�i))i≥1 are independent if and only if

P(A1 ∩ . . . ∩ An) = P(A1) . . .P(An) (2.9)

for every Ai ∈ �i , i = 1, 2, . . ..

Proof: The ‘‘if ’’ part is an immediate consequence of the definition, while the
‘‘only if’’ part is a consequence of Theorem 2.24 with Mi = {�i, ∅}. �

Remark 2.31 As a particular case, we obtain that three events A, B, C are
independent if and only if

P(A ∩ B) = P(A)P(B),P(A ∩ C ) = P(A)P(C ),P(B ∩ C ) = P(B)P(C )

and

P(A ∩ B ∩ C ) = P(A)P(B)P(C ),

because these are all the possibilities.

An explicit example of three events is considered below. It shows that even if
events are pairwise independent they are not necessary mutually independent.

EXAMPLE 2.16 Pairwise independent is not independent

In relation (2.8) it is crucial the fact that the equality is satisfied for every
possible subset of indices i1, . . . , ik . Indeed, consider

� = {a, b, c, d }, A = {a, b}, B = {a, c}, C = {a, d }
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and let P be the uniform probability, that is P(X ) = |X |
|�| . Clearly,

P(A ∩ B) = P(A ∩ C ) = P(C ∩ B) = 1

4
,

which is equal to

P(A)P(B) = P(B)P(C ) = P(A)P(C ).

However,

P(A ∩ B ∩ C ) = 1

4
/= P(A)P(B)P(C ) = 1

8
.

In this case, the events A, B, C are pairwise independent but not mutually
independent.

We finish this section on independence by discussing the relationship between
independence and a finite product of probability measures.

If (�1,F1,P1), . . . , (�n,Fn,Pn) are n probability spaces, then the product
probability measure

P = P1 ⊗ P2 ⊗ . . .⊗ Pn

is defined as the unique probability on (�1 × · · · ×�n) such that

P(A1 × · · · × An) = P1(A1) . . .Pn(An)

for every Ai ∈ Fi , i = 1, . . . , n.

Proposition 2.32 Let (�,F,P) be a probability space and let F1, . . . ,Fn be
sub-�-fields of F. Then the �-algebras F1, . . . ,Fn are independent if and only if

P ◦ d−1 = P1 ⊗ · · · ⊗ Pn, (2.10)

where Pi denotes the restriction of P to Fi for every i = 1, . . . , n and

d : (�,F,P) → (�× · · · ×�,F1 ⊗ · · · ⊗ Fn,P1 ⊗ · · · ⊗ Pn)

is the diagonal mapping defined by

d (ω) = (ω, . . . , ω).

Proof: We know that the set

M = {A1 × · · · × An | Ai ∈ Fi}
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is a generator for the �-field F1 ⊗ . . .Fn, which is closed under finite intersec-
tions. Therefore, it suffices to check the equality of the probabilities (2.10) for all
the sets in M. We have

(P ◦ d−1)(A1 × · · · × An) = P(d−1(A1 × · · · × An))

= P(A1 ∩ . . . ∩ An)
since

d−1(A1 × · · · × An) = A1 ∩ . . . ∩ An.
�

2.3.8 BOREL–CANTELLI LEMMAS

Recall from analysis: For a sequence of numbers, {xn}n lim sup and lim inf
are defined:

lim sup xn = inf
m

{sup
n≥m

xn} = lim
m→∞(sup

n≥m
xn),

lim inf xn = sup
m

{ inf
n≥m xn} = lim

m→∞( inf
n≥m xn),

and they represent the highest (respectively lowest) limiting point of a subsequence
included in {xn}n.

Note that if z is a number such that z > lim sup xn, then xn < z eventually.3

Likewise, if z < lim sup xn, then xn > z infinitely often.4

These notions are translated to probability in the following way.

Definition 2.33 Let A1, A2, . . . be an infinite sequence of events, in some prob-
ability space (�,F,P). We define the events:

lim sup
n→∞

An =
⋂
n≥1

∞⋃
m=n

Am = {ω : ω ∈ An for infinitely many n}

= {An infinitely often},

lim inf
n→∞ An =

⋃
n≥1

∞⋂
m=n

Am = {ω : ω ∈ An for all n large enough}

= {An eventually}.

Let us clarify the notions of ‘‘infinitely often’’ and ‘‘eventually’’ a bit
more. We say that an outcome ω happens infinitely often for the sequence

3 That is, there is some n0 very large so that xn < z for all n ≥ n0.
4 That is, for any n there exists an m ≥ n such that xm > z.
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A1, A2, . . . , An, . . . if ω is in the set
⋂∞
n=1

⋃
m≥n Am. This means that for any n

(no matter how big) there exist an m ≥ n and ω ∈ Am.
We say that an outcome ω happens eventually for the sequence

A1, A2, . . . , An, . . . if ω is in the set
⋃∞
n=1

⋂
m≥n Am. This means that there exists

an n such that for all m ≥ n, ω ∈ Am; so from this particular n and up, ω is in all
the sets.

Why do we chose to give such complicated definitions? The basic intuition
is the following: Say you roll a die infinitely many times, then it is obvious what it
means for the outcome 1 to appear infinitely often. Also, we can say the average
of the rolls will eventually be arbitrarily close to 3.5 (this will be shown later). It
is not so clear-cut in general. The framework above provides a generalization to
these notions.

2.3.8.1 The Borel Cantelli Lemmas. With this definitions we are now
capable to give two important lemmas.

Lemma 2.34 (First Borel–Cantelli) If A1, A2, . . . is any infinite sequence
of events with the property

∑
n≥1 P(An) < ∞, then

P

( ∞⋂
n=1

⋃
m≥n

Am

)
= P

(
An events are true infinitely often

) = 0.

This lemma essentially says that if the probabilities of events go to zero and the
sum is convergent, then necessarily An will stop occurring. However, the reverse
of the statement is not true. To make it hold, we need a very strong condition
(independence).

Lemma 2.35 (Second Borel–Cantelli) IfA1, A2, . . . is an infinite sequence
of independent events, then

∑
n≥1

P(An) = ∞ ⇔ P(An i.o.) = 1.

First Borel–Cantelli:

P (An i.o.) = P

(⋂
n≥1

∞⋃
m=n

Am

)
≤ P

( ∞⋃
n=m

Am

)
≤

∞∑
m=n

P(Am), ∀n,

where we used the definition and countable subadditivity. By the hypothesis the
sum on the right is the tail end of a convergent series, and therefore it converges
to zero as n → ∞. Thus, we are done. �

Second Borel–Cantelli: “⇒” Clearly, showing that P (An i.o.) = P(lim supAn) = 1
is the same as showing that P

(
(lim supAn)c

) = 0.
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By the definition of lim sup and the DeMorgan’s laws, we have

(lim supAn)
c =

(⋂
n≥1

∞⋃
m=n

Am

)c
=
⋃
n≥1

∞⋂
m=n

Acm.

Therefore, it is enough to show that P(
⋂∞
m=n A

c
m) = 0 for all n (recall that a

countable union of null sets is a null set). However,

P

( ∞⋂
m=n

Acm

)
= lim

r→∞ P

(
r⋂

m=n
Acm

)
= lim

r→∞

∞∏
m=n

P
(
Acm

)
︸ ︷︷ ︸

by independence

= lim
r→∞

r∏
m=n

(1 − P(Am)) ≤ lim
r→∞

r∏
m=n

e−P(Am)

︸ ︷︷ ︸
1−x≤e−x if x≥0

= lim
r→∞ e

−∑r
m=n P(Am) = e−

∑∞
m=n P(Am) = 0.

The last equality follows since
∑

P(An) = ∞.
Note that we have used the inequality 1 − x ≤ e−x , which is true if x ∈ [0,∞).
One can prove this inequality with elementary analysis.

‘‘⇐’’ This implication is the same as in the first lemma. Indeed, assume by
absurd that

∑
P(An) < ∞. By the First Borel–Cantelli Lemma, this implies that

P(An i.o.) = 0, a contradiction with the hypothesis. �

2.3.9 FATOU’S LEMMAS

Again assume that A1, A2, . . . is a sequence of events.

Lemma 2.36 (Fatou’s lemma for sets) Given any measure (not necessarily
finite) �, we have

�(An eventually) = �(lim inf
n→∞ An) ≤ lim inf

n→∞ �(An).

Proof: Recall that

lim inf
n→∞ An =

⋃
n≥1

∞⋂
m=n

Am,

and denote this set with A. Let

Bn =
∞⋂
m=n

Am,
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which is an increasing sequence (the sets contain less intersections as n increases)
andBn ↑ A =. By the monotone convergence property of measure (Lemma 2.14),
we have �(Bn) → �(A). However,

�(Bn) = �(
∞⋂
m=n

Am) ≤ �(Am), ∀m ≥ n,

thus �(Bn) ≤ infm≥n �(Am). Therefore,

�(A) ≤ lim
n→∞ inf

m≥n �(Am) = lim inf
n→∞ �(An).

�

Lemma 2.37 (The reverse of Fatou’s lemma) If P is a finite measure
(e.g., probability measure), then

P(An i.o.) = P(lim sup
n→∞

An) ≥ lim sup
n→∞

P(An).

Proof: This proof is entirely similar. Recall that lim supn→∞ An =⋂
n≥1

⋃∞
m=n Am, and denote this set with A. Let Bn = ⋃∞

m=n Am. Then
clearly Bn is a decreasing sequence and Bn ↓ A =. By the monotone convergence
property of measure (Lemma 2.14) and since the measure is finite, we obtain
P(B1) < ∞ so P(Bn) → P(A). However,

P(Bn) = P(
∞⋃
m=n

Am) ≥ P(Am), ∀m ≥ n,

thus P(Bn) ≥ supm≥n P(Am), again since the measure is finite . Therefore,

P(A) ≥ lim
n→∞ sup

m≥n
P(Am) = lim sup

n→∞
P(An).

�

Remark 2.38 Please note that the Fatou’s lemma is applicable for any measurable
set. However, the reverse of the lemma works only in probability spaces (i.e., spaces
that have the total probability equal to 1).

2.3.10 KOLMOGOROV’S ZERO–ONE LAW

We like to present this theorem since it introduces the concept of a sequence of
�-algebras, a notion which is essential for stochastic processes.

For a sequence A1, A2, . . . of events in the probability space (�,F,P ) con-
sider the generated �-algebras

T n = �(An, An+1, . . . ),
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as well as their intersection

T =
∞⋂
n=1

T n =
∞⋂
n=1

�(An, An+1, . . .),

which is called ‘‘the tail’’ �-field.

Theorem 2.39 (Kolmogorov’s 0–1 law) If A1, A2, . . . are independent,
then for every event A in the tail � field (A ∈ T ) its probability P(A) is either 0
or 1.

Proof: Here we only present the sketch of the proof. The idea is to show that A is
independent of itself and thus P(A ∩ A) = P(A)P(A) ⇒ P(A) = P(A)2 ⇒ P(A)
is either 0 or 1. The steps of this proof are as follows:

1. First define A n = �(A1, . . . , An) and show that is independent of T n+1 for
all n.

2. Since T ⊆ T n+1 and A n is independent of T n+1, then A n and T are
independent for all n.

3. Define A ∞ = �(A1, A2, . . .). Then from the previous step we deduce that
A ∞ and T are independent.

4. Finally since T ⊆ A ∞ by the previous step, T is independent of itself and
the result follows. �

Note that lim supAn and lim inf An are tail events. However, it is only in the
case when the original events are independent that we can apply Kolmogorov’s
theorem. Thus in that case P{An i.o.} is either 0 or 1.

2.4 Lebesgue Measure on the Unit Interval (0,1]

We conclude this chapter with the most important probability measure. This is
the unique measure that makes things behave in a normal way (e.g., the interval
(0.2, 0.5) has measure 0.3).

Let � = (0, 1]. Let F0 = class of semiopen subintervals (a, b] of �. For an
interval I = (a, b] ∈ F0 define �(I ) = |I | = b − a. Let ∅ ∈ F0 the element of
length 0. Let B 0 = the algebra of finite disjoint unions of intervals in (0,1]. We
also note that problem 1.5 shows that this algebra is not a �-algebra.

If A = ∑n
i=1 In ∈ B 0 with In disjoint F0 sets, then

�(A) =
n∑
i=1

�(Ii) =
n∑
i=1

|Ii|.

The goal is to show that � is countably additive on the algebra B 0. This
will allow us to construct a measure (actually a probability measure since we are
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working on (0,1]) using the next result (Carathéodory’s theorem). The con-
structed measure is well-defined and will be called the Lebesgue measure.

Theorem 2.40 (Theorem for the length of intervals) Let I =
(a, b] ⊆ (0, 1] be an interval and let Ik denote intervals of the form (ak, bk] which
are bounded but not necessarily in (0, 1].

(i) If
⋃
k Ik ⊆ I and Ik are disjoint, then

∑
k |Ik| ≤ |I |.

(ii) If I ⊆ ⋃
k Ik (with the Ik not necessarily disjoint), then |I | ≤ ∑

k |Ik |.
(iii) If I = ⋃

k Ik and Ik disjoint, then |I | = ∑
k |Ik |.

Proof: Exercise (Hint: use induction) �

Note: Part iii shows that the function � is well-defined.

Theorem 2.41 The measure � defined previously is a (countably additive) prob-
ability measure on the field B 0. � is called the Lebesgue measure restricted to the
algebra B 0.

Proof: Let

A =
∞⋃
k=1

Ak,

where Ak are disjoint B 0 sets. By definition of B 0, we have

Ak =
mk⋃
j=1

Jkj , A =
n⋃
i=1

Ii,

where the Jkj are disjoint. Then,

�(A) =
n∑
i=1

|Ii| =
n∑
i=1

(
∞∑
k=1

mk∑
j=1

|Ii ∩ Jkj |)

=
∞∑
k=1

mk∑
j=1

(
n∑
i=1

|Ii ∩ Jkj |)

and since

A ∩ Jkj = Jkj ⇒ |A ∩ Jkj | =
n∑
i=1

|Ii ∩ Jkj | = |Jkj |.
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The expression above is continued:

=
∞∑
k=1

mk∑
j=1

|Jkj |
︸ ︷︷ ︸

=|Ak |

=
∞∑
k=1

�(Ak).

�

The next theorem will extend the Lebesgue measure to the whole (0, 1]. In
this way we define the most used probability space: ((0, 1],B ((0, 1]), �). The
same construction with minor modifications works in the (R,B (R), �) case.

Theorem 2.42 (Carathéodory’s extension theorem) A probability
measure on an algebra has a unique extension to the generated �-algebra.

Note: Carathéodory’s theorem practically constructs all the interesting prob-
ability models. However, once we construct our models, we have no further need
of the theorem. It also reminds us of the central idea in the theory of probabili-
ties: If one wants to prove something for a big set, one needs to look first at the
generators of that set.

Proof: Skipped here because it is in the exercises. �

EXERCISES

Problems with Solution

2.1 We roll two dies and we consider the events:

A: ‘‘The result of the first die is odd.’’
B: ‘‘The result of the second die is even.’’
C: ‘‘The results of the two dies have the same parity.’’

Study the pairwise independence of the events A, B, C , then the mutual
independence.

Solution: Clearly

� = {1, 2, . . . , 6}2

and |�| = 36. Also

|A| = |B| = |C | = 18
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while

|A ∩ B| = |A ∩ C | = |B ∩ C | = 9.

Therefore, A, B, C are pairwise independent but they are not mutually
independent since

A ∩ B ∩ C = ∅.
�

2.2 Let (�,F,P) be a probability space and let A, B ∈ F. Prove that

P(A ∪ B) + P(A ∪ Bc ) + P(Ac ∪ B) + P(Ac ∪ Bc) = 3.

Solution: One has

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

P(A ∪ Bc ) = P(A) + P(Bc) − P(A ∩ Bc),

P(Ac ∪ B) = P(Ac) + P(B) − P(Ac ∩ B),

and

P(Ac ∪ Bc) = P(Ac ) + P(Bc − P(Ac ∩ Bc).

By adding the above probabilities,

P(A ∪ B) + P(A ∪ Bc) + P(Ac ∪ B) + P(Ac ∪ Bc )
= 2P(A) + 2P(B) + 2P(Ac ) + 2P(Bc )

−P(A ∩ B) − P(A ∩ Bc ) − P(Ac ∩ B) − P(Ac ∩ Bc)
= 4 − P(A ∩ B) − P(A ∩ Bc) − P(Ac ∩ B) − P(Ac ∩ Bc ).

But

A = A ∩� = A ∩ (B ∪ Bc) = (A ∩ B) ∪ (A ∩ Bc )

so

P(A) = P(A ∩ B) + P(A ∩ Bc ).

Similarly,

P(Ac ) = P(Ac ∩ B) + P(Ac ∩ Bc ).
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Finally

P(A ∪ B) + P(A ∪ Bc ) + P(Ac ∪ B) + P(Ac ∪ Bc )
= 4 − P(A ∩ B) − P(A ∩ Bc ) − P(Ac ∩ B) − P(Ac ∩ Bc )
= 4 − P(A) − P(Ac )

= 3.

�

2.3 Let A, B, C be three events on (�,F,P). Prove that

P(A ∩ B) ≥ P(A) − P(Bc )

and

P(A ∩ B ∩ C ) ≥ 1 − P(Ac) − P(Bc ) − P(Cc ).

Solution: As in the previous exercise,

P(A) = P(A ∩ B) + P(A ∩ Bc ).
Thus

P(A) − P(A ∩ Bc) = P(A ∩ B).

Since A ∩ Bc ⊆ Bc , we have

P(A ∩ Bc ) ≤ P(Bc)

so

P(A ∩ B) = P(A) − P(A ∩ Bc ) ≥ P(A) − P(Bc ).

To prove the second inequality, we use the above one twice:

P(A ∩ B ∩ C ) ≥ P(A ∩ B) − P(Cc)

≥ P(A) − P(Bc ) − P(Cc )

= 1 − P(Ac) − P(Bc ) − P(Cc ).

�

2.4 A box contains five white balls and 3 red balls. We extract at random one
ball and we put it back in the box together with two balls of the same
color with the ball that has been not extracted. Given that the second ball
extracted is red, what is the most likely color of the first ball?

Solution: Denote by Ri the event ‘‘the ith extracted ball is red.’’ We have

P(R1|R2) = P(R1)P(R2|R1)

P(R2)
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and

P(R2) = P(R1)P(R2|R1) + P(Rc1)P(R2|Rc1)

= 3

8

3

10
+ 5

8

5

10

= 34

80
.

Then

P(R1|R2) = 9

80

80

34
= 9

34
.

�

2.5 A medical laboratory test ensures with a probability 0.95 the detection
of a certain disease M, when the disease effectively exists. Meanwhile, the
test also indicates a positive result for one percent of the people without
the disease that have tried the test. We assume that 0.5 percent of the
population has the disease M. We choose at random a person for which
the test was positive. What is the probability that the person is ill?

Solution: Denote ‘‘M = the person has the disease M’’ and ‘‘T = the
test is positive.’’ We have

P(T |M ) = 0.95,P(M ) = 0.005,P(T |Mc ) = 0.01.

Then

P(T ) = P(M )P(T |M ) + P(Mc )P(T |Mc)

= 0.0147

and

P(M |T ) = P(M )P(T |M )

P(T )
= 0.00475

0.0147
.

�

2.6 From previous data analysis, it was found that:

1. When the machine operates well, the probability of producing good-
quality products is 0.98.

2. When the machine has certain problems, the probability of producing
good-quality products is 0.55.

3. Every morning, when the machine is launched, the probability of the
machine adjust to normal operation is 0.95.
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If on one morning, the first product produced by the machine is of good
quality, what is the probability that the machine is adjusted to normal
operation in that morning?

Solution: Define the following events:
Event A = ‘‘The product is of good-quality.’’
Event B = ‘‘The machine is adjusted to normal operation.’’ Then

P(A/B) = 0.98, P(B) = 0.95,

P(A/Bc) = 0.55 P(Bc ) = 0.05.

We need to compute

P(B/A) = P(A/B)P(B)

P(A)

= P(A/B)P(B)

P(A/B)P(B) + P(A/Bc )P(Bc)
= 0.98 × 0.95

0.98 × 0.95 + 0.55 × 0.05
= 0.97.

�

2.7 A secretary sent N letters to N persons, but it turns out she put the
letters in the envelopes randomly. To model this situation, we choose a
probability space�N which is the set of all permutations of {1, 2, . . . , N }
endowed with the uniform probability PN (this is every permutation has
the same chance 1/N !).

For 1 ≤ j ≤ N we denote by Aj the event ‘‘the jth letter is in the
good envelope.’’
(a) Calculate PN (Aj).
(b) We fix k integers i1 < i2 < .... < ik between 1 and N . Compute
the number of permutations � of the set {1, . . . , N } such that �(i1) =
i1, ....., �(ik) = ik . Use this number to deduce

PN (Ai1 ∩ ..... ∩ Aik ).
(c) Denote by B the event ‘‘at least one letter is in the good envelope.’’
Express B in terms of Aj .
(d) Use Poincaré’s formula to compute PN (B) and its limit when
N → ∞.

Proof: (a) Let’s compute the cardinality of the set Aj . The probability re-
quired is then simply this number divided byN !. The problem is equiva-
lent to counting the number of permutation � ∈ �N with �(j) = j. This
is the same as the number of permutations of the other elements, and that
number is (N − 1)!, thus

PN (Aj) = |Aj |
|�N | = (N − 1)!

N !
= 1

N
.
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(b) Now we have to count the number of permutations of {1, . . . , N }
with fixed k elements. Again this is the same as permuting all the other
elements and that number is (N − k)!. Therefore

PN (Ai1 ∩ ..... ∩ Aik ) = (N − k)!

N !
.

(c) This set is written as

B =
N⋃
i=1

Ai.

(d) From Poincaré’s (inclusion exclusion) formula

PN (B) =
N∑
k=1

(−1)k+1
∑

1≤i1<....<ik≤N
PN (Ai1 ∩ ..... ∩ Aik )

=
N∑
k=1

(−1)k+1
∑

1≤i1<....<ik≤N

(N − k)!

N !

=
N∑
k=1

(−1)k+1 (N − k)!

N !

(
N

k

)

=
N∑
k=1

(−1)k+1 1

k!

and this converges as N → ∞ to

∞∑
k=1

(−1)k+1 1

k!
= 1 − e−1.

�

2.8 Do the following parts.
(a) Prove that (

2n

n

)
=

n∑
k=0

(
n

k

)2

.

(b) Each one of two people toss a coin n times. What is the probability
Pn that they obtain the same number of tails?
(c) Give the limit of Pn when n goes to infinity.

Solution: (a) We use the identity

(1 + t )n(1 + t )n = (1 + t )2n.
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We develop both sides using the formula

(a + b)n =
n∑
k=0

(
n

k

)
akbn−k

and we identify the coefficient of t n in both sides.

(b) We define the probability space

� = {h, t}2n

endowed with the uniform probability. Let A be the event ‘‘both have
the same number of tails.’’ Then

|A| = |{ both zero tails }| + |{ both one tail }| + ....+ |{ both n tails }|
=
(
n

0

)(
n

0

)
+
(
n

1

)(
n

1

)
+ · · · +

(
n

n

)(
n

n

)

=
n∑
k=0

(
n

k

)2

.

So

Pn = |A|
|�| =

(2n
n

)
2n
.

(c) We recall Stirling’s formula

n! =
√

2�nn+
1
2 exp(−n(1 + εn))

with

lim
n
nεn = 0.

It will follow that

Pn →n→∞ 0.

�

Problems without Solution

2.9 Show that the Borel sets ofR is generated by intervals of the type (−∞, x],
i.e., B = � ({(−∞, x]| x ∈ R}).

Hint: Show that the generating set is the same; that is, show that
any set of the form (−∞, x] can be written as a countable union (or
intersection) of open intervals and, vice versa, that any open interval inR
can be written as a countable union (or intersection) of sets of the form
(−∞, x].
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2.10 Show that the following classes all generate the Borel �-algebra; or, put
differently, show the equality of the following collections of sets:

� ((a, b) : a < b ∈ R) = � ([a, b] : a < b ∈ R)

= � ((−∞, b) : b ∈ R)

= � ((−∞, b) : b ∈ Q) ,

whereQ is the set of rational numbers.

2.11 Properties of probability measures
Prove properties 1–4 in Proposition 2.2.

Hint: You only have to use the definition of probability. The only
thing nontrivial in the definition is the countable additivity property.

2.12 Let (�,F, P) be a probability space and let A, B, C be events in F. Prove
the following particular case of Poincaré’s formula:

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )

−P(A ∩ B) − P(A ∩ C ) − P(B ∩ C )

+P(A ∩ B ∩ C ).

2.13 Suppose that (Aj)j≥1 is a collection of events in F. Prove that

P
(⋂

Aj
)

≥ 1 −
∑
j≥1

[
1 − P(Aj)

)
.

Hint: Apply the subadditivity property to (Acj )j≥1.

2.14 Let (An)n≥1 be a sequence included in F. Prove that if P(An) = 1 for every
n ≥ 1, then

P

(⋂
i≥1

Ai

)
= 1.

Hint: Use problem 2.13.

2.15 Suppose that A and B are events with P(A) = 1. Prove that

P(A ∩ B) = P(B).

2.16 Let (Ai)i∈I be an infinite family of mutually disjoint events in F. Prove
that the set

S = {i ∈ I,P(Ai) > 0}
is countable.

2.17 No matter how many zeros, do not add to more than zero.
Prove Lemma 2.16.

Hint: You may use countable subadditivity.
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2.18 If F0 is an algebra,m(F0) is the minimal monotone class over F0 and G 2
is defined as

G 2 = {B : A ∪ B ∈ m(F0), ∀A ∈ m(F0)}.

Then show that G 2 is a monotone class.

Hint: Look at the proof of Theorem 2.12, and repeat the arguments
therein.

2.19 A student answers a multiple choice examination question that has
4 possible answers. Suppose that the probability that the student knows
the answer to the question is 0.80 and the probability that the student
guesses is 0.20. If student guesses, probability of correct answer is 0.25.
(a) What is the probability that the question is answered correctly?
(b) If the question is answered correctly, what is the probability that the
student in fact knew the correct answer and was not guessing.

2.20 A monotone algebra is a �-algebra.
Let F be an algebra that is also a monotone class. Show that F is a
�-algebra.

2.21 Prove the total probability formula [equation (2.4)] and Bayes’ formula
[equation (2.5)].

2.22 If two events are such that A ∩ B = ∅, are A and B independent? Justify.

2.23 Show that P(A|B) = P(A) is the same as independence of the events A
and B.

2.24 Prove that if two events A and B are independent, then so are their com-
plements.

2.25 Generalize the previous problem to n sets using induction.

2.26 One urn contains w1 white balls and b1 black balls. Another urn contains
w2 white balls and b2 black balls. A ball is drawn at random from each
urn, and then one of the two balls is selected at random.
(a) What is the probability that the final ball selected is white?
(b) Given that the final ball selected was white, what is the probability
that in fact it came from the first urn (with w1 and b1 balls)?

2.27 At the end of a well-known course, the final grade is decided with the help
of an oral examination. There are a total of m possible subjects listed on
some pieces of paper. Of them, n are generally considered ‘‘easy.’’

Each student enrolled in the class, one after another, draws a subject
at random and then presents it. Of the first two students, who has the
better chance of drawing a ‘‘favorable’’ subject?
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2.28 Using Cantelli’s lemma, show that when you roll a die the outcome {1}
will appear infinitely often. Also show that eventually the average of all
rolls up to roll n will be within ε of 3.5 where ε > 0 is any arbitrary real
number.

2.29 Two (now retired) famous tennis players Andre Agassi and Pete Sampras
decide to play a number of games together. They play non-stop and at the
end it turns out that Sampras won n games while Agassi won m, where
n > m. Assume that in fact any possible sequence of games was possible to
reach this result. Let Pn,m denote the probability that from the first game
until the last, Sampras is always in the lead. Find:

1. P2,1; P3,1; Pn,1
2. P3,2; P4,2; Pn,2
3. P4,3; P5,3; P5,4

4. Make a conjecture about a formula for Pn,m.

2.30 A bag contains 3 black, 5 white, and 2 red marbles. A marble is selected at
random. It turns out to be black; find the probability that the next marble
selected (without replacing the first) is also black.

2.31 My friend Andrei has designed a system to win at the roulette. He likes
to bet on red, but he waits until there have been 6 previous black spins
and only then he bets on red. He reasons that the chance of winning is
quite large since the probability of 7 consecutive back spins is quite small.
What do you think of his system? Calculate the probability that he wins
using this strategy.

Actually, Andrei plays his strategy 4 times and he actually wins 3
times out of the 4 he played. Calculate the probability of the event that
just occurred.

2.32 Toss a nickel and a dime at random and record the result as an ordered
pair. A = heads on both nickel and dime, B = having at least one head,
C = heads appears on the nickel, and D = tails appears on the nickel
Then calculate

P(A|B),P(C |B),P(D|B).

2.33 Ali Baba is caught by the sultan while stealing his daughter. The sultan is
being gentle with him and he offers Ali Baba a chance to regain his liberty.
There are 2 urns and m white balls and n black balls. Ali Baba has to put
the balls in the 2 urns however he likes with the only condition that no
urn is empty. After that the sultan will chose an urn at random and then
pick a ball from that urn. If the chosen ball is white, Ali Baba is free to go;
otherwise Ali Baba’s head will be at the same level as his legs.

How should Ali Baba divide the balls to maximize his chance of
survival?
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2.34 Consider the probability space ([0, 1],B [0, 1], �) with � denoting the
Lebesque measure. Define

An =
[

0,
1

2n

)⋃(
2

2n
,

3

2n

)⋃
. . .

⋃[
2n − 2

2n
,

2n − 1

2n

)
.

Show that the sets An, n ≥ 1 are independent.

2.35 Let p∈ (0, 1). Construct a probability space (�,F,P) and a sequence
(An)n included in F such that∑

n

P(An) = ∞

and

P(lim sup
n

An) = p.

Hint: Use the probability space ([0, 1],B[0, 1], �).

2.36 A Pap smear is a screening procedure to detect cervical cancer. For women
with this type of cancer, 16 percent of tests are false negatives. For women
without this cancer, about 19 percents are false positives. In the United
States, there are about 8 women in 100,000 who have this type of cancer.
A woman tests positive on this screening test. Calculate her probability of
having cancer.

2.37 We want to analyze the gender distribution in a family with n children.
We consider the probability space

� = {g, b}n = {(x1, . . . , xn) | xi ∈ {g, b}, i = 1, . . . , n}
(‘‘g’’ is girl and ‘‘b’’ is boy). On � we consider the uniform probability.
Define the events

A = {the family has children of both gender}
and

B = {the family has at most one girl}.
(a) Show that for every n ≥ 2, we have

P(A) = 2n − 2

2n
and P(B) = n + 1

2n
.

(b) Deduce that A and B are independent if and only if n = 3.



Chapter Three

Random Variables:
Generalities

3.1 Introduction/Purpose of the Chapter

Random variables (or stochastic variables) are used in mathematics and many other
sciences to understand and model events based on data obtained from scientific
experiments. A random variable is typically describing some phenomenon whose
value, size, volume, and so on, is not known before it is produced and depends
on the particular hazard. Random variables are described completely by their
probability distribution. This probability distribution associated with a random
variable quantifies the chance that a certain value, size, and so on, occurs for a
given random variables.

3.2 Vignette/Historical Notes

The origin of the word stochastic is the word stokhastikos (Greek), which means
capable of guessing. The word literally comes from stokhos, which was a pointed
stick set up for archers to shoot at.

Let us point out some important dates in the history of the study of random
variables. An important moment is constituted by the publication in 1713 of
Bernoulli’s work entitled Ars Conjectandi (The Art to Guess), where, for the first
time, sequences of Bernoulli random variables are considered and a first variant of

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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the Central Limit Theorem is stated and proved. The concept of ‘‘independence’’
is mainly due to De Moivre. Another important moment in defining random vari-
ables is the appearance of Laplace’s monograph Théorie Analitique des Probabilités
(1812), where the current state of the art of the theory at the time is described. The
fundamental limit theorems are presented in the monograph in a rather complete
formulation. Siméon Denis Poisson (1781–1840) later introduced the probability
law which was named after him. Carl Friedrich Gauss (1777–1855) is credited
with first introducing normally distributed errors, which have the distribution
carrying his name.

3.3 Theory and Applications

3.3.1 DEFINITION

The first step is to give the following definition.

Definition 3.1 (Measurable function) Let (�,F) be a measurable space
and let (�1,F1) be another measurable space. An application X : � → �1 is called
measurable if and only if for any A ∈ F1 one has

X −1(A) ∈ F.

Definition 3.2 (Random variable on R) Let (�,F,P) be a probabil-
ity space and consider R with the Borel sets on R: B (R). A measurable function
X : � → R is called a random variable. The set of its values is the image of �
through X and it is denoted by X (�). Note that a random variable is simply a
measurable function with co-domain (R,B (R))

Consequence: Since the Borel sets inR are generated by (−∞, x], we can have
the definition of a random variable directly by

X : � −→ R such that X −1(−∞, x] ∈ F or

{ω : X (ω) ≤ x} ∈ F, ∀x ∈ R.

We shall sometimes use {X (ω) ≤ x} or just X (ω) ≤ x to denote the preim-
age of (−∞, x]: X −1(−∞, x). Traditionally, the random variables are denoted
with capital letters from the end of the alphabet X, Y, Z, . . . , and their values
are denoted with corresponding small letters x, y, z, . . . . In practice it is diffi-
cult to construct functions which are not measurable, and almost every function
considered in this book will be measurable.

If one rolls three dies, one can denote by X, Y, X the result of the first, second,
and third die, respectively. The introduction of random variables allows us to study
in an easier way the sum S = X + Y + Z . It is possible to use only events to study
S , but with the help of random variables the sum can be handled much easier.
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Remark 3.3 A sum, product, or composition of measurable functions is a mea-
surable function. Therefore, if X and Y are random variables, XY, X + Y , and
sin(X ), X 2eY are examples of random variables. If (Xi)i≥1 denotes a sequence of
random variables, then

inf
n≥1
Xn, sup

n≥1
Xn, lim inf

n≥1
Xn, lim sup

n≥1
Xn

are random variables.

Remark 3.4 The notation X −1(A) simply denotes the preimage of the set A. The
notation does not imply that the function X has an inverse in the usual sense. For
example, let us look at the function X (ω) = sin(ω) for ω ∈ R is measurable. The set

X −1([0, 5]) =
⋃

2k∈Z

[
(2k − 1)�

2
,

(2k + 1)�

2

]

is simply a union of intervals in R. Yet the function sin(ω) is not invertible on R.

3.3.2 THE DISTRIBUTION OF A RANDOM VARIABLE

Definition 3.5 (Distribution of random variable) Let (�,F,P) be a
probability space and let X : � → R be a random variable.

The law (or the distribution) of X , denoted by PX , is an application defined on
the Borel sets of R denoted B (R), with values in [0, 1] by

PX (B) = P ({ω : X (ω) ∈ B}) = P
(
X −1(B)

) = P ◦ X −1(B)

for every B ∈ B (R).

An example will make clear the relationship between random variables and
probability distributions. Suppose you flip a coin two times. This simple statistical
experiment can have four possible outcomes: HH , HT , TH , and TT . Now, let
the variable X represent the number of heads that result from this experiment.
The variable X can take on the values 0, 1, or 2. In this example, X is a random
variable because its value is determined by the outcome of a statistical experiment.

Proposition 3.6 The set function PX defined above is a probability on the
measurable space (R,B (R)). Consequently,

(R,B (R),PX )

is a probability space.
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Proof: We have

PX (R) = P ◦ X −1(R) = P(ω ∈ �,X (ω) ∈ R) = P(�) = 1.

Let (Ai)i≥1 be a sequence of disjoint sets in B (R). Then

PX
(∪i≥1Ai

) = (P ◦ X −1)
(∪i≥1Ai

) = P
(
X −1(∪i≥1Ai)

)
= P

(∪i≥1X
−1(Ai)

) =
∑
i≥1

P(X −1(Ai))

=
∑
i≥1

(P ◦ X −1(Ai) =
∑
i≥1

PX (Ai),

where we used that the sets X−1(Ai) are disjoint. If they are not, and there exists
an ω common to two such sets, say X −1(Ai) and X −1(Aj), then X (ω) would be
in both Ai and Aj and thus in intersection, which is empty by hypothesis. �

The probability set function PX is called the distribution of the random
variable X .

There is one more simplification we can make. If we recall the result of
exercises 2.23 and 2.24, we know that all Borel sets are generated by the same
category of sets (semiopen, open, closed, etc.). Using the same ideas, it is enough to
describe how to calculate PX = P ◦ X −1 for the generators of the �-algebra (that
is, for one such category of intervals). We can do this for any type of generating
sets we wish (open sets, closed sets, etc.); but it turns out that the simplest way
is to use sets of the form (−∞, x], since we only need to specify one end of the
interval (the other is always −∞). With this observation, we only need to specify
the probability measure PX = P ◦ X −1 directly on the generators to completely
characterize the probability measure.

Remark 3.7 (About random variables)

1. If A is a Borel set in R, we will sometimes use the short notation {X ∈ A} to
indicate the set

{ω ∈ � | X (ω) ∈ A)} = X −1(A).

2. The set {X ∈ A} is included in �. To be able to compute its probability, the set
should be an element of the sigma F. Since X is measurable, this is true, and so
we can calculate the probability for any Borel set.

3. Clearly, the law of the random variable X depends on the probability P.

4. Please do not confuse a random variable X with its law. For example, if one rolls
two dies and denote by X , respectively Y , their outcomes, then clearly X and Y
have the same law. On the other hand, P(X = Y ) < 1 and therefore the two
random variables are different even though their law is identical.
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3.3.3 THE CUMULATIVE DISTRIBUTION FUNCTION OF A
RANDOM VARIABLE

Definition 3.8 (The cumulative distribution function of a random
variable) The (cumulative) distribution function (cdf ) of a random variable X is
a function F : R→ [0, 1] with

F (x) = PX (−∞, x] = P ({ω : X (ω) ∈ (−∞, x]}) = P ({ω : X (ω) ≤ x}) .

Usually one uses the abbreviation ‘‘c.d.f.’’ or ‘‘CDF’’ or simply ‘‘cdf’’ for
the cumulative distribution function.

As the value x increases, the function F (x) cumulates all the probability
related to outcomes less than or equal with the number x.

Let us return to the coin flip experiment. If we flip a coin two times, we
might ask: What is the probability that the coin flips would result in one or fewer
heads? The answer would be a cumulative probability. It would be the probability
that the coin flip experiment results in zero heads plus the probability that the
experiment results in one head.

P(X ≤ 1) = P(X = 0) + P(X = 1) = 0.25 + 0.50 = 0.75.

We present the basic properties of a c.d.f.

Proposition 3.9 The distribution function for any random variable X has the
following properties:

(i) F is increasing (i.e., if x < y, then F (x) ≤ F (y)).

(ii) F is right continuous (i.e., limh↓0 F (x + h) = F (x)).

(iii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Proof: The first property is a consequence of the fact that a probability is a non-
decreasing function; that is, if A ⊂ B, then P(A) ≤ P(B). Clearly if x ≤ y, then

(X ≤ x) ⊆ (X ≤ y)

and thus F (x) ≤ F (y).
Denote byAh = (X ≤ x + h).This sequence of sets is decreasing with respect

to h ↓ 0 and ∩h↓0Ah = (X ≤ x). Then by the monotone convergence property
of the measure, we obtain

lim
h↓0
F (x + h) = lim

h↓0
P(Ah)

= P(∩h↓0Ah) = P(X ≤ x)

= F (x).

Finally

lim
x→∞ F (x) = P(X ≤ ∞) = P(X ∈ R) = P(�) = 1
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and

lim
x→−∞ F (x) = P(X ≤ −∞) = P(∅) = 0.

�

Remark 3.10 In other mathematical books an increasing function is sometimes
called nondecreasing to distinguish it from strictly increasing functions (if x < y, then
F (x) < F (y)).

Proving the following lemma is elementary using the properties of the prob-
ability measure (Proposition 2.2) and is left as an exercise.

Lemma 3.11 Let F be the distribution function of X . Then:

(i) P(X ≥ x) = 1 − F (x).

(ii) P(x < X ≤ y) = F (x) − F (y).

(iii) P(X = x) = F (x) − F (x−), where F (x−) = limy↗x F (y) the left limit of
F at x.

Remark 3.12 Suppose that F (x0) = 0 where F is a c.d.f. Then

F (x) = 0 for every x ≤ x0.

EXAMPLE 3.1 Using the c.d.f. for a discrete random variable

Suppose we roll a fair six-sided die (the probability of landing on each face
is equal). We ask, What is the probability that the die will land on a number
that is smaller than 5?

Solution: When a die is tossed, there are 6 possible outcomes represented by
S = {1, 2, 3, 4, 5, 6}. Each possible outcome is equally likely to occur.

This problem involves the cumulative probability function. However, pay
attention to whether the outcome is included or not. The probability that the die
will land on a number smaller than 5 is equal to

P(X < 5) = F (4) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

= 1/6 + 1/6 + 1/6 + 1/6 = 2/3.
�

There exists a ‘‘reciprocal argument’’ to Proposition 3.9.

Theorem 3.13 Let F be a function satisfying conditions i to iii in Proposition 3.9.
Then, there exists a probability space (�,F ,P) and a random variable X defined
on this probability space such that F is the c.d.f. of X .
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Proof: We choose the probability space to be � = (0, 1) with F the Borel �-
algebra of subsets of the unit interval and P = � the Lebesque measure on the
intervals. Define

X (ω) = sup{z | F (z) < ω}.

For any number c such that X (ω) > c the definition implies that ω > F (c). On
the other hand, if ω > F (c), then, since F is right continuous, for some ε > 0
we obtain

ω > F (c + ε)

and this implies

X (ω) ≥ c + ε > c.

It follows that X (ω) > c if and only if ω > F (c). Therefore

P[X (ω) > c] = P[ω > F (c)] = 1 − F (c),

and thus obviously

P[X (ω) ≤ c] = F (c).

Therefore, we have found a random variable X such that F is the cumulative
distribution function of X . �

EXAMPLE 3.2 Indicator Random Variable

Let 1A be the indicator function of a set A ⊆ �. This is a function defined
on � with values in R. Therefore, it may be a random variable. According
to the definition, it is a random variable if the function is measurable. It
is simple to show that this happens if and only if A ∈ F the �-algebra
associated with the probability space. Assuming that A ∈ F, what is the
distribution function of this random variable?

Solution: To answer this question, we have to calculate P ◦ 1−1
A ((−∞, x]) for

any x. However, the function 1A only takes two values 0 and 1. We can calculate
immediately:

1−1
A ((−∞, x]) =

⎧⎪⎨
⎪⎩

∅ if x < 0,

Ac if x ∈ [0, 1),

� if x > 1.
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Therefore,

F (x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

P(Ac) if x ∈ [0, 1),

1 if x ≥ 1.
�

We have defined a random variable as any measurable function with image
(codomain) (R,B (R)). A more specific case is obtained when the random vari-
able also has the domain equal to (R,B (R)). In this case the random variable is
called a Borel function.

Definition 3.14 (Borel measurable function) A function g : R→ R
is called Borel (measurable) function if g is a measurable function from (R,B (R))
into (R,B (R)).

EXAMPLE 3.3

Show that any continuous function g : R→ R is Borel measurable.

Solution: This is very simple. Recall that the Borel sets are generated by open sets.
So it is enough to see what happens to the preimage of an open set B. Since g is a
continuous function, g−1(B) is an open set and thus g−1(B) ∈ B (R). Therefore
by definition g is Borel measurable. �

Let us define the �-algebra generated by a random variable.

Definition 3.15 (�-algebra generated by random variables) For
X : � → R a random variable, define

�(X ) = {X −1(B), B ∈ B (R}.

Note that �(X ) is the smallest �-algebra such that X is a measurable function
with values in R.

3.3.4 INDEPENDENCE OF RANDOM VARIABLES

We defined in Section 2.3.7 the notion of independence of two �-algebras. We
define now the independence of random variables.

Definition 3.16 Two random variables X, Y : � : R are independent if and only
if their generated �-algebras �(X ) and �(Y ) are independent. That implies, for every
A, B Borel sets in R, it holds that

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).
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Remark 3.17 Since the Borel �-algebra is generated by intervals, the above
definition is equivalent to:

For any x, y ∈ R,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

As in the case of �-fields, the above definition can be extended for a finite or
countably infinite number of random variables.

Definition 3.18 The random variables X1, X2, . . . , Xn are (mutually) indepen-
dent if the fields �(X1), �(X2), . . . , �(Xn) are independent. This is equivalent to

P

(
n⋂
i=1

(Xi ∈ Bi)
)

=
n∏
i=1

P(Xi ∈ Bi)

for every Borel set B1, . . . , Bn.

Definition 3.19 An arbitrary family of random variables (Xi)i∈I is (mutually)
independent if every finite subfamily is independent.

This definition is an analogue of Theorem 2.24.

Remark 3.20 The random variables X1, . . . , Xn are (mutually) independent if
and only if

P(X1 ≤ a1, . . . , Xn ≤ an) = P(X1 ≤ a1) . . .P(Xn ≤ an).

A weaker notion of independence is that of pairwise independence.

Definition 3.21 The random variables X1, X2, . . . , Xn are pairwise independent
if for every i, j = 1, .., n with i /= j the random variables Xi and Xj are independent.

Remark 3.22 If the random variables X1, . . . , Xn are (mutually) independent,
then they are pairwise independent. The converse implication is not true (see, e.g.,
Exercise on 238).

EXERCISES

Problems with Solution

3.1 We roll a fair die twice. Let X be the random variable equal with the
maximum of the results of the first and the second roll.
(a) Calculate the image of � through X and the probability distribution
of X .
(b) Calculate the c.d.f. F of X .
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Solution: We have

� = {w = (j1, j2), ji ∈ {1, . . . , 6} × {1, . . . , 6}}
and |�| = 6 × 6 = 36. Let P the uniform probability on �, that is, for
every ω ∈ �,

P(ω) = 1

|�| = 1

36
.

(a) The random variable X can be expressed as follows:

∀w = (j1, j2) ∈ �,X (ω) = max(j1, j2)

so

X : � → {1, . . . , 6}.
Let us compute the law of X . First,

P(X = 1) = PX ({1}) = P(w = (1, 1)) = 1

36
,

and then

P(X = 2) = P({ω = (1, 2)} ∪ {ω = (2, 1)} ∪ {ω = (2, 2)}) = 3

36
.

In this way

P(X = 3) = P
(∪3

k=1{ω = (3, k)} ∪ ∪2
k=1{w = (k, 3)}) = 5

36
,

P(X = 4) = P
(∪4

k=1{w = (4, k)} ∪ ∪3
k=1{w = (k, 4)}) = 7

36
,

P(X = 5) = P
(∪5

k=1{w = (5, k)} ∪ ∪4
k=1{w = (k, 5)}) = 9

36
,

P(X = 6) = P
(∪6

k=1{w = (6, k)} ∪ ∪5
k=1{w = (k, 6)}) = 11

36
.

(b) The cumulative distribution function of X is

F (b) = P(X ≤ b) = P(X ∈ (−∞, b] ∩ X (�))

= P(X ∈ (−∞, b] ∩ {1, . . . , 6}).
Therefore

F (b) = 0 if b < 1,

F (b) = P(X = 1) = 1

36
if b ∈ [1, 2),
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F (b) = P(X ∈ {1, 2} = P(X = 1) + P(X = 2) = 4

36
if b ∈ [2, 3),

F (b) = P(X ∈ {1, 2, 3}) = 9

36
if b ∈ [3, 4),

F (b) = P(X ∈ {1, 2, 3, 4} = 16

36
if b ∈ [4, 5),

F (b) = P(X ∈ {1, 2, 3, 4, 5} = 25

36
if b ∈ [5, 6),

F (b) = P(X ∈ {1, 2, 3, 4, 5, 6} = 36

36
= 1 if b ∈ [5,∞).

�

3.2 A random variable X denotes the number of books bought by a customer
in a bookstore. We know that the random variable has the distribution

P(0 ≤ X ≤ 1) = 8

12
, P(1 ≤ X ≤ 2) = 7

12
, P(0 ≤ X ≤ 3) = 10

12
,

P(X = 3) = P(X ≥ 4).

Compute

P(X = i)

for every i = 0, 1, 2, 3.

Solution: We have

P(0 ≤ X ≤ 1) = P(X = 0) + P(X = 1) = 8

12
,

P(1 ≤ X ≤ 2) = P(X = 1) + P(X = 2) = 7

12
,

P(0 ≤ X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 10

12
.

From the last two relations we get

P(X = 0) = 3

12
.

Next, from the first relation we have

P(X = 1) = 5

12
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and replacing this in the second identity we obtain

P(X = 2) = 2

12
.

Moreover,

1 =
∑
k≥0

P(X = k) = P(0 ≤ X < 3) + P(X = 3) + P(X ≥ 4)

so

P(X = 3) + P(X ≥ 4) = 2

12

and since P(X = 3) = P(X ≥ 4) it holds that

P(X = 3) = 1

12
.

�

3.3 Let X, Y be two random variables such that

X (ω) ≤ Y (ω) for every ω.

Show that

FX (a) ≥ FY (a) for every a ∈ R.
Note this relationship is called stochastic dominance of the first order.

Solution: Since X (ω) ≤ Y (ω) for every ω, it holds that if Y (ω) ≤ a, then
necessarily X (ω) ≤ a. Therefore the set {Y ≤ a} ⊆ {X ≤ a} for every
a ∈ R. Thus:

FX (a) = P(X ≤ a) ≥ P(Y ≤ a) = FY (a).

�

3.4 Let F be given by

F(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t < 0,

b if t ∈ [0, 2),

2c + b if t ∈ [2, 3),

d if t ≥ 3.

(a) Under which conditions on a, b, c, d is the function F a cumulative
distribution function?
(b) For the rest of the problem we assume that F is the c.d.f. of an r.v. X .
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Express in terms of F the probabilities

P(X > 2.5), P(−1 < X ≤ 1.5)

(c) We give

P(X > 2.5) = 0.25, P(−1 < X ≤ 1.5) = 0.25.

Compute a, b, c, d .
(d) Compute the law of X .

Solution: (a)

lim
x→∞ F (x) = 1 ⇒ d = 1

lim
x→−∞ F (x) = 0 ⇒ a = 1.

Since F is increasing, we get

b ≤ 2c + b ⇒ c ≥ 0.

∀x ∈ R, F (x) ∈ [0, 1] ⇒ 0 ≤ b ≤ 1 and 0 ≤ 2c + b ≤ 1.

(b)

P(X > 2.5) = 1 − P(X ≤ 2.5) = 1 − F (2.5) = 1 − 2c − b

and

P(−1 < X ≤ 1.5) = F (1.5) − F (−1) = b − a = b.

(c) We obtain the following system:

a = 0,

1 − 2c − b = 0.25,

b = 0.25,

d = 1,

so

a = 0, b = 0.25, c = 0.25, d = 1.

(d) We use

∀t ∈ R,P(X = t ) = F (t ) − lim
h→0+

F (t − h).

Then

P(X = 0) = b = 0.25,

P(X = 2) = 2c + b − b = 0.5,
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P(X = 3) = 1 − 2c − b = 0.25,

and

P(X = t ) = 0 otherwise.

This implies

X (�) = {0, 2, 3}.
�

3.5 Let X1, . . . ., Xn be independent identically distributed random variables
and define, for Xi > 0

Yi = Xi

X1 + · · · + Xn
, ∀i = 1, . . . , n.

Prove that Y1, . . . , Yn are identically distributed and calculate E(Y1).

Solution: For every a ∈ R, one has

P(Y1 ≤ a) = P(X1 ≤ a(X1 + · · · + Xn)

= P((a − 1)X1 + · · · + a(X2 + · · · + Xn) > 0)

= P((a − 1)X2 + a(X1 + X3 + · · · + Xn) > 0)

= P(Y2 < a)

where we used that the X ’s are i.i.d. Thus Y1 and Y2 have the same c.d.f.
and therefore the same law. For the second part, use the linearity of the
expectation and

E

[
X1 + · · · + Xn
X1 + · · · + Xn

]
= 1.

�

Problems without Solution

3.6 Prove the Proposition 3.9. Specifically, prove that the function F in Defi-
nition 3.8 is increasing, right continuous and taking values in the interval
[0, 1], using only Proposition 2.2.

3.7 Show that any piecewise constant function is Borel measurable. A function
f : � → R is called piecewise constant if there exist constants a1, a2, . . .
and disjoint sets A1, A2, . . . in F such that

f (x) =
∞∑
i=1

ai1Ai
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3.8 Let g = ∑∞
i=1 bi1Bi where the sets Bi are not necessarily disjoint. Show

that this function can be written as a piecewise constant function as in the
previous problem.

3.9 Give an example of two distinct random variables with the same distribu-
tion function.

3.10 Let X, Y be two continuous random variables such that

PX ({x}) = PY ({x}) = 0

for every x ∈ R (that means that X, Y are continuous r.v.). Show that

P(X = Y ) = 0.

3.11 Let X1, . . . , Xn be independent random variables. Show that there exists
a ∈ R such that

P(X1 + · · · + Xn) = a = 1

if and only if for every i there exists ai ∈ R with

P(Xi = ai) = 1

(i.e., all random variables are constants).

3.12 An aircraft engine fails with probability 1 − p where p ∈ (0, 1), indepen-
dently of the other engines. To complete its flight, the aircraft needs that
the majority of its engines works.
(a) Calculate the probability to successfully complete the flight for an
aircraft with 3 engines.
(b) Calculate the probability to successfully complete the flight for an
aircraft with 5 engines.
(c) Find the value of p for which the aircraft with 5 engines is preferable
(i.e., has greater probability of completing its flight).

Hint: Let Mi be the event ‘‘the engine i works,’’ for i = 1, 2, 3.
Clearly

P(Mi) = p, i = 1, 2, 3

and

P(Mc
i ) = 1 − p i = 1, 2, 3.
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For a 3-engine plane, the probability of a successful flight is

P
(
(M1 ∩M2 ∩Mc

3 ) ∪ (M1 ∩M3 ∩Mc
2 ) ∪ (M2 ∩M3 ∩Mc

1 )

∪ (M1 ∩M2 ∩M3))

= P(M1 ∩M2 ∩Mc
3 ) + P(M1 ∩M3 ∩Mc

2 )

+P(M2 ∩M3 ∩Mc
1 ) + P(M1 ∩M2 ∩M3)

= 3p2(1 − p) + p3.



Chapter Four

Random Variables: The
Discrete Case

4.1 Introduction/Purpose of the Chapter

This chapter treats discrete random variables. After having introduced the general
notion of a random variable, we discuss specific cases. Discrete random variables
are presented next, and continuous random variables are left to the next chapter.
In this chapter we learn about calculating simple probabilities using a probability
mass function. Several probability functions for discrete random variables warrant
special mention because they arise frequently in real-life situations. These are the
probability functions for, among others, the so-called geometric, hypergeometric,
binomial, and Poisson distributions. We focus on the physical assumptions un-
derlying the application of these functions to real problems. Although we can use
computers to calculate probabilities from these distributions, it is often convenient
to use special tables, or even use approximate methods in which one probability
function can be approximated quite closely by another function. We introduce
the concepts of distribution, cumulative distribution function, expectation, and
variance for discrete random variables. We also discuss higher-order moments of
such variables.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
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4.2 Vignette/Historical Notes

Historically, the discrete random variables were the first type of random outcomes
studied in practice. The documented exchange of letters in 1964 between Pascal
and Fermat was prompted by a game of dice which essentially dealt with discrete
random outcomes (faces of the dies). Even earlier, the 16th-century Italian math-
ematician and physician Cardano wrote ‘‘On Casting the Die,’’ a study dealing
with discrete random variables; however, it was not published until 1663, 87
years after the death of Cardano. He introduced concepts of combinatorics into
calculations of probability and defined probability as ‘‘the number of favorable
outcomes divided by the number of possible outcomes.’’

In 1655 during his first visit to Paris the Dutch scientist Christian Huygens,
learned of the work on probability carried out in this correspondence. On his re-
turn to Holland in 1657, Huygens wrote a small work De Ratiociniis in Ludo Aleae
(hard to translate dative in English—approximate translation On Reasonings in
Dice Games) the first printed work on the calculus of probabilities. It was a treatise
on problems associated with gambling, once again dealing with discrete random
variables. Because of the inherent appeal of games of chance, probability theory
soon became popular, and the subject developed rapidly during the 18th century.

One of the major contributors during this period was Jacob Bernoulli (1654–
1705). Jacob (Jacques) Bernoulli was a Swiss mathematician who was the first to
use the term integral. He was the first mathematician in the Bernoulli family, a fam-
ily of famous scientists of the 18th century. Jacob Bernoulli’s most original work
was Ars Conjectandi (The Art of Conjecturing—The art of drawing conclusions)
published in Basel in 1713, eight years after his death. The work was incomplete
at the time of his death, but it still was a work of the greatest significance in the
development of the Theory of Probability.

In the late 18th century, it became increasingly evident that analogies exist
between games of chance and random phenomena in physical, biological, and
social sciences. Thus the theory of probability and discrete variables, in particular,
exploded in the following two centuries; and even today, particle interaction
models coagulation and fragmentation models are initially described in a discrete
setting to make them easier to understand.

4.3 Theory and Applications

4.3.1 DEFINITION AND BASIC FACTS

After defining the discrete random variables, we list their basic properties. In fact,
we will translate the general notion introduced in the previous chapter to the
particular case of random variables with a finite or countable possible number of
outcomes.

Definition 4.1 We will say that a random variable is discrete if its image X (�)
is a finite or countable subset of R.
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As a simple example, if a coin is tossed three times, the number of heads
obtained can be 0, 1, 2, or 3. In this example, the number of heads can only take
4 distinct values {0, 1, 2, 3}, and so the variable is discrete.

Remark 4.2 In the case of discrete random variables the law of X is completely
determined by the set X (�) and the probabilities PX ({x}) = P(X = x) for every
x ∈ X (�). Further, we have

∑
x∈X (�)

P(X = x) = 1.

Remark 4.3 The cumulative distribution function (c.d.f.) is given by

F (t ) = P(X ≤ t ) =
∑

{x∈X (�)|x≤t}
P(X = x).

A c.d.f. of a discrete random variable is a piecewise constant function (e.g.,
Figure 4.1).
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FIGURE 4.1 A general discrete c.d.f. The figure depicts a Binomial(20,0.4).
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EXAMPLE 4.1 Calculating the c.d.f. of a discrete random
variable

A die is rolled repeatedly until a 6 is obtained. Let X be the random variable
representing the number of times we roll the die.

P(X = 1) = 1

6
.

Clearly, if we only roll the die once and we get a 6 on our first roll, this is
the only case when X = 1. The probability of this is 1/6. Furthermore,

P(X = 2) = 5

6
× 1

6
= 5

36

If we roll the die twice before getting the first 6, we must have rolled
something that isn’t a 6 with our first roll, the probability of which is 5/6,
and we must roll a 6 on our second roll, the probability of which is 1/6.

Compute the c.d.f. of X .

Solution: Let us compute the cumulative distribution function F (t ) for some
values of t .

F (1) = P(X ≤ 1)

is the probability that the number of rolls until we get a 6 is less than or equal
to 1. Thus, this number must be either 0 or 1. Since, P(X = 0) = 0 and P(X =
1) = 1/6., we obtain P(X ≤ 1) = 1/6.

Similarly,

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= 0 + 1/6 + 5/36 = 11/36.

This calculation can proceed like this, and we readily obtain the c.d.f. F (t )
for all t . In fact, we shall encounter this particular distribution again when we talk
about geometric random variables. The c.d.f. may be calculated in general using
geometric sums. As an exercise, the reader is left with calculating P(X ≤ 6). �

The cumulative distribution function has particular properties in the case of
discrete random variables.

Proposition 4.4 Let X : � → R be a discrete random variable on (�,F,P).
Then the cumulative distribution function FX is piecewise constant, and it has a finite
or countable number of jumps. That is, the function is constant almost everywhere;
in other words, there exists at most a countable sequence {a1, a2, . . . } such that the
function F is constant for every point except these ai ’s.
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Proof: Let us show that the number of jumps is countable. Recall that a c.d.f. is
right continuous. Let us denote by

D = {a ∈ R | FX (a−) < FX (a)}.
Let an a ∈ D, thus

FX (a−) < FX (a).

Between any two reals we can find a rational; therefore there exists an n0 ≥ 1
integer such that

FX (a) − FX (a−) >
1

n0
.

Denote by

Dn =
{
a ∈ R | FX (a) − FX (a−) >

1

n

}
.

We just saw that

D ⊆
⋃
n≥n0

Dn ⊆
⋃
n≥1

Dn.

To show that D is countable, it suffices to check that every set Dn is countable (a
countable union of countable sets is countable). Since the cumulative distribution
function FX is increasing and takes values in [0, 1], it cannot have more than n
jumps with length bigger than 1

n
. Therefore

|Dn| ≤ n,

where we denoted |Dn| = Card (Dn) the cardinality (number of elements)
of Dn. �

Remark 4.5 Since a discrete random variable X only takes a finite or countable
number of values, its distribution is entirely determined by X (�). In fact, the law of
X is determined by

P(X = x) = FX (x) − FX (x−)

for every x ∈ X (�).

These discrete values are formalized next.

Definition 4.6 (Probability mass function) A discrete random variable
X with X (�) = {a1, a2, . . . } is completely characterized by the probabilities:

pi = P(X = ai).

The collection of these numbers is called the probability mass function (or p.m.f.) of
the random variable X .
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4.3.2 MOMENTS

We made in this handbook the choice to treat independently the moments of
discrete and continuous random variables. In this section we present the moments
of discrete random variables.

Definition 4.7 Let X be a discrete random variable on a probability space
(�,F,P). We will say that X is integrable (or admits an expectation) if∑

x∈X (�)

|x| P(X = x) < ∞.

In this case, its expectation (or mean) is defined by

E(X ) =
∑
x∈X (�)

x P(X = x). (4.1)

Using the p.m.f. notation, this is expressed as

E(X ) =
∑
i

aipi .

If X is a random variable with a finite number of values, then it will always
have an expectation (a finite sum of real numbers is finite). If X has a countable
(nonfinite) number of values, then its expectation is given by a series and we
naturally need to assume that the series is convergent.

The series ∑
x∈X (�)

|x| P(X = x)

is a series of real numbers with positive terms. Its convergence implies the con-
vergence of the series

∑
x∈X (�) x P(X = x).

The expectation of X can be interpreted as a weighted average of all the values
X takes with the weights given by the probabilities that X take these values.

In a geometrical interpretation, E(X ) is the position of the center of mass
for the particles with positions at the values of the random variable and mass the
corresponding weights.

Proposition 4.8 (Properties of the expectation) The following hold.

a. The expectation is linear. That is, if X, Y are two discrete integrable random
variables on the same probability space (�,F,P), then

E(aX + bY ) = aE(X ) + bE(Y )

for every a, b ∈ R. In particular, if a is a constant, then

E(a) = a.



4.3 Theory and Applications 85

b. If X ≥ 0 (i.e., if X (ω) ≥ 0 for every ω ∈ �), then

E(X ) ≥ 0.

In particular, if X ≥ Y , then

E(X ) ≥ E(Y ).

Proof: 1. Let us first show that, if a ∈ R and X is a discrete random variable
admitting an expectation, then aX has an expectation and E(ax) = aE(X ). This
is clear for a = 0. Suppose a /= 0 and let Z = aX . It is clear that Z is a discrete
random variable since Z (�) is at most countable. We have

E(|Z |) =
∑
x∈X (�)

|ax|P(Z = ax)

= |a|
∑
x∈X (�)

|x|P(aX = ax) = |a|
∑
x∈X (�)

|x|P(X = x)

using a /= 0. Hence Z has an expectation and a similar calculation shows that

E(aX ) = aE(X ).

Consider now two random variables X and Y and let us show that Z = X + Y
admits expectation. It is an easy exercise to see that Z is discrete. Now,

∑
z∈Z (�)

|z|P(Z = z) =
∑
z∈Z (�)

|z|P
⎛
⎝ ⋃

(x,y)∈X (�)×Y (�),x+y=z
(X = x, Y = y)

⎞
⎠

=
∑
z∈Z (�)

|z|
∑

(x,y)∈X (�)×Y (�),x+y=z
P(X = x, Y = y)

=
∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

|z|P(X = x, Y = y)

=
∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

|x + y|P(X = x, Y = y)

≤
∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

(|x| + |y|)P(X = x, Y = y).

Consequently,∑
z∈Z (�)

|z|P(Z = z) ≤
∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

|x|P(X = x, Y = y)

+
∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

|y|P(X = x, Y = y)



86 CHAPTER 4 Random Variables: The Discrete Case

Let us see why the first sum above is finite (the second could be treated analo-
gously). We have

∑
z∈Z (�)

∑
(x,y)∈X (�)×Y (�),x+y=z

|x|P(X = x, Y = y)

=
∑
z∈Z (�)

∑
x∈X (�)

|x|P(X = x, Y = z − x)

=
∑
z∈Z (�)

∑
x∈X (�)

|x|P(X = x, Z = z)

=
∑
x∈X (�)

|x|P(X = x)

using the total probability formula (Proposition 2.4) and the fact that the sets
{Z = z}z∈Z (�) form a partition of the�. Again, repeating the same computation,
we will obtain E(X + Y ) = E(X ) + E(Y ).

Finally, combining the two results (E(X + Y ) = E(X ) + E(Y ) and E(aX ) =
aE(X )) gives the general linear formula.

2. X ≥ 0 means x ≥ 0 for every x ∈ X (�). The conclusion is obtained using
just the definition of the expectation (a sum of positive numbers is positive).

Of course, if X (ω) ≥ Y (ω) for allω, then by definingZ (ω) = X (ω) − Y (ω)
we see that E(Z ) ≥ 0 and using linearity from the first part the conclusion easily
follows. �

The expectation of a function of a random variable may be computed in the
following way.

Theorem 4.9 (Transfer Formula) Let X be a discrete random variable on
(�,F,P). Assume that ϕ : R→ R is a measurable function. Then ϕ(X ) : � → R
is a random variable and this random variable is integrable if and only if

∑
x∈X (�)

|ϕ(x)| P(X = x) < ∞.

In this case

E(ϕ(X )) =
∑
x∈X (�)

ϕ(x) P(X = x).

Proof: Let ϕ : R→ R be a measurable function. Let us denote by Z = ϕ(X ).
Since only the restriction:ϕ : X (�) → Z (�) takes nonzero values and sinceX (�)
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is discrete, it follows that Z is discrete. Thus we obtain∑
z∈Z (�)

|z|P(Z = z) =
∑
z∈Z (�)

P(ϕ(X ) = z)

=
∑
z∈Z (�)

|z|P
⎛
⎝ ⋃
x∈ϕ−1({z})

(X = x)

⎞
⎠

=
∑
z∈Z (�)

|z|
∑

x∈ϕ−1({z})
P(X = x)

=
∑
z∈Z (�)

∑
x∈ϕ−1({z})

|ϕ(x)|P(X = x)

=
∑
x∈X (�)

|ϕ(x)|P(X = x).

For the last equality we use the fact that the restriction ϕ : X (�) → Z (�) is
surjective. Therefore, (ϕ−1({z}))z∈Z (�) is a partition of X (�). Analogously,

E(Z ) =
∑
z∈Z (�)

zP(Z = z)

=
∑
z∈Z (�)

P(ϕ(X ) = z)

=
∑
z∈Z (�)

zP

⎛
⎝ ⋃
x∈ϕ−1({z})

(X = x)

⎞
⎠

=
∑
z∈Z (�)

z
∑

x∈ϕ−1({z})
P(X = x)

=
∑
z∈Z (�)

∑
x∈ϕ−1({z})

ϕ(x)P(X = x)

=
∑
x∈X (�)

ϕ(x)P(X = x).

�

Remark 4.10 The following are notations.

1. Note that the integrability condition from Definition 4.7 can be written in the
equivalent way

E |X | < ∞.

This condition is identical with the one assumed in the case of continuous random
variables (see the next chapter).
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2. Take ϕ(x) = x2. Then X 2 is integrable if and only if

∑
x∈X (�)

x2P(X = x) < ∞

and, in fact,

E(X 2) =
∑
x∈X (�)

x2P(X = x).

EXAMPLE 4.2 A basic example

Let X be a random variable with the law

X 1 2 3
p(x) 0.2 0.3 0.5

Then

E(X ) = 1 × 0.2 + 2 × 0.3 + 3 × 0.5

and

E(X 2) = 12 × 0.2 + 22 × 0.3 + 52 × 0.5.

Generally, we can compute the expectation of any function of X using the
transport formula. For example,

E(sin X ) = sin(1) × 0.2 + sin(2) × 0.3 + sin(3) × 0.5.

Definition 4.11 (Variance of a random variable) Let X be a discrete
random variable with outcomes {a1, a2, . . . } and p.m.f. p1, p2, . . . . The variance of
X is defined as

Var(X ) = E
[
(X − EX )2] = E(X 2) − (EX )2 .

Using the p.m.f notation and denoting � = EX = ∑
i aipi , we obtain

Var(X ) =
∑
i

(ai − �)2 pi

=
∑
i

a2
i pi − �2

= E[X 2] − (EX )2.
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Definition 4.12 (Standard deviation) We define the standard deviation
of a random variable as

StdDev(X ) =
√
V (X ) =

√∑
i

(ai − �)2 pi.

4.4 Examples of Discrete Random Variables

4.4.1 THE (DISCRETE) UNIFORM DISTRIBUTION

This distribution arises in any situation where outcomes are discrete and equally
likely. Let us present an example.

EXAMPLE 4.3

Roll a six-sided fair die. Say X (ω) = 1 if the die shows 1 (ω = 1), X = 2
if the die shows 2, and so on. Find F (x) = P(X ≤ x).

Solution: If x < 1, then P(X ≤ x) = 0.
If x ∈ [1, 2), then P(X ≤ x) = P(X = 1) = 1/6.
If x ∈ [2, 3), then P(X ≤ x) = P(X (ω) ∈ {1, 2}) = 2/6.
We continue this way to get

F(x) =

⎧⎪⎨
⎪⎩

0 if x < 1,

i/6 if x ∈ [i, i + 1) with i = 1, . . . , 5,

1 if x ≥ 6.

�

For discrete random variables it is generally simple to give the probability mass
function instead of the c.d.f. since it will describe completely the distribution.
Recall that the distribution function is piecewise linear.

Definition 4.13 (Discrete uniform distribution) A random variable
is said to have the Discrete Uniform distribution if it takes values in a discrete set of
numbersX (�) = {x1, x2, . . . , xn} and the probabilities for these numbers are equal to

P(X = xi) = 1

n
, ∀i.

We denote a random variable X with this distribution with X ∼ DU (n).
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(a) Discrete Uniform p.d.f.
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(b) Discrete Uniform c.d.f

FIGURE 4.2 The p.d.f. and c.d.f. of the discrete uniform distribution.

Remark 4.14 We name this uniform distribution discrete to differentiate from
the continuous case when the random variable takes values in an interval (this case
will be presented in the next chapter). Traditionally, that distribution is simply called
the uniform distribution. Figure 4.2 plots the density and distribution of this random
variable.

Remark 4.15 The outcomes {x1, x2, . . . , xn} are not important, and generally
we use {1, 2, . . . , n} to denote them. This is a general trend for all discrete random
variables where the outcomes may be put in one-to-one correspondence with discrete
sets of the type {1, 2, . . . , n}.

The probabilities clearly define a probability density (
∑n

i=1
1
n

= 1), and in
the case when the outcomes are {1, 2, . . . , n} we may calculate the expectation
and variance as

EX =
n∑
i=1

i
1

n
= 1

n

n∑
i=1

i = 1

n

n(n + 1)

2
= n + 1

2

and

V (X ) = E(X 2) − (E(X ))2 =
n∑
i=1

i2
1

n
−

(
n + 1

2

)2

= 1

n

n(n+ 1)(2n+ 1)

6
−

(
n + 1

2

)2
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= n+ 1

2

(
2n+ 1

3
− n + 1

2

)

= n+ 1

2

n − 1

6

= n2 − 1

12
.

Please note that in the general case when the outcomes are {x1, x2, . . . , xn} the
formulas need to be recalculated every time.

4.4.2 BERNOULLI DISTRIBUTION

Before we give the formal definition let us present a couple of examples of situations
where this distribution was encountered previously.

EXAMPLE 4.4 Indicator r.v. (continued)

This indicator variable is also called the Bernoulli random variable. No-
tice that the variable only takes values 0 and 1, and the probability that
the variable takes the value 1 may be easily calculated using the previous
definitions:

P ◦ 1−1
A ({1}) = P{ω : 1A(ω) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli random variable with
parameter p = P(A). Alternately, we may obtain this probability using the
previously computed distribution function:

P{ω : 1A(ω) = 1} = F (1) − F (1−) = 1 − P(Ac ) = P(A).

Let us formalize this example.

Definition 4.16 (Bernoulli distribution) A random variable with a
Bernoulli distribution with parameter p ∈ (0, 1) takes only two values:

X =
{

1 with P(X = 1) = p,

0 with P(X = 0) = 1 − p.

We denote a random variable X with this distribution with X ∼ Bernoulli(p).

Clearly the sequence p, 1 − p defines a probability mass function since

p + (1 − p) = 1.
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A random variable with Bernoulli(p) distribution has mean p since

E(X ) = 0P(X = 0) + 1P(X = 1) = p

and the variance is given by

Var(X ) = E(X 2) − (E(X ))2 = p − p2 = p(1 − p).

4.4.3 BINOMIAL (n, p) DISTRIBUTION

In probability theory and statistics, the Binomial distribution is the discrete prob-
ability distribution of the number of successes in a sequence of n independent
yes/no experiments, each of which yields success with probability p ∈ (0, 1). Such
a success/failure experiment is also called a Bernoulli experiment or Bernoulli trial.
In fact, when n = 1, the Binomial distribution reduces to a Bernoulli distribution.

Definition 4.17 (Binomial distribution) A binomial random variable
with parameters n and p takes values in N with

P(X = k) =
{(

n
k

)
pk(1 − p)n−k for any k ∈ {0, 1, 2, . . . , n},

0 otherwise.

We denote a random variable X with this distribution as follows: X ∼ Binom(n, p).

Remark 4.18 A Binomial (n, p) random variable X has the same distribution as
Y1 + · · ·Yn where Yi ∼ Bernoulli(p).

Recall that for a, b ∈ R we have

(a + b)n =
n∑
k=0

(
n

k

)
akbn−k, (4.2)

the binomial expansion.

Proposition 4.19 The sequence pk = P(X = k), k = 0, 1, . . . defines a discrete
probability distribution.

Proof: Since pk ≥ 0 for every k, it suffices to check that
∑

k pk = 1. Applying
(4.2) to a = p and b = 1 − p, we get

∑
k

pk =
n∑
k=0

(
n

k

)
pk(1 − p)n−k = (p + (1 − p))n = 1.

�
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FIGURE 4.3 The p.d.f. and c.d.f. of the binomial distribution.

Figure 4.3 presents the density and distribution for a Binomial (20, 0.3) ran-
dom variable.

Let us calculate the expectation and variance of the binomial law.

Proposition 4.20 Suppose X ∼ Binom(n, p). Then

E(X ) = np, Var(X ) = np(1 − p).

Proof: Using formula (4.1), we can write

EX =
n∑
k=0

k

(
n

k

)
pk(1 − p)n−k =

∑
k≥1

k

(
n

k

)
pk(1 − p)n−k

=
n∑
k=1

n!

(k − 1)!(n− k)!
pk(1 − p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)!(n − k)!
pk−1(1 − p)n−k

= np

n−1∑
k=0

(n− 1)!

k!(n− k − 1)!
pk(1 − p)n−k−1

= np(p + (1 − p))n−1 = np
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using again (4.2). Next,

E[X (X − 1)] =
n∑
k=0

k(k − 1)

(
n

k

)
pk(1 − p)n−k

=
n∑
k=2

k(k − 1)

(
n

k

)
pk(1 − p)n−k

because the first two terms of the sum vanish. Thus,

E[X (X − 1)] =
n∑
k=2

n(n− 1)

(
n − 2

k − 2

)
pk(1 − p)(n−2)−(k−2)

= n(n− 1)p2
n∑
k=2

(
n − 2

k − 2

)
pk−2(1 − p)(n−2)−(k−2)

= n(n− 1)p2
n−2∑
k=0

(
n − 2

k

)
pk(1 − p)(n−2)−k

= n(n− 1)p2

again from (4.2). Finally,

Var(X ) = EX 2 − (EX )2 = E[X (X − 1)] + EX − (EX )2

= n(n− 1)p2 + np − n2p2 = np(1 − p).

�

If X ∼ Binom(n, p), then its cumulative distribution function is given by

F (x) = P(X ≤ x) =
[x]∑
k=0

(
n

k

)
pk(1 − p)n−k.

Remark 4.21 The c.d.f. of a binomial r.v. F (x) can be also expressed in terms of
the incomplete beta function as follows:

F (k) = (n− k)

(
n

k

) ∫ 1−p

0
tn−k−1(1 − t )k.

We will prove that the sum of two independent binomially distributed ran-
dom variable with the same parameter p is a binomially distributed random vari-
able. Intuitively, this is easy to understand taking into account the experiment
described by the binomial law (number of successes in k trials plus number of
successes in other, independent n trials should be the number of successes in the
total n+ k trials).
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Proposition 4.22 If X ∼ Binom(n, p) and Y ∼ Binom(m, p) and X, Y are
independent, then

X + Y ∼ Binom(n + m, p).

Proof: Note that

(X + Y )(�) = {0, 1, 2, . . . , m + n}.
For every k between 0 and m + n we have

P(X + Y = k) =
k∑
i=0

P(X = i)P(Y = k − i)

=
k∑
i=0

(
n

i

)
pi(1 − p)n−i

(
m

k − i

)
pk−i(1 − p)m−k+i

= pk(1 − p)m+n−k
k∑
i=0

(
n

i

)(
m

k − i

)
.

We will use the relation

k∑
i=0

(
n
i

)(
m
k−i

)
(
n+m
k

) = 1

and we will get

P(X + Y = k) =
(
n + m

k

)
pk(1 − p)m+n−k

for every k = 0, . . . , n + m, which means that X + Y ∼ Binom(n + m, p).
The relation in terms of combinatorial terms used will be proven a bit

later, when we show that the hypergeometric distribution is a probability
distribution. �

4.4.4 GEOMETRIC (p) DISTRIBUTION

Definition 4.23 (Geometric distribution) Let the law of a random vari-
able X be defined by

P(X = k) =
{

(1 − p)k−1p for any k ∈ {1, 2 · · · },
0 otherwise.

We will write X ∼ Geometric(p) to denote that the random variable X has this
distribution.
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Remark 4.24 The geometric distribution is the law of the total number of tosses
of a biased coin needed to obtain the first head (counting the toss of the head). The
parameter p of this law is a real number between 0 and 1 and represents the probability
of success.

Since the number X is exactly the number of trials to get the first success, its
distribution is sometimes called the geometric ‘‘number of trials’’ distribution. We
can also talk about the geometric ‘‘number of failures distribution’’ distribution,
defined as

P(Y = k) =
{

(1 − p)kp for any k ∈ {0, 1, 2, . . .},
0 otherwise,

and also talk about modeling just the number of tosses leading to the first head.
Figure 4.4 presents the density and distribution for aGeometric(0.2) random

variable.
In this book when we write X ∼ Geometric(p) we will mean that X has a

geometric number of trials distribution with the probability of success p. In the rare
cases when we use the number of failures distribution, we will specify very clearly.

Proposition 4.25 The sequence P(X = k) defines a probability distribution.

Proof: Indeed, since for every q ∈ (0, 1) we have

∑
k≥0

qk = 1

1 − q
,

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Geometric(0.2) p.d.f. (b) Geometric(0.2) c.d.f

FIGURE 4.4 The p.d.f. and c.d.f. of the geometric distribution.
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we get

∑
k≥1

P(X = k) =
∞∑
k=1

p(1 − p)k−1 = p

∞∑
k=0

(1 − p)k

= p
1

1 − (1 − p)
= 1.

�

To compute the expectation of a random variableX ∼ Geometric(p), we need
the following result. It is a general result for discrete random variables with positive
values.

Proposition 4.26 Let X be a random variable with values in N. Then X is
integrable if and only if the series

∞∑
n=0

P(X > n)

is convergent, and in this case

EX =
∞∑
k=0

kP(X = k) =
∞∑
n=0

P(X > n).

Proof: By definition we have

EX =
∞∑
k=0

kP(X = k) =
∞∑
k=0

(
k−1∑
n=0

1

)
P(X = k)

=
∞∑
k=0

∑
n<k

P(X = k) =
∞∑
n=0

∑
k>n

P(X = k)

=
∞∑
n=0

P(X > n),

where we changed the order of summation which is valid since the sum exists (the
random variable has finite expectation). �

Let us recall some elements concerning power series. These are useful in
order to compute the characteristics of the geometric distribution. If x ∈ (0, 1),
the power series ∑

n≥0

xn
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is convergent and its sum is 1
1−x . It is possible to ‘‘differentiate under the sum,’’

which means

∑
n≥1

nxn−1 = d

dx

(
1

1 − x

)
= 1

(1 − x)2
. (4.3)

By differentiating once more, we obtain

∑
n≥2

n(n− 1)xn−2 = 2

(1 − x)3
. (4.4)

It is also possible to change the order of summation and integration.

∫ a

0

1

1 − x
dx =

∫ a

0

∑
n≥0

xndx =
∑
n≥0

∫ a

0
xndx =

∑
n≥0

1

n + 1
an+1. (4.5)

Consequently,

− ln(1 − a) =
∑
n≥0

1

n + 1
an+1

for every a ∈ (0, 1).

Proposition 4.27 Let X ∼ Geometric(p). Then

EX = 1

p
, Var(X ) = 1 − p

p2
.

Proof: We use Proposition 4.26. We first compute P(X > n).

P(X > n) =
∞∑

k=n+1

P(X = k) =
∞∑

k=n+1

p(1 − p)k−1

= p(1 − p)n
∞∑

k=n+1

p(1 − p)k−n−1 = (1 − p)n

by (4.2). Now,

EX =
∑
nn≥0

P(X > n) =
∑
n≥0

(1 − p)n = 1

p
.
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Alternative proof for the expectation:

EX =
∑
k≥1

kp(1 − p)k−1

= p
∑
k≥1

k(1 − p)k−1

= p
1

(1 − (1 − p))2
= 1

p
,

by relation (4.3) above. Concerning the variance, we compute, as usual, the ex-
pectation of X (X − 1).

EX (X − 1) =
∑
k≥1

k(k − 1)p(1 − p)k−1

=
∑
k≥2

k(k − 1)p(1 − p)k−1

= p(1 − p)
∑
k≥2

k(k − 1)(1 − p)k−2

= p(1 − p)
2

p3
= 2(1 − p)

p2
,

using the identity (4.4). Consequently,

EX 2 = 2(1 − p)

p2
+ EX = 2 − p

p2

which implies

Var(X ) = EX 2 − (EX )2 = 1 − p

p2
.

�

The cumulative distribution of theGeometric(p) can be computed as follows.

Proposition 4.28 Let X ∼ Geometric(p). Then

FX (n) = P(X ≤ n) = 1 − (1 − p)n

for every n ≥ 1 integer.
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Proof: Indeed, for every n ≥ 1 integer we have

P(X ≤ n) =
n∑
k=1

p(1 − p)k−1 = p

n−1∑
k=0

(1 − p)k

= p
1 − (1 − p)n

1 − (1 − p)
= 1 − (1 − p)n.

�

EXAMPLE 4.5 Calculations using the Geometric distribution

A New Zealand Herald data report quoted obstetrician Dr. Freddie Graham
as stating that the chances of a successful pregnancy resulting from implant-
ing a frozen embryo are about 1 in 10. Suppose a couple who are desperate
to have children will continue to try this procedure until the woman car-
ries a successful pregnancy. We will assume that each individual attempt
is independent of any other. The probability of ‘‘a successful pregnancy’’
at any attempt is p = 0.1. Let X be the number of times the couple tries
the procedure up to and including the successful attempt. Then X has a
geometric distribution.

(a) The probability of first becoming pregnant on the 4th try is

P(X = 4) = 0.93 × 0.1 = 0.0729.

(b) The probability of becoming pregnant before the 4th try is

P(X ≤ 3) = P(X = 1) + P(X = 2) + P(X = 3)

= 0.1 + 0.9 × 0.1 + 0.92 × 0.1 = 0.271.

(c) The probability of a successful attempt occurring at either the second,
third, or fourth attempt is

P(2 ≤ X ≤ 4) = P(X = 2) + P(X = 3) + P(X = 4)

= 0.9 × 0.1 + 0.92 × 0.1 + 0.93 × 0.1 = 0.2439.

The important thing in the example above is to realize the utility of probabil-
ity distributions and probability in general. The probability distribution is useful
regardless of the nature of the area, be it gambling or biology. In the subsections
which follow, we will meet several simple physical models which have widespread
practical applications. Each physical model has an associated probability distri-
bution.
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4.4.5 NEGATIVE BINOMIAL (r, p) DISTRIBUTION

Definition 4.29 (Negative binomial distribution) For p ∈ (0, 1) define
the law of X as follows:

P(X = k) =
{(k−1

r−1

)
(1 − p)r−kpr for any k ∈ {r, r + 1, . . .},

0 otherwise.
(4.6)

We will denote a random variable with this distribution X ∼ Negative Binomial
(r, p).

Similarly with the Geometric(p) distribution we can talk about ‘‘number of
failures’’ distribution, and the formulation is similar.

Figure 4.5 presents the density and distribution for aGeometric(0.2) random
variable.

Remark 4.30 Let us stop for a moment and see how these distributions are related.
Suppose we do a simple experiment, and we repeat this experiment many times. The
experiment has only two possible outcomes: “success” with probability p and “failure”
with probability 1 − p.

• The variable X that takes value 1 if the experiment is a success and 0 if it is a
failure has a Bernoulli(p) distribution.
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(a) NegBinom(4,0.2) p.d.f. (b) NegBinom(4,0.2) c.d.f.

FIGURE 4.5 The p.d.f. and c.d.f. of the NBinom distribution.
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• Repeat the experiment n times in such a way that no experiment influences the
outcome of any other experiment1 and we count how many of the n repetition
actually resulted in successes. Let Y be the variable counting this number. Then
Y ∼ Binom(n, p).

• Suppose that instead of repeating the experiment a fixed number of times n, we
repeat the experiment as many times as are needed to see the first success. The
number of trials needed is going to be distributed as a Geometric(p) random
variable. If we count failures until the first success, we obtain the Geometric(p)
“number of failures” distribution.

• If we repeat the experiment until we see r successes, the number of trials needed is
a NegativeBinomial (r, p) random variable.

Here are two examples for your practice.

Exercise 1. Prove that equation (4.6) defines a probability distribution.

Exercise 2. Let X be a random variable with distribution given by (4.6). Prove
that

EX = p(r − k)

1 − p
and VarX = p(r − k)

(1 − p)2
.

4.4.6 HYPERGEOMETRIC DISTRIBUTION (N,m, n)

The Polya urn scheme named after George Pólya is any model where we represent
objects of real interest (people, cars, atoms, etc.) by balls of different colors. The
way the balls are drawn create many interesting models applicable to real problems.
For example, a single ball (or multiple balls) may be drawn and then recolored
and put back, multiple urns may be used for drawing the balls, and so on.

In the simplest such urn model we have an urn containing N balls split
between two colors; call them black and white. There are a total of m black
balls (where obviously 0 ≤ m ≤ N ) and of course N − m white ones. We pick a
random sample of a fixed sizen and we count how many black balls (or equivalently
white ones) we have chosen. It turns out that X has a distribution that is worth
knowing.

Definition 4.31 (Hypergeometric distribution) This distribution is
defined by the probabilities

P(X = k) =
(m
k

)(N−m
n−k

)
(N
n

) , k ∈ {0, 1, . . . , m}. (4.7)

We denote a random variable X with this distribution as X ∼
Hypergeometric(N,m, n).

1 This is the idea of independence which we already discussed in Chapter 3.
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Proposition 4.32 The probabilities in (4.7) define a valid probability distribu-
tion.

Proof: The proof comes from the Vandermonde identity:(
m + n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)

for r, n, m ∈ N. To prove this identity, one considers the identity

(a + b)m+n = (a + b)m(a + b)n,

which uses the binomial expansion for all the binoms in the expression then
identifies the coefficients of the power terms. �

Figure 4.6 presents the density and distribution for aGeometric(0.2) random
variable.

Remark 4.33 Despite its simplicity, this particular urn model is appropriate for
modeling any population of sizeN where we want to know the countm of individuals
who have a characteristic of interest by looking at the random number X obtained in
a random sample. For example, in a sample survey in San Francisco the black balls
and white balls may correspond to people who are (black balls) or are not (white balls)
HIV positive, people who do or do not smoke, or people who will or will not vote for
a particular presidential candidate. Using the previous notation, N is the size of the
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(b) Hypergeometric(30,20,5) c.d.f(a) Hypergeometric(30,20,5) p.d.f

FIGURE 4.6 The p.d.f. and c.d.f. of the hypergeometric distribution for 30 total balls of
which 20 are white and we pick a sample of 5.
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population, m is the number of individuals in the population with the characteristic
of interest, and X counts the number with that characteristic in the chosen sample of
size n. In all such cases the distribution of X is the Hypergeometric(N,m, n).

Naturally, the reason for conducting such surveys is to estimatem, or equivalently
the proportion of “black” balls p = m/N , from an observed value of X . However,
before we can do this we need to be able to calculate probabilities associated with the
hypergeometric distribution. This method is practical and relevant when the numbers
N and m are relatively small.

Remark 4.34 In general, the situation where the hypergeometric distribution is
applicable (and useful) is either when the population N is small or when the sample
size n is comparable with the population size (e.g., n = N/10).

However, if the population is large enough and the sampling of individuals is
random enough and the sample size n is small relative to the population, one may use
a binomial distribution as an good approximate for the distribution. To understand
why, consider the change in probability of drawing a black ball from an urn containing
1, 000, 000 black and 1, 000, 000 white balls. The first ball is black with probability
0.5. Depending on whether the first ball was black or white, the chance that the second
is black is 999, 999/1, 999, 999 = 0.49999975 or 1, 000, 000/1, 999, 999 =
0.50000025, both extremely close to 0.5. The binomial distribution is much easier to
work with; and it may be further approximated using the Poisson distribution or the
Gaussian distribution; both of these distributions are also much easier to work with.

Proposition 4.35 Suppose X follows a hypergeometric distribution with
parameters (N,m, n) as in the definition. Then

EX = n
m

N
and VarX = n

m

N

N − m

N

N − n

N − 1
.

Proof: Left as an exercise (see exercise 4.14). �

4.4.7 POISSON DISTRIBUTION

Definition 4.36 (Poisson distribution) Suppose that the random variable
X takes values in N and

P(X = k) = �k

k!
e−�, k = 0, 1, 2, . . . (4.8)

A random variable with values inN and the probability distribution given by (4.8) is
called a Poisson distributed random variable with rate (or intensity) � > 0. We will
use the notation X ∼ Poisson(�).

Proposition 4.37 The sequence pk = P(X = k), k = 0, 1, 2, . . . defines a
discrete probability distribution.
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Proof: pk ≥ 0 for every k ≥ 0 and

∑
k≥0

pk = e−�
∑
k≥0

�k

k!

= e−�e� = 1.

�

The Poisson distribution is a good model for many situations where we count
the number of events occurring in a fixed time interval—for example, counting the
number of cars passing by a particular point on a highway in an hour, counting the
number of telephone calls arriving to a central switchboard in a minute, and so on.

In real applications, X is bounded; for instance, it is hard to conceive having
10 trillion cars passing by in an hour, given that the total earth population is a
fraction of that. Although the Poisson distribution gives positive probabilities to
all values of X going to infinity, it is still useful in practice as an approximation.
Due to the exponential decay in the formula, the Poisson probabilities rapidly
become extremely small.

For example, if � = 1, then P(X = 50) = 1.1 × 10−65 and P(X > 50) =
1.7 × 10−16 (which are essentially zero numbers for all practical purposes).

Figure 4.7 presents the density and distribution for aGeometric(0.2) random
variable.

Exercise 3. Using the Poisson probability formula, verify the following: If � = 1,
then P(X = 0) = 0.36788 and P(X = 3) = 0.061313.
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(a) Poisson(5) p.d.f. (b) Poisson(5) c.d.f

FIGURE 4.7 The p.d.f. and c.d.f. of the Poisson distribution with mean 5.
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EXAMPLE 4.6 A practical application of the Poisson
distribution

Consider a type of event occurring randomly through time—say, for ex-
ample, earthquakes. Let X count the number of events occurring in a spe-
cific unit interval of time—for example, yearly number of earthquakes in
California.

Under the following conditions, X may be shown mathematically to
have a Poisson(�) distribution.

1. The events occur at a constant average rate of � per unit time.

2. Occurrences are independent of one another.

3. More than one occurrence cannot happen at the same time.

With earthquakes, condition 1 would not hold if there is an increasing or de-
creasing trend in the underlying levels of seismic activity. We would have to be able
to distinguish ‘‘primary’’ quakes from the aftershocks they cause and only count
primary shakes; otherwise condition 2 would not hold. Condition 3 is probably
true for this example. However, if we were looking at car accidents, we could not
count the number of damaged cars without condition 3 being violated since most
accidents involve collisions between cars and several cars are often damaged at the
same instant. Instead, we would have to count accidents as whole entities no matter
how many vehicles or people were involved. It should be noted that except for the
rate, the above three conditions required for a process to be Poisson do not depend
on the unit of time. If � is the rate per second, then 60� is the rate per minute.
The choice of time unit will depend on the questions asked about the process.

The Poisson distribution often provides a good description of many situations
where points are randomly distributed in time or space—for example, the number
of microorganisms in a given volume of liquid, the number of errors in collections
of accounts, the number of errors per page of a book manuscript, the number of
stars in a quadrant of space, cosmic rays at a Geiger counter, telephone calls in a
given time interval at an exchange, mistakes in calculations, arrivals at a queue,
faults over time in electronic equipment, weeds in a lawn, and so on and so forth.
In biology, a common question is whether a spatial pattern of where plants grow,
or the location of bacterial colonies, is in fact random with a constant rate (and
therefore Poisson). If the data do not support a randomness hypothesis, then in
which way is the pattern nonrandom? Do the organisms tend to cluster (attraction)
or be further apart than one would expect from randomness (repulsion)?

Let us compute now the law and the variance of Poisson’s law.

Proposition 4.38 Suppose X ∼ Poisson(�) with � > 0. Then

EX = � and VarX = �.
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Proof: According to Definition 4.7, we have

EX =
∞∑
k=0

ke−�
�k

k!
=

∞∑
k=1

ke−�
�k

k!

=
∞∑
k=1

e−�
�k

(k − 1)!
= �e−�

∞∑
k=1

�k−1

(k − 1)!

= �e−�
∞∑
k=0

�k

k!

= �.

To obtain the variance, we first compute EX (X − 1). We have

EX (X − 1) =
∞∑
k=2

k(k − 1)e−�
�k

k!

= e−��2
∞∑
k=2

�k−2

(k − 2)!
= e−��2

∞∑
k=0

�k

k!

= �2.

So

VarX = EX (X − 1) + EX − (EX )2

= �2 + �− �2 = �.

�

The Poisson distribution satisfies the following ‘‘additivity’’ property.

Proposition 4.39 Let X ∼ Poisson(�1) and Y ∼ Poisson(�2). Suppose that X
and Y are independent. Then

X + Y ∼ Poisson(�1 + �2).

Proof: For every k ≥ 0 integer we have

P(X + Y = k) =
k∑
i=0

P(X = i)P(Y = k − i)

=
k∑
i=0

e−�1
�i1
i!
e−�2

�k−i2

(k − i)!
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= e−(�1+�2)
k∑
i=0

�i1
i!

�k−i2

(k − i)!

= e−(�1+�2)
k∑
i=0

�i1
i!

�k−i2

(k − i)!

k!

k!

= e−(�1+�2)

k!

k∑
i=0

(
k

i

)
�i1�

k−i
2

= e−(�1+�2)

k!
(�1 + �2)k,

where we used the Newton formula (4.2). �

An alternative proof will be given later with the help of the characteristic
function of the Poisson distribution.

Remark 4.40 Another property to be noticed for Poisson random variables with
parameter � > 0 is that for every k > 2�− 1, one has

P(X > k) < P(X = k).

Thus the probability of the entire tail of the distribution gets extremely small. For the
proof we refer to exercise 4.13.

EXERCISES

Problems with Solution

4.1 For the experiment in exercise 3.1, compute the expectation and the vari-
ance of the random variable X

Solution: We have

EX =
6∑
k=1

k
2k − 1

36
= 161

36
,

EX 2 =
6∑
k=1

k2 2k − 1

36
= 791

36
,

and

Var(X ) = 2555

1296
.

�
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4.2 Let X be a discrete random variable. Prove that for every a ∈ R,

E(X − a)2 = Var(X ) + (EX − a)2.

Deduce from this result the minimum of the mapping

a → E((X − a)2).

Solution: The first part is easy since

E(X − a)2 = EX 2 − 2aEX + a2

and

Var(X ) + (EX − a)2 = Var(X ) + (EX )2 − 2aEX + a2

= EX 2 − 2aEX + a2

from the formula for the variance. Then

inf
a∈R

E(X − a)2 = Var(X ) + inf
a∈R

(EX − a)2

= VarX

since the above infimum is obtained for a = EX. Another way to interpret
this result is to say that EX is the constant that approximates the random
variable X best in the L2 sense. �

4.3 Let X, Y be uniform random variables on {0, 1, . . . , }, that is,

P(X = 0) = P(X = 1) = · · · = P(X = n) = 1

n + 1

and the same for Y . Assume that X and Y are independent. Compute

P(X = Y )

and

P(X ≤ Y ).
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Solution: First

P(X = Y ) =
n∑
k=0

P(X = k, Y = k)

=
n∑
k=0

P(X = k)P(Y = k)

=
n∑
k=0

1

n + 1

1

n + 1

= n + 1

(n + 1)2
= 1

n + 1
.

Next,

P(X ≤ Y ) = P(X = 0, Y ∈ {0, . . . , n}) + P(X = 1, Y ∈ {1, . . . , n})
+ · · · + P(X = n, Y = n)

=
n∑
k=0

P(X = k)
n∑
j=k

P(Y = j)

=
n∑
k=0

1

n+ 1

n∑
j=k

1

n + 1

= 1

(n+ 1)2

n∑
k=0

n∑
j=k

1

= 1

(n+ 1)2

n∑
k=0

(n− k + 1)

= 1

(n+ 1)2

(
n(n+ 1)

2
+ n + 1

)
.

�

4.4 Let X ∼ Geometric(p) with p ∈ (0, 1). Prove that for every a, b ∈ N we
have

P(X = a + b | X > a) = P(X = b).

Solution: Since a, b are positive, we obtain

P(X = a + b | X > a) = P(X = a + b)

P(X > a)
;

and using Proposition 4.28, we will have

P(X = a + b) = p(1 − p)a+b−1 and P(X > a) = (1 − p)a
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so

P(X = a + b | X ≥ a) = p(1 − p)b = P(X = b).

�

Remark 4.41 The above exercise shows that the geometric distribution is
a distribution “without memory.” It is like the variable restarts itself at a if a
is the current time. The same property is satisfied by the exponential law (see
Chapter 5).

4.5 Let X be a Geometric(b) random variable, with 0 < b < 1. Let m ≥ 1
integer and define

Y = max(X,m)

and

Z = min(X,m).

(a) Find the probability distribution of Y .
(b) Prove that Y + Z = X + m.
(c) Find E(Y ) and E(Z ).

Solution: Note that for every k ≥ 1 integer

(Y = k) = ((X ≤ m,m = k) ∪ (X ≥ m, X = k)) .

It suffices to compute P(Y = k) for every k ≥ 1 integer. Suppose k < m.
Then

P(Y = k) = P(X ≤ m,m = k) + P(X ≥ m, X = k)

= P(∅) + P(∅) = 0

and for k > m

P(Y = k) = P(X ≥ m, X = k) = P(X = k) = p(1 − p)k−1.

Finally, when m = k we obtain

P(Y = k) = P(X = m) = p(1 − p)m−1.

�

4.6 Let X1, . . . , Xn be independent random variables with the same distribu-
tion given by

P(Xi = 0) = P(Xi = 2) = 1

4
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and

P(Xi = 1) = 1

2
.

Let

Sn = X1 + · · · + Xn.

(a) Find E(Sn) and Var(Sn).
(b) Find Var(Sn)

Solution: Clearly for every i = 1, . . . , n we have

Xi(�) = {0, 1, 2}
and

EXi = 0P(Xi = 0) + 1P(Xi = 1) + 2P(Xi = 2)

= 1

2
+ 2

1

4
= 1.

Thus

ESn =
n∑
i=1

EXi = n.

Also, since

X 2
i (�) = {0, 1, 4},

EX 2
i = 0P(X 2

i = 0) + 1P(X 2
i = 1) + 4P(X 2

i = 4)

= 0P(Xi = 0) + 1P(Xi = 1) + P(Xi = 2)

= 1

2
+ 4

1

4
= 3

2
.

Therefore,

Var(Xi) = 3

2
− 1 = 1

2

and

Var(Sn) =
n∑
i=1

Var(Xi) = n

2

using the fact that the r.v. Xi are independent. �
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4.7 Let X be a random variable with distribution Poisson(�). Define the r.v.
Y by

Y = 0 if X is zero or even

and

Y = X + 1

2
if X is odd.

Find the law of Y .

Solution: We have

P(Y = 0) = P(Y is zero or even )

= P(X = 0) +
∑

k=2;k is even
P(X = k)

= e−� +
∑

k=2;k even
e−�

�k

k!

= e−� +
∞∑
j=1

e−�
�2j

(2j)!
.

and for every k ≥ 1,

P(Y = k) = P(X = 2k − 1) = e−�
�2k−1

(2k − 1)!
.

Clearly Y (�) = 0, 1, 2, . . . . �

4.8 Let X be a random variable with a geometric distribution with parameter
p. Calculate E

( 1
1+X

)
.

Solution: By the definition of the expectation and using (4.5) we obtain

E

(
1

1 + X

)
=

∑
k≥1

1

k + 1
p(1 − p)k−1

= p

(1 − p)2

∑
k≥1

1

k + 1
(1 − p)k+1

= p

(1 − p)2

⎛
⎝∑
k≥0

1

k + 1
(1 − p)k+1 − (1 − p)

⎞
⎠

= p

(1 − p)2

(− ln(1 − p) − (1 − p)
)
.

�
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4.9 Let X be a discrete r.v. with the following distribution:

P(X = −3) = a, P(X = −2) = 5

32
, P(X = −1) = b, P(X = 0) = 5

16

and

P(X = 1) = c, P(X = 2) = 1

32
.

We know that

E(X ) = −1

2
and Var(X ) = 5

44
.

(a) Find a, b, c.
(b) Calculate

E(3 + 2X ),

E(3 + 2X )2,

Var(3 + 2X ).

Solution: (a) From

2∑
k=−3

P(X = k) = 1, EX = −1

2
, EX 2 = 3

2

we get

a + b + c = 1
2 ,

−3a − b + c = − 1
4 ,

9a = b + c = 3
4 ,

so

a = 1

32
, b = 5

16
, c = 5

32
.

(b)

E(3 + 2X ) = 3 + 2EX = 2

and

E(3 + 2X )2 = E(9 + 12X + 4X 2) = 9.

Then

Var(X ) = 5.

�
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4.10 Let X be a discrete random variable distributed as a Bernoulli with
parameter 1

3 and let

Y = 1 − X.

Give the law of Y . Calculate EY and Var(Y ).

Solution: Note that Y = ϕ(X ) with ϕ(u) = 1 − u. Let us find the law of
Y . Since X (�) = {0, 1} we see that

Y (�) = {ϕ(0), ϕ(1)} = {0, 1}.
Therefore

P(Y = 1) = P(ϕ(X ) = 1) = P(X ∈ ϕ−({1})).
Since

ϕ−1({1}) = {x ∈ R, 1 − x = 1} = {0}
we have

P(Y = 1) = P(X = 0) = 2

3
.

In the same way, we obtain

P(Y = 0) = P(1 − X = 0) = P(X = 1) = 1

3
.

Consequently, Y follows a Bernoulli law with parameter 1
3 . Moreover,

EY = 2

9
and Var(Y ) = 2

9
.

�

4.11 Let X be a discrete random variable with

P(X = −1) = 1

8
, P(X = 0) = 1

4
, P(X = 1) = 5

8
.

Show that the r.v.s. Y = X 2 and Z = |X | have the same distribution and
find this distribution.

Solution: We have

X (�) = {−1, 0, 1} and thus Y (�) = {0, 1}
and

P(Y = 1) = P(X 2 = 1) = P(X = −1) + P(X = 1) = 3

4
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P(Y = 0) = P(X 2 = 0) = P(X = 0) = 1

4
.

We deduce that Y ∼ Bernoulli( 3
4 ). Similarly, Z follows the same law. �

4.12 Let X be a random variable with Poisson distribution with parameter
� > 0. Let ϕ : R→ R be a bounded function. Show that

EXϕ(X ) = �Eϕ(X + 1)

Solution: Since ϕ is bounded, the expectation of ϕ(X ) exists and

EXϕ(X ) =
∑
k≥0

kϕ(k)P(X = k)

=
∑
k≥1

kϕ(k)P(X = k)

= e−�
∑
k≥1

�k

(k − 1)!
ϕ(k)

=
∑
k≥0

ϕ(k + 1)P(X = k).

�

4.13 Suppose that X follows a Poisson distribution with parameter � > 0.
(a) Show that

P(X ≥ k) < P(X = k)
k + 1

k + 1 − �
for every k > �− 1.

(b) Deduce that for every k > 2�− 1, one has

P(X > k) < P(X = k).

Solution: (a) Let k > �− 1. We have

P(X ≥ k) = e−�
∞∑
j=k

�j

j!

= e−�
�k

k!

(
1 + �

k + 1
+ �2

(k + 1)(k + 2)
+ · · · ·

)

≤ e−�
�k

k!

∞∑
j=0

�j

(k + 1)j
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Using the fact that for k > �− 1 the series
∑∞

j=0
�j

(k+1)j is convergent and

∞∑
j=0

�j

(k + 1)j
= 1

1 − �
k+1

= k + 1

k + 1 − �

we get the conclusion of part (a).
Concerning point (b), we have

P(X > k) = P(X ≥ k) − P(X = k)

≤ P(X = k)
k + 1

k + 1 − �
− P(X = k)

= P(X = k)
�

k + 1 − �

and we conclude the result since

�

k + 1 − �
< 1 for k > 2�− 1.

�

Problems without Solution

4.14 If X follows a hypergeometric distribution with parameters (N,m, n),
show that

EX = n
m

N
and VarX = n

m

N

N − m

N

N − n

N − 1
.

4.15 Let Y be a random variable with law Poisson(�). Define the r.v. Z by

Z = Y

2
if Y is even

and

Z = 1 − Y

2
if Y is odd.

Find the law of Z .

4.16 Let X ∼ Geometric(p). Define

U = 4

[
X

2

]
− 2X + 1,

where [x] is the integer part of x (the biggest integer less or equal than x).
Find the law of U .
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4.17 Please answer the following questions:
(a) What is the probability to obtain a ‘‘double’’ when we roll two fair
dies (both faces show the same outcome)?
(b) We roll two dies repeatedly until we get the first double. We denote
by X the random variables counting the number of rolls. What is the law
of X ?
(c) Let n ≥ 1. Compute directly the probability to have no double in the
first n rolls. Deduce P(X > n).

Hint: For question (a), the answer is p = 6
36 = 1

6 because we have 6 favorable
cases and 36 possible outcomes. Therefore,X follows a geometric law with p = 1

6 .



Chapter Five

Random Variables: The
Continuous Case

5.1 Introduction/Purpose of the Chapter

In the previous chapter we discussed the properties of discrete random variables
which map events to values in a countable set. In many cases, however, we need
to consider variables which take values in an interval. Think about the following
experiment: Choose a random point on a segment from the origin to some point
A and let be X the abscissa of the chosen point. Then X (�) = [0, |A|x ], where
|A|x is the x-coordinate of the point A and this set is not countable. A continuous
random variable is not defined at specific values. Instead, it is defined over an
interval of values. Informally, a random variable X is called continuous if its
values x form a ‘‘continuum,’’ with P(X = x) = 0 for each x.

5.2 Vignette/Historical Notes

Historically the continuous random variables appeared as approximations of the
discrete random variables. The 1756 edition of The Doctrine of Chance contained
what is probably de Moivre’s most significant contribution to probability, namely
the approximation of the binomial distribution with the normal distribution in
the case of a large number of trials—which is now known by most probabil-
ity textbooks as ‘‘The First Central Limit Theorem.’’ Pierre-Simon de Laplace

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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(1749–1827) published Théorie Analytique des Probabilités in 1812. In this book
he introduces what is now known as the Laplace transform in applied mathemat-
ics, and we will know it as the moment-generating function in this book. This
function provides a universal tool to work with distributions of variables—and is
most useful for continuous variables.

More recently (1933), Kolmogorov published Grundbegriffe der Wahrschein-
lichkeitsrechnung his most fundamental book. In it he builds up probability theory
in a rigorous way from fundamental axioms in a way comparable with Euclid’s
treatment of geometry. This theory can deal with discrete or continuous or in fact
any kind of random variables. However, in practical (numerical) applications we
typically assume some density for random variables since this makes it simpler.
The Markov processes and the whole advent in connecting PDE’s and stochastic
processed has started with continuous random variables.

5.3 Theory and Applications

A crucial notion in the theory of continuous random variables is the concept of
probability density function.

5.3.1 PROBABILITY DENSITY FUNCTION (p.d.f.)

Definition 5.1 A function f : R→ R is called a probability density if it is
integrable, positive and

∫
R

f (x) dx = 1.

We mention that a function which is continuous with the possible exception
of a countable number of points is integrable. This will be the case of all the
examples treated in this book.

In the remainder of this section we give examples of density functions.

EXAMPLE 5.1

Let f → R be a function defined by

f (x) =
(
x + 1

2

)
1[0,1](x).

Then f is a probability density (see Figure 5.1).
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FIGURE 5.1 Density of the function in Example 5.1.

Solution: Note that f (x) ≥ 0 for every x ∈ R and f is continuous (except the
two points 0 and 1). Moreover,∫

R

f (x) dx =
∫ 1

0

(
x + 1

2

)
=

[
1

2
x2 + 1

x

]x=1

x=0

= 1.

�

EXAMPLE 5.2

Let c > 0 be a constant and define

f (x) = cx1[0,1](x) + (2 − x)1[1,2](x).

Find c that makes f a probability density function (see Figure 5.2).

Solution: We have that f is clearly positive and continuous almost everywhere (it
may not be continuous at 1 and 2). We compute∫

R

f (x) dx = c

∫ 1

0
x dx +

∫ 2

1
(2 − x) dx = c

2
+ 1

2
,

and this implies c = 1. �
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FIGURE 5.2 Density of the function in Example 5.2.

EXAMPLE 5.3

Define f : R→ R by

f (x) = 1

x2
1[1,∞)(x).

Then f is a probability density (see Figure 5.3).

Solution: f is positive and

∫
R

f (x) dx =
∫ ∞

1

1

x2
dx =

[
−1

x

]x=∞

x=1
= 1.

�

So what is the connection between random variables and these functions?

Definition 5.2 (Continuous random variable) Let X : � → R be a
random variable on the probability space (�,F ,P). We say that the random variable
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FIGURE 5.3 Density of the function in Example 5.3.

X is continuous (or X has a density ) if there exists a probability density function f
such that

P(a ≤ X ≤ b) =
∫ b

a

f (x) dx

for every a, b ∈ R, a ≤ b.

Remark 5.3 The probability that the continuous random variable, say X , has
any exact value a value a is 0. Indeed, formally

P(X = a) = lim
�x→0

P(a ≤ X ≤ a +�x)

= lim
�x→0

∫ a+�x

a

fX (x) dx

= 0.

In general, for continuous random variables, we have

P(X = a) /= fX (a).

Let us state a proposition which will be used to identify distributions of
functions of random variables.
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Proposition 5.4 Let X and Y two random variables with respective probability
densities fX and fY . The two random variables have the same distribution (i.e., fX (z) =
fY (z), ∀z) if and only if for any measurable bounded function F we have

EX [F (X )] = EY [F (Y )],

where each expectation is calculated with respect to the the subscripted random variable
or written in integral terms:∫

F (z)fX (z) dz =
∫
F (z)fY (z) dz.

Proof: Exercise. Use the standard construction in one direction and the delta
function in the other direction. �

5.3.2 CUMULATIVE DISTRIBUTION FUNCTION (c.d.f.)

The cumulative distribution function of a continuous random variable X is still
defined by FX (x) = P(X ≤ x). But in the case of continuous r.v., it can be ex-
pressed in terms of the density as follows.

Proposition 5.5 Let X be a random variable with density f . Then

FX (x) = P(X ≤ x) =
∫ x

−∞
f (y) dy

for every x ∈ R.

Proof: It is an immediate consequence of Definition 5.2. �

You may read this as follows: The density (p.d.f.) f is the derivative of the
distribution (c.d.f.) FX (however, not everywhere). The exact details will be for-
malized in the next proposition.

EXAMPLE 5.4

Let X be a random variable with density function

f (x) = x1[0,1](x) + (2 − x)1[1,2](x).

Calculate FX ( 1
2 ) = P(X ≤ 1

2 ).

Solution: We have seen in the Example given on page 121 that f is indeed a
density. Then, by Proposition 5.5, we have

P

(
X ≤ 1

2

)
=

∫ 1
2

∞
f (x) dx =

∫ 1
2

0
x dx = 1

2
.

�
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Proposition 5.6 (Properties of the c.d.f. of the continuous random
variables) The probability distribution of a continuous random variable X has
the following properties.

i. FX is a continuous and increasing function, FX : R→ [0, 1].

ii. limx→−∞FX (x) = 0 and limx→∞ FX (x) = 1.

iii. For every a ≤ b, a, b ∈ R,

F (b) − F (a) =
∫ b

a

f (u) du.

iv. F is differentiable in any point a where f is continuous, and in this case

F ′(a) = f (a).

Proof: The first two properties (parts i and ii in the proposition above) are valid
for any general random variable. We refer to the proof of Proposition 3.9. Part iii
is an easy consequence of Proposition 5.5. Part iv is left as an exercise. �

Remark 5.7 The first point of the above proposition explains where the name is
coming from: A continuous random variable is a random variable whose distribution
is continuous (as opposed to right continuous in the general case). In fact the precise
terminology is absolutely continuous with respect to the Lebesque measure and admits
a Radon–Nykodim derivative (which is the density). We mention that several books
on probability theory define the density as the derivative of the cumulative distribution
function.

Remark 5.8 If f is a probability density function, note that

lim
x→−∞ f (x) = lim

x→∞ f (x) = 0.

If this is not the case, then the p.d.f. cannot possibly integrate to a finite value.

EXAMPLE 5.5

Let X be a continuous random variable with density function

f (x) = 2x1(0,1)(x).

Calculate

P

(
1

4
≤ X ≤ 1

2

)
.
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Solution: By Proposition 5.6, we have

P

(
1

4
≤ X ≤ 1

2

)
=

∫ 1
4

1
2

f (x) dx

= [
x2]x= 1

2

x= 1
4

= 3

16
.

�

EXAMPLE 5.6

Let

f (x) = a

x5

if x ∈ (1, 2) and assume

f (x) = 0

otherwise. Here a denotes a real constant.

1. Find the parameter a in order to obtain a probability density function.

2. Find the probability

P

(
1 ≤ X ≤ 3

2

)
.

Solution: From the definition of the density, we need

a ≥ 0.

Since ∫
R

f (x) dx = 15

64
a

we obtain a = 64
15 . Using the value of a we just found, we obtain

P(1 ≤ X ≤ 3/2) = 64

15

∫ 3
2

1
x−5dx

= 64

15

[
−1

4
x−4

]x= 3
2

x=1

= 208

243
.

�
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5.3.3 MOMENTS

Remember that for a discrete random variable we defined

EX =
∑
x∈X (�)

xP(X = x).

For a continuous random variable we substitute the sum by an integral and P(X =
x) by the density f (x). That is,

EX =
∫
R

xf (x) dx

whenever the above integral is well-defined. In fact, the definition of the moments
of a continuous random variable is a particular case of the general notion developed
in Appendix B. The general approach is relegated there since, while important, it
requires general work with measures and Lebesque integration.

In order to give an unitary, more intuitive approach in the context of contin-
uous random variables, we will adopt the following definition.

Definition 5.9 Let X be a random variable on (�,F ,P) having a density f .
Let h : R→ R be a measurable function such that∫

R

|h(x)|f (x) dx < ∞.

Then

E[h(X )] =
∫
R

h(x)f (x) dx.

In particular, ifX ∈ L1(�) (see Appendix B for the definition), thenX admits
an expectation and

E(X ) =
∫
R

x f (x) dx.

If X ∈ Lp(�), then the moment of order p of X exists and

E(X p) =
∫
R

xpf (x) dx.

For X ∈ L2(�) the variance of X exists and it is given by

V (X ) =
∫
R

(x − E(X ))2 f (x) dx = E[X 2] − (EX )2.

Furthermore, as in the discrete case the standard deviation of X also exists
and is the square root of the variance.

StdDev(X ) =
√
V (X ).
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EXAMPLE 5.7 Continuing the Example on page 120

Let X be a r.v. with density f as in Example 5.1. Let us compute the
expectation of X .

EX =
∫ 1

2

0
x

(
x + 1

2

)
dx

=
[

1

3
x3

]x= 1
2

x=0

+
[

1

4
x2

]x= 1
2

x=0

= 5

48
.

We will compute the moments for several classical random variables later in
this chapter.

5.3.4 DISTRIBUTION OF A FUNCTION OF THE RANDOM
VARIABLE

The purpose of this paragraph is to discuss the following question: How do you
find the density of a random variable Y constructed as a function h(X ), where X
is a random variable with a given density function? An explicit and useful formula
is given below.

Theorem 5.10 Let (�,F,P) be a probability space and let X : � → R be a
random variable with density f . Let h : D ⊂ R→ R (D is an open set) satisfying
the following assumptions:

1. h is differentiable on its domain D.

2. h is injective; that is, h(x) = h(y) implies x = y.

3. The support of f (or of X ),

Supp(f ) = {x; f (x) > 0}

is contained in D.

Then the density of the random variable Y = h(X ) is given by

fY (y) =
∣∣∣∣ 1

h′(h−1(y))

∣∣∣∣ f (h−1)(y)1{y∈h(D)}

for all points y such that f is continuous at h−1(y).
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Proof: Since h is injective and continuous (differentiable), then either h is in-
creasing or is decreasing. Let us assume that it is increasing (the decreasing case is
similar). We compute the distribution function of Y :

P(Y ≤ y) = P(h(X ) ≤ y) = P(X ≤ h−1(y))

=
∫ h−1(y)

−∞
f (x) dx;

and now using the change of variables x = h−1(z), we obtain

P(Y ≤ y) =
∫ y

−∞
f (h−1(z)

(
h−1)′

(z) dz

=
∫ y

−∞
f (h−1(z)

∣∣∣(h−1)′
(z)

∣∣∣ dz
because h is increasing. Now suppose that h−1(y) is a continuity point for f . Then
FY is differentiable at y with derivative∣∣∣∣ 1

h′(h−1(y))

∣∣∣∣ f (h−1)(y),

and the formula is thus proven. �

In the particular case when h is an affine function (h(x) = ax + b), we have
the following.

Corollary 5.11 Let X be a r.v. with density f and let

Y = aX + b

with a /= 0. Then the density of Y is

fY (y) = 1

|a| f
(
x − b

a

)
.

Proof: We apply the result in the previous theorem to the function

h(x) = ax + b.

�

Remark 5.12 Let X be a random variable with density

f (x) = 1√
2�
e−

x2

2 .
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Using Corollary 5.11, show that the density of Y = �X + � (with � > 0) is given
by

fY (y) = 1√
2��2

e−
(x−�)2

2�2 .

As we shall see in the next section, X follows a standard normal distribution
N (0, 1) and the resulting random variable Y = �X + � has the same normal law
but with mean � and variance �2 (N (�, �2)).

5.4 Examples

In this section we will present some of most used continuous probability distri-
butions and discuss their basic properties.

5.4.1 UNIFORM DISTRIBUTION ON AN INTERVAL [a,b]

The uniform distribution models continuous random variables which take values
in an interval without any particular preference within that interval. It is the
equivalent of the discrete uniform distribution presented in Chapter 4. As an
example, suppose that buses arrive at a given bus stop every 15 minutes. If you
arrive at that bus stop at a particular random time, the time you have to wait
for the next bus to arrive could be described by a uniform distribution over the
interval from 0 to 15. It is different from a discrete uniform because the time
can be anywhere in the interval. However, if we only consider the minutes—to
the nearest integer—we obtain a discrete set of outcomes and the corresponding
distribution is the discrete uniform.1 We hope you can see the advantage of using
the whole number and not just the rounded value.

In general, for an arbitrary interval [a, b] the random variable with a uniform
distribution represents the position of a point taken at random (without any
preference) within the interval [a, b].

Definition 5.13 We say that a random variableX follows the uniform distribution
on the interval [a, b] if its probability density function is given by

f (x) =
{

1
b−a , if x ∈ [a, b],

0, otherwise.
(5.1)

We will use the notation

X ∼ U [a, b].

1 Technically, in the example we should round to the nearest middle of the minute, i.e.,
0.5, 1.5, . . . , 14.5 to obtain the discrete uniform—otherwise the ends 0 and 15 will have less prob-
ability than the rest.
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(a) Uniform(0,1) p.d.f. (b) Uniform(0,1) c.d.f

FIGURE 5.4 The p.d.f. and c.d.f. of the uniform distribution on the interval [0,1].

Figure 5.4 presents the density and distribution for a Uniform(0, 1) random
variable.

Proposition 5.14 The function defined by (5.1) is a probability density function.

Proof: It is immediate that f is positive and

∫
R

f (x) dx = 1

b − a

∫ b

a

dx = 1.

�

Proposition 5.15 Let X be a random variable with uniform distribution; that
is, its density is given by (5.1). Then

E(X ) = a + b

2
and V (X ) = (b − a)2

12
.

Proof: We have

E(X ) =
∫
R

x f (x) dx = 1

b − a

∫ b

a

x dx = 1

b − a

[
1

2
x2

]x=b
x=a

= a + b

2
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and

E(X 2) =
∫
R

x2f (x)dx = 1

b − a

∫ b

a

x2dx

= 1

b − a

[
1

3
x3

]x=b
x=a

= b3 − a3

3(b − a)
= a2 + ab + b2

3
.

Thus

V (X ) = E(X 2) − (E(X ))2 = a2 + ab + b2

3
− (a + b)2

4
= (b − a)2

12
.

�

Concerning the c.d.f. of the uniform law, we have the following proposition.

Proposition 5.16 Let X ∼ U [a, b]. Then the cumulative distribution function
of X is

FX (t ) =

⎧⎪⎨
⎪⎩

0 if t < a,
t−a
b−a if t ∈ [a, b],

1 if t > b.

Proof: Using the formula of the density of X , we obtain

FX (t ) = P(X ≤ t )

= 1

b − a

∫ t

−∞
1[a,b](x) dx = 1

b − a

∫ t∧b

a

dx

and the conclusion follows. �

EXAMPLE 5.8

Let X ∼ U [0, 1]. Compute

P

(
1

4
≤ X ≤ 3

4

)
.

Solution: This is an immediate application of the result above. Indeed,

P

(
1

4
≤ X ≤ 3

4

)
= FX

(
3

4

)
− FX

(
1

4

)

= 3

4
− 1

4
= 1

2
.

�
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5.4.2 EXPONENTIAL DISTRIBUTION

Definition 5.17 Let � > 0. Then the density of the exponential distribution is
given by

f (x) = �e−�x, x ≥ 0. (5.2)

We will use the notation

X ∼ Exp(�)

to indicate that the r.v. has an exponential distribution with parameter � > 0.

Proposition 5.18 The function given by (5.2) is a probability density.

Proof: Indeed, f (x) > 0 for every x ∈ R and∫
R

f (x) dx = �

∫ ∞

0
e−�x dx = [−e−�x]x=∞

x=0 = 1.

�

The exponential distribution has been used extensively to model lifetimes of
organisms. As we see in the next proposition, the average lifetime of an organism
thus modeled is 1/�.

Figure 5.5 presents the density and distribution for an Exponential (� = 0.2)
random variable.
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(a) Exponential(0.2) p.d.f.
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(b) Exponential(0.2) c.d.f

FIGURE 5.5 Exponential distribution.
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Proposition 5.19 Let X be a random variable with exponential distribution;
that is, its density is given by (5.2). Then

E(X ) = 1

�
and V (X ) = 1

�2
.

Proof: Let us compute first the expectation. We have

E(X ) =
∫ ∞

0
�t�e−�t dt.

We will integrate by parts with u = t, v′ = ��e−�t , so u′ = 1, v = −e−�t , and
we get

E(X ) = [−te−�t]t=∞
t=0 +

∫ ∞

0
e−�t dt = 1

�
.

Let us compute now E(X 2). It is given by

E(X 2) = �

∫ ∞

0
x2e−�xdx

and by integrating by parts (u = x2 and v′ = �e−�x with u′ = 2x, v = −e−�x ),
we obtain

E(X 2) = [−x2e−�x
]x=∞
x=0 + 2

∫ ∞

0
xe−�xdx

= 2
∫ ∞

0
xe−�xdx = 2

�2

using the calculation done for E(X ). Then

V (X ) = E(X 2) − (E(X ))2 = 2

�2
− 1

�2
= 1

�2
.

�

In fact, as we will mention later, the exponential distribution is a particular
case of the gamma distribution. The results in this paragraph can be deduced
from the general derivations in Section 5.4.4 (which follows shortly).

Let us compute the c.d.f. of the exponential law.

Proposition 5.20 Suppose X ∼ Exp(�), � > 0. Then

FX (x) = 0 if x < 0

and

FX (x) = 1 − e−�x , if x ≥ 0.
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Proof: The first part is obvious because the support of the density of X is the set
of positive real numbers. If x ≥ 0, then

FX (x) =
∫ x

0
�e−�t dt = 1 − e−�x .

�

Remark 5.21 The exponential distribution satisfies the following “memoryless
property.” If we call the random variable lifetime, this property may be interpreted in
the following way: Given that the lifetime of the organism is greater than a number
t , the probability that the organism will survive s more time units is the same as if the
organism is being reborn at s.

Mathematically, for any s > 0 and t > 0,

P(X ≥ s + t |X ≥ s) = P(X ≥ t ).

For a proof of this result, see exercise 5.11. There is also a converse result: If X is a
random variable such that

P(X > 0) = 1 and P(X > t ) > 0

for every t > 0 and

P(X > t + s|X > t ) = P(X > s) for every s, t ≥ 0,

then X has an exponential distribution. See exercise 5.12.

EXAMPLE 5.9

The lifetime of a radioactive element is a continuous random variable with
the following p.d.f.:

fX (t ) = 1

100
e−

t
100

for t > 0 and zero otherwise. Recognizing the exponential distribution, we
see immediately that the lifetime has an average of 100 years.

The probability that an atom of this element will decay within 50 years
is

P(0 ≤ X ≤ 50) =
∫ 50

0

1

100
e−

t
100

= 1 − e−0.5

= 0.39.
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5.4.3 NORMAL DISTRIBUTION (�, �2)

The normal distribution is the most widely used distribution in practice. There
are several reasons for this. The errors associated with any repeated measurements
are normally distributed, so the distribution appears quite often in practice. Fur-
thermore, the result that will be presented in the limit theorems section (the
central limit theorem) shows that the distribution appears quite naturally as the
limit of averages of random variables with arbitrary distribution. Finally, despite
its complicated form, it has certain properties that allow analytical work with this
distribution.

Definition 5.22 (Normal distribution) A random variable normally dis-
tributed has the density

f (x) = 1√
2��2

e
−(x−�)2

2�2 , x ∈ R, (5.3)

where � ∈ R is called the mean parameter and � > 0 is called the standard devia-
tion parameter. We use the notation X ∼ N (�, �2) to denote this distribution. The
distribution is also known as the Gaussian distribution.

Remark 5.23 Please note that we shall always use the variance and not the
standard deviation in the notation. For example, if we write X ∼ N (0, 2), we mean
that the variance of X is equal to 2 and correspondingly the standard deviation is

√
2.

Figure 5.6 presents the density and distribution for a Normal (0, 1) random
variable.
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(a) Normal(0,1) p.d.f.
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(b) Normal(0,1) c.d.f

FIGURE 5.6 Normal distribution.
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The normal distribution is commonly encountered in practice, and it is used
throughout statistics, natural sciences, and social sciences as a simple model for
complex phenomena. For example, the observational error in an experiment is usu-
ally assumed to follow a normal distribution, and the propagation of uncertainty
is computed using this assumption. Note that a normally distributed variable has
a symmetric distribution about its mean. Quantities that grow exponentially, such
as prices, incomes, or populations, are often skewed to the right, and hence may
be better described by other distributions, such as the log-normal distribution or
Pareto distribution. In addition, the probability of seeing a normally distributed
value that is far from the mean (i.e., extreme values) drops off extremely rapidly.
As a result, statistical inference using a normal distribution is not robust to the
presence of outliers (data that is unexpectedly far from the mean). When data
contains outliers, a heavy-tailed distribution such as the Student’s t distribution
may be a better fit for the data.

Proposition 5.24 The function given by (5.3) is a probability density function.

Proof: Let us show that ∫
R

1√
2��2

e
−(x−�)2

2�2 dx = 1.

We first write

∫
R

1√
2��2

e
−(x−�)2

2�2 dx =
[(∫

R

1√
2��2

e
−(x−�)2

2�2 dx

)2
] 1

2

=
[

1

2��2

∫
R

e
−(x−�)2

2�2 dx

∫
R

e
−(y−�)2

2�2 dy

] 1
2

= 1√
2��2

[∫
R

∫
R

e
−x2

2�2 e
−y2
2�2 dxdy

] 1
2

,

where we used the change of variables x ′ = x − � and y ′ = y − u. Now, using
polar coordinates x = r cos � and y = r sin �, we obtain

∫
R

1√
2��2

e
−(x−�)2

2�2 dx = 1√
2��2

[∫ ∞

0

∫ 2�

0
re−

r2

2�2 d�dr

] 1
2

= 1

�

[∫ ∞

0
re−

r2

2�2 dr

] 1
2

=
([

−e− r2

2�2

]r=∞

r=0

) 1
2

= 1.

�
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Proposition 5.25 Let X be a random variable with density given by (5.3). Then

E(X ) = � and V (X ) = �2.

Proof: Using the change of variables x − � = y,

E(X ) = 1√
2��2

∫
R

xe
−(x−�)2

2�2 dx = 1√
2��2

∫ ∞

−∞
(y + �)e−

y2

2�2 dy

= 1√
2��2

∫ ∞

−∞
ye−

y2

2�2 dy + �
1√

2��2

∫ ∞

−∞
e−

y2

2�2 dy.

The first integral is zero because we integrate overR an odd function ye−
y2

2�2 . Thus

E(X ) = �
1√

2��2

∫ ∞

−∞
e−

y2

2�2 dy = �

by using Proposition 5.24. Now,

V (X ) = 1√
2��2

∫
R

(x − E(X ))2e
−(x−�)2

2�2 dx

= 1√
2��2

∫
R

(x − �)2e
−(x−�)2

2�2 dx

= 1√
2��2

∫
R

y2e−
y2

2�2 dy,

again by the change of variables x − � = y. We will integrate by parts with u = y

and v′ = ye−
y2

2�2 dy (thus u′ = 1 and v = −�2e−
y2

2�2 ) and we obtain

V (X ) = 1√
2��2

[
−�2ye−

y2

2�2

]y=∞

y=−∞
+ �2 1√

2��2

∫ ∞

−∞
e−

y2

2�2 dy = �2.

�

Remark 5.26 If X ∼ N (0, 1), then −X ∼ N (0, 1). Indeed, for any odd,
bounded measurable function F : R→ R, the following holds:

EF (−X ) = 1√
2�

∫
R

F (−x)e−
x2

2 dx

= 1√
2�

∫
R

F (x)e−
x2

2 dx

with the change of variables −x = y.
Recall that a function F : R→ R is odd if and only if F (−x) = −F (x) for all

x ∈ R.
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Remark 5.27 Remark 5.12 says that if X ∼ N (0, 1), then �X + � ∼
N (�, �2). Conversely, if Y ∼ N (�, �2), then

Y − �

�
∼ N (0, 1).

This is the so-called standardization of a normal random variables. That is, any
Gaussian r.v. with arbitrary parameters can be transformed into a standard normal
random variable.

We will prove later (see Proposition 7.29) that the sum of independent normal
random variables is still a normal random variables with parameters equal to the
sum of parameters. That is, let X ∼ N (�1, �

2
1 ) and Y ∼ N (�2, �

2
2 ). Assume X

and Y are independent. Then

X + Y ∼ N (�1 + �2, �
2
1 + �2

2 ).

Remark 5.28 The above property extends by induction to a finite sum of inde-
pendent Gaussian random variables. Specifically, Xi ∼ N (�, �2

i ) for i = 1, . . . , n:

n∑
i=1

aiXi ∼ N

(
n∑
i=1

aiXi,

n∑
i=1

a2
i �

2
i

)
.

In Chapter 8 a different proof, sensibly easier, of the above property will be
given by using the characteristic function of the normal law (see exercise 8.2).

5.4.4 GAMMA DISTRIBUTION

We start by introducing the gamma integral. For every x > 0 the gamma integral
(or the gamma function) is defined by

	(x) =
∫ ∞

0
t x−1e−t dt. (5.4)

Remark 5.29 It is not trivial to see why the function inside the integral above
is integrable for x > 1. We include this derivation in the paragraph containing the
exercises.

Proposition 5.30 The gamma function satisfies the following properties:

(a) For every x > 0 we have 	(x + 1) = x	(x).

(b) For every n ∈ N
 we have 	(n + 1) = n!.

(c) 	
(

1
2

) = √
�.



140 CHAPTER 5 Random Variables: The Continuous Case

Proof: (a) We have

	(x + 1) =
∫ ∞

0
t x e−t dt

Integrating by parts with u = t x and v′ = e−t , which gives u′ = xtx−1, v = −e−t ,
we obtain

	(x + 1) = [−e−t t x]t=∞
t=0 +

∫ ∞

0
xtx−1e−t dt

= x	(x).

(b) We will use induction to prove this part. First let us verify the relation for
n = 1. We need to show that 	(2) = 1. Repeating the integration by parts from
above (with x = 1) gives

	(2) =
∫ ∞

0
te−t dt = [−te−t]t=∞

t=0 +
∫ ∞

0
e−t dt = 1.

Thus n = 1 is verified. Assume as the induction hypothesis 	(n + 1) = n!. Then
from part (a) we have

	(n+ 2) = (n+ 1)	(n + 1) = (n + 1)n! = (n + 1)!.

(c) This part follows from Proposition 5.24 with a change of variables√
t = y. �

Definition 5.31 We say that a random variable X has gamma distribution with
parameters a > 0 and � > 0 if its density is given by

fa,�(x) = �a

	(a)
e−�xxa−11(0,∞)(x) (5.5)

with a, � > 0. We will denote X ∼ 	(a, �), meaning that the random variables X
follows a gamma distribution with density (5.5).

Figure 5.7 presents the density and distribution for a Gamma(10, 0.2) ran-
dom variable.

Proposition 5.32 The function (5.5) is a probability density.

Proof: Clearly, fa,�(x) ≥ 0 for every x ∈ R and∫
R

fa,�(x) dx = �a

	(a)

∫ ∞

0
e−�xxa−1dx = 1

	(a)

∫ ∞

0
e−yya−1dy = 1,

where we used the change of variables �x = y. �
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(a) Gamma(10,0.2) p.d.f.
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(b) Gamma(10,0.2) c.d.f

FIGURE 5.7 Gamma distribution.

Proposition 5.33 Let X ∼ 	(a, �). Then

EX = a

�
and V (X ) = a

�2
.

Proof: We have

EX = �a

	(a)

∫ ∞

0
xae−�xdx = �a

	(a)
�−a−1

∫ ∞

0
yae−ydy

= 1

�	(a)
	(a + 1) = a

�

using Proposition 5.30, point (a). Next,

EX 2 = �a

	(a)

∫ ∞

0
xa+1e−�xdx = 1

�2	(a)
	(a + 2) = (a + 1)a

�2

again by Proposition 5.30, point a. Finally,

V (X ) = (a + 1)a

�2
− a2

�2
= a

�2
.

�

Remark 5.34 If a = 1, then the law	(1, �) is the exponential law with parameter
� (with expectation 1

�
).
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An important particular case of the gamma distribution is when the parame-
ters are a = � = 1

2 . In this situation, we have the law of the square of a standard
normal random variable.

Proposition 5.35 Suppose that X is a standard normal random variable, that
is, X ∼ N (0, 1). Then

X 2 ∼ 	

(
1

2
,

1

2

)
.

Proof: Let FX 2 be the distribution function of the r.v. X 2. Then for any t ≤ 0 we
have

FX 2 (t ) = P(X 2 ≤ t ) = 0,

while for t > 0 we obtain

FX 2 (t ) = P(−√
t ≤ X ≤ √

t ) = 2P(X <
√
t ) = 2FX (

√
t ).

By Proposition 5.6, the density function fX 2 of the r.v. X 2 is given by

fX 2 (t ) = 0 if t ≤ 0

and for t > 0 we have

fX 2 (t ) = (FX 2 (t ))′ = (2FX (
√
t ))′ = 2fX (

√
t )

1

2
√
t

= 1√
2�
e−

t
2 t−

1
2 ,

which implies

fX 2 (t ) = f 1
2 ,

1
2
(t )

for every t ∈ R. �

The law 	
(

1
2 ,

1
2

)
is also called chi-square distribution with 1 degree of free-

dom. In general the sum of squares of n Gaussian random variables with mean 0
and variance 1 is a chi-square distribution with n − 1 degree of freedom. Let us
formalize this distribution in a definition (which is also a 	

(
n
2 ,

1
2

)
).

Definition 5.36 We say that a random variables X follows a chi-squared distri-
bution with n degrees of freedom if its density function is:

1

2n/2	( n2 )
x
n
2 −1e−

x
2 .

We will use the notation X ∼ �2
n.

Figure 5.8 presents the density and distribution for a �2
10 random variable.
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FIGURE 5.8 �2
n distribution.

Remark 5.37 Note that if X ∼ 	(a, �) and Y ∼ 	(b, �) are independent, then

X + Y ∼ 	(a + b, �).

We will give a proof of this result in Chapter 8.

If X ∼ 	(a, �), then the random variable

Y = 1

X

follows an inverse gamma distribution. This is a probability law appearing in
several practical applications. The density of the inverse gamma distribution with
parameters a, � > 0 is defined by

f (x) = �a

	(a)

(
1

x

)a+1

e−�/x . (5.6)

Figure 5.9 presents the density and distribution for an InverseGamma(10, 0.2)
random variable.

The relation between the laws gamma and inverse gamma is proven in the
following result.

Proposition 5.38 Let X ∼ 	(a, �). Then Y = 1
X

is a random variable with
inverse gamma distribution with parameters a and 1

�
.
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FIGURE 5.9 Inverse gamma distribution.

Proof: For any bounded measurable function F we have

EF (Y ) = E

[
F

(
1

X

)]

= �a

	(a)

∫ ∞

0
F

(
1

x

)
e−�xxa−1dx,

and by making a change of variables—namely, y = 1
x

with dx = − 1
y2 dy—we

obtain

EF (Y ) = �a

	(a)

∫ ∞

0
F (y)e−

�
y y1−a 1

y2
dy,

= �a

	(a)

∫ ∞

0
F (y)e−

�
y y−1−ady.

Since this is true for any bounded measurable function using the Proposition 5.4,
we obtain the density of Y as given by (5.6). �

5.4.5 BETA DISTRIBUTION

We introduce first the beta integral or the beta function. For every a, b > 0 we
define

ˇ(a, b) =
∫ 1

0
ta−1(1 − x)b−1dx.
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Proposition 5.39 Let a, b > 0. Then

(a) ˇ(a, b) = ˇ(b, a).

(b) ˇ(a, b) = 	(a)	(b)

	(a + b)
.

Proof: Point (a) is immediate from the definition of the beta integral and the
change of variables 1 − x = y. For part (b), just substitute the definitions. �

Definition 5.40 A random variableX follows a beta distribution with parameters
a, b > 0 if its density is given by

fa,b(x) = xa−1(1 − x)b−1

ˇ(a, b)
1[0,1](x). (5.7)

with a, b > 0. We use the notation X ∼ Beta(a, b) to distinguish from the beta
function.

Figure 5.10 presents the density and distributions for various Beta random
variables.
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FIGURE 5.10 Beta distributions for various parameter values.
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Proposition 5.41 The function given by (5.7) is a probability density function.

Proof: Since the density fa,b is a positive function, we need only to verify that it
integrates to 1. But this integral is

1

ˇ(a, b)

∫ 1

0
xa−1(1 − x)b−1dx = ˇ(a, b)

ˇ(a, b)
= 1.

�

Proposition 5.42 Let X ∼ Beta(a, b) with a, b > 0. Then

EX = a

a + b
and V (X ) = ab

(a + b)2(a + b + 1)
.

Proof: We have

EX = 1

ˇ(a, b)

∫ 1

0
xa(1 − x)b−1dx = 1

ˇ(a, b)
ˇ(a + 1, b)

= 	(a + b)

	(a)	(b)

	(a + 1)	(b)

	(a + b + 1)
= a

a + b
,

where we used Proposition 5.39, part b, and Proposition 5.30, part a. To compute
the variance, let us compute first the expectation of X 2. We have

EX 2 = 1

ˇ(a, b)

∫ 1

0
xa+1(1 − x)b−1dx

= ˇ(a + 2, b)

ˇ(a, b)
= a(a + 1)

(a + b + 1)(a + b)

using the properties of the beta and gamma integrals. Then

V (X ) = a(a + 1)

(a + b + 1)(a + b)
−

(
a

a + b

)2

= ab

(a + b)2(a + b + 1)
.

�

Remark 5.43 If a = b = 1, then ˇ(1, 1) is the uniform distribution on the
interval [0, 1] (just substitute in the formula). Because of this generalization and the
fact that the beta distributed random variable takes values in the interval [0, 1], the
distribution is widely used as a distribution for probabilities p.

Remark 5.44 If X, Y are independent random variables such that X ∼ 	(a, �)
and Y ∼ 	(b, �), then X

X+Y ∼ Beta(a, b). We shall give a proof of this result at a
later time.
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5.4.6 STUDENT’S t DISTRIBUTION

Definition 5.45 A random variable with p.d.f.:

This distribution has a very interesting history. To start, we remark that if
one takes X1, . . . , Xn standard normal random variables and forms the expression

X̄√
S2(X )

,

then this expression has a t distribution with n − 1 degrees of freedom.
In the previous formulation, we have

X̄ =
∑n

i=1 Xi

n
,

the sample average, and

S2(X ) = 1

n − 1

n∑
i=1

(Xi − X̄ )2,

the sample variance.
In 1908 William Sealy Gosset published a derivation of the distribution of

this expression

(
X̄√
S2(X )

)
when the original variables X1, . . . , Xn are standard

normals Student (1908). He was working for the Guinness Brewery in Dublin,
Ireland at the time. Guinness forbade members of its staff from publishing sci-
entific papers to not allow the competition to acquire secrets of its famous brew
manufacturing. Gosset realized the importance of his discovery and decided such
a result deserved to be known even under a pseudonym. The distribution became
popular when applied by Sir Ronald Aylmer Fisher (Fisher, 1925) who calls it
Student’s t distribution.

Definition 5.46 Let

f (x) = 	( n+1
2 )√

�n	n2

(
1 + t2

n

)− n+1
2

, (5.8)

where n > 0 is a parameter called degree of freedom and 	(x) is the usual gamma
function. A random variable X with probability density given by (5.8) is called a
t distributed random variable with n degrees of freedom. We shall use the notation
X ∼ tn.

Figure 5.11 presents the density and distribution for a t10 random variable.
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FIGURE 5.11 t10 distribution (continuous line) overlapping a standard normal (dashed
line) to note the heavier tails.

Remark 5.47 The p.d.f. may be written in terms of the beta function as well:

f (x) = 1√
nˇ

(
1
2 ,

n
2

) (
1 + t2

n

)− n+1
2

.

The shape of this distribution resembles the bell shape of the normal; however,
it has fatter tails. In fact a tn distribution has no moments greater than n. One
more interesting fact is that the tn p.d.f. converges to the normal p.d.f. as n → ∞.

Proposition 5.48 The mean and variance of a tn distributed random variable
are

E[X ] =
{

0 if n > 1,

∞ otherwise

and

V (X ) =
{ n
n−2 if n > 2,

∞ otherwise.

The proofs of these facts are left as exercises (exercise 5.39).
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5.4.7 PARETO DISTRIBUTION

Definition 5.49 A random variable is distributed as a Pareto random variable
with parameters a, b > 0 if its probability density is given by

f (x) = aba

xa+1
1[b,∞)(x). (5.9)

We shall use the notation X ∼ P(a, b) to denote a random variable with this distri-
bution.

Figure 5.12 presents the density and distribution for a P(10, 1) random
variable.

Proposition 5.50 Function (5.9) is a probability density function.

Proof: We have ∫
R

f (x) dx = aba
∫ ∞

b

x−a−1dx

= aba
−1

a

[
x−a]x=∞

x=b = 1.

�
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FIGURE 5.12 Pareto distribution.
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Proposition 5.51 Let X ∼ P(a, b). Then

1. If a > 1, then X is integrable and

EX = ab

a − 1
.

2. If a > 2, then X is square integrable and in this case

V (X ) = ab2

(a − 1)2(a − 2)
.

Proof: Let us first calculate the expectation. We have

EX = aba
∫ ∞

b

x−adx

= aba

(a − 1)ba−1
= ab

a − 1
.

Note that the function x−a is integrable at infinity if and only if a > 1. We
compute now EX 2. It holds

EX 2 = aba
∫ ∞

b

x−a+1dx

= aba

(a − 2)ba−2
= ab2

a − 2

with the same remark about the second moment existing only if a > 2. In this
case we can calculate

V (X ) = ab2

a − 2
−

(
ab

a − 1

)
== ab2

(a − 1)2(a − 2)
.

�

Remark 5.52 If a ≤ 1 in a Pareto density (5.9), the corresponding random
variable has infinite expectation and indeed no moment of any order.

The following result shows a link between the Pareto and the exponential
distributions.

Proposition 5.53 LetZ be an r.v. with law Exp(a), a > 0 and let b > 0. Define

X = beZ .

Then X has Pareto distribution P(a, b).



5.4 Examples 151

Proof: Recall that the density of Z is given by

fZ (x) = ae−ax1(x>0).

Consider F : R→ R a bounded measurable function. Then

EF (X ) = EF (beZ ) =
∫
R

F (bex )fZ (x) dx

=
∫ ∞

0
F (bex )ae−axdx,

and by using the change of variables

bex = y with x = log y − log b

we obtain

EF (X ) = aba
∫ ∞

b

F (y)y−a−1dy.

Finally, using Proposition 5.4, we obtain that the density of X is given by
(5.9). �

5.4.8 THE LOG-NORMAL DISTRIBUTION

In probability theory, a log-normal distribution is a probability distribution of a
random variable whose logarithm is normally distributed. IfX is a random variable
with a normal distribution, then Y = eX has a log-normal distribution. Likewise,
if Y is log-normally distributed, then X = log (Y ) is normally distributed. By
formalizing, we obtain the following:

Definition 5.54 A random variable X with density function

f (x) = 1

x�
√

2�
e−

(log x−�)2

2�2 1(0,∞) (5.10)

is called a log-normal random variable. The parameters are � ∈ R and � > 0. We
shall denote X ∼ LogN (�, �2) a distribution with these parameters.

Figure 5.13 presents the density and distribution for a LogNormal (0, 1) ran-
dom variable.

Proposition 5.55 The function defined buy the formula (5.10) is a probability
density function.

Proof: Since � > 0, we can see that f (x) ≥ 0 for every x. Next, by using the
change of variables

log x = y, x = ey
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FIGURE 5.13 LogNormal distribution.

we obtain ∫
R

f (x) dx = 1√
2��

∫ ∞

0
x−1e−

(log x−�)2

2�2

= 1√
2��

∫ ∞

−∞
e−

(y−�)2

2�2 = 1

since this is the density of a normal random variable with mean � and variance
�2 (which we have proven is integrating to one). The calculation of the variance
is left as an exercise. �

The cumulative distribution function of the log-normal distribution can be
written in terms of the cumulative function of the normal distribution. Specifi-
cally,

FX (t ) = �

(
log t − �

�

)
,

where

�(z) = P(Z ≤ z)

is the c.d.f. of a normal 0, 1 (Z ∼ N (0, 1)). Therefore the probabilities involving
the log-normal random variables can be obtained from the probability table of
the standard normal distribution.



5.4 Examples 153

Proposition 5.56 Let X be a random variable with density given by (5.10).
Then

EX = e�+ 1
2 �

2
, VX =

(
e�

2 − 1
)
e2�+�2

.

Proof: We compute the expectation using the same change of variable used in the
previous proof (log x = y):

EX = 1√
2��

∫ ∞

0
x−1e−

(log x−�)2

2�2

= 1√
2��

∫ ∞

−∞
ye−

(y−�)2

2�2 = �,

again using the formula for the expectation of a normal. �

In the following result we show the relation between the log-normal distri-
bution and the normal distribution.

Proposition 5.57 Let Z be a r.v. withN (�, �2) distribution. Then the random
variable

X = eZ

follows a log normal distribution with parameters � and �2.

Proof: The derivation follows easily by computing EF (Z ) (for an F arbitrary
bounded measurable function) using the density of Z and the change of variables
x = log y. �

Remark 5.58 The reciprocal is also true: if X has log normal law with parameter
� and �2 then the r.v. Y = log X ∼ N (�, �2). Again the proof is simply retracing
the argument in the proposition above.

5.4.9 LAPLACE DISTRIBUTION

Definition 5.59 We will say that a random variable X has Laplace distribution
if its density is given by

f (x) = �

2
e−�|x|, (5.11)

with � > 0. We will denote X ∼ Laplace(�).

Figure 5.14 presents the density and distribution for a Laplace(1) random
variable.
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(a) Laplace(1) p.d.f. (b) Laplace(1) c.d.f

FIGURE 5.14 Laplace distribution.

Proposition 5.60 The function in (5.11) is a probability density function.

Proof: The function is positive and

∫
R

f (x)dx = �

2

∫
R

e−�|x|

= �

2

(∫ ∞

0
e−�xdx +

∫ 0

−∞
e�xdx

)

= �

∫ ∞

0
e−�xdx = 1.

�

Proposition 5.61 Let X be an r.v. with Laplace(�) distribution. Then

EX = 0 and E|X | = 1

�
.

Proof: First

EX =
∫
R

xe−�|x|dx = 0
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since the function xe−�|x| is odd and therefore its integral on a symmetric interval
around the origin vanishes. Moreover,

E|X | =
∫
R

|x|e−�|x|dx

= �

∫ ∞

0
xe−�xdx = 1

�
.

�

The Laplace distribution may be obtained as the product of a random variable
with exponential distribution and an independent random variable with uniform
distribution (discrete).

Proposition 5.62 Let X be an r.v. with distribution exp(�), � > 0 and let S be
an r.v. with uniform law over {−1,+1}, independent of X (i.e., S takes values ±1
with probability 1/2). Set Y = XS . Show that Y has a Laplace distribution with
parameter �.

Proof: Since the random variable S takes only values −1 and 1 and

P(S = −1) = P(S = 1) = 1

2
,

let us compute the cumulative distribution function of Y by the law of total
probability. For every t ∈ R we can write, using the independence of X and S ,

P(Y ≤ t ) = P(S = 1, X ≤ t ) + P(S = −1,−X ≤ t )

= P(S = 1)P(X ≤ t ) + P(S = −1)P(X ≥ −t )
= 1

2
(P(X ≤ t ) + 1 − P(X ≤ −t ))

and by differentiating with respect to t we obtain that the density of Y is given
by

fY (t ) = 1

2
(fX (t ) + fX (−t )) = �

2
e−�|t |,

which indeed is the function in (5.11). �

5.4.10 DOUBLE EXPONENTIAL DISTRIBUTION

The double exponential is a slight generalization of the Laplace distribution. We
mention it here since it has its uses in mathematical finance where it is utilized to
model the jump distribution.
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Definition 5.63 A random variable X with density,

f (x) =
{
p˛1e

−˛1x if x > 0

(1 − p)˛2e
˛2x if x ≤ 0

, ˛1, ˛2 > 0, (5.12)

is said to have a double exponential density.

We can easily obtain that (5.12) defines a valid probability density by observ-
ing that the density is nothing more than a weighted sum of exponential densities.
Furthermore, using the same observation, we easily obtain the mean respectively
variance of this distribution as

EX = p
1

˛1
− (1 − p)

1

˛2

and

V (X ) = p
1

˛2
1

+ (1 − p)
1

˛2
2

.

EXERCISES

Problems with Solution

5.1 Consider the function f : R→ R such that

f (x) = 2

�(1 + x2)
1[0,∞)(x).

(a) Show that f is a probability density function.
(b) Take X a random variable with density f . Show that the expectation
of X does not exist.

Solution: Point (a) follows since the antiderivative of 1
x2 is arctan(x) and

arctan(∞) = �
2 , arctan(0) = 0. Concerning point (b), by definition we

have

EX = 2

�

∫ ∞

0

x

1 + x2
dx;

But the function x
1+x2 is not integrable on [0,∞[. Its primitive is ln 2(1 +

x2) which explodes at infinity. �

5.2 Let X be an r.v. with uniform distribution on [0, 1]. Show that X 2 ∼
Beta( 1

2 , 1).
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Solution: Let F : R→ R be an arbitrary bounded measurable function.
Then

EF (X 2) =
∫ 1

0
F (x2) dx =

∫ 1

0
F (y)

1

2
√
y
dy

where we made the change of variables x = √
y with dx = 1

2
√
y dy. This

implies that the density of X 2 is

1

2
y−

1
2 1[0,1](y) = 1

ˇ( 1
2 , 1)

y
1
2 −1(1 − y)1−11[0,1](y),

which is exactly the density of the beta distribution Beta( 1
2 , 1). �

5.3 Let X be a continuous random variable with density f .
(a) Show that Y = X 2 is a continuous random variable with density

gY (y) = 1

2
√
y

(
f (

√
y) + f (−√

y)
)

1[0,∞)(y).

(b) Retrieve the results in exercise 5.2 and in Proposition 5.35.

Solution: We study the distribution function FY of the r.v. Y = X 2. If
x ≤ 0 then obviously

FY (x) = P(X 2 ≤ x) = 0.

For x > 0 we have

FY (x) = P(−√
x ≤ X ≤ √

x) = FX (
√
x) − FX (−√

x),

where FX denotes the distribution function of X . The expression of the
density gY is obtained when we differentiate with respect to x. �

5.4 Suppose X is a Cauchy random variable with density 1
�

1
1+x2 .

(a) Is the r.v. X integrable?
(b) Compute the density function of the r.v. Y = 1

X
.

(c) Let V be an r.v. with uniform law on the interval
(−�

2 ,
�
2

)
. Find the

law of W = tanV = sinV
cosV .

(d) Find the value ak = P
(
X ≤ k

4

)
, for k = 1, 2, 3.
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Solution: Let us compute the density of Y = 1
X

. Take F bounded mea-
surable and

EF (Y ) = EF (
1

X
) =

∫
R

F (
1

x
)
1

�

1

1 + x2
dx

= 1

�

∫ ∞

0
F (

1

x
)
1

�

1

1 + x2
dx

+ 1

�

∫ 0

−∞
F (

1

x
)
1

�

1

1 + x2
dx

We separate the integral over R into two parts so that we can make the
change of variable 1

x
= y (note that the function x → 1

x
is not bijective

on R but its restrictions to the positive and negative axis are). Thus

EF (Y ) = 1

�

∫ ∞

0
F (y)

1

�

1

1 + 1
y2

1

y2
dy

+ 1

�

∫ 0

−∞
F (y)

1

�

1

1 + 1
y2

1

y2
dy

= 1

�

∫
R

F (y)
1

1 + y2
dy

which implies that Y follows also a Cauchy distribution. Therefore, 1/Y
the inverse of a Cauchy law has also a Cauchy distribution.

Let us look at part (c). Note that the density of V is

g (x) = 1

�
1(− �

2 ,
�
2 )(x)

and the density of W is computed as follows. For any F bounded mea-
surable, we have

EF (W ) = 1

�

∫
− �

2

�

2
F (tan(v)) dv

= 1

�

∫
R

1

1 + x2
F (x) dx

with the change of variable

tan(v) = x, v = arctan(x), dv = 1

1 + x2
dx.

The meaning of point (c) is to show that the tangent of a uniformly
distributed random variable on the interval (−�/2, �/2) has a Cauchy
distribution. �
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5.5 Let X ∼ N(0, 1).
(1) Calculate the distribution of

Y = X 2 and Z = eX .

(2) For every t ∈ R calculate the expectation and the variance ofY = etX .

(3) For which values of a > 0 the r.v. Z = eaX
2

is integrable? In this case,
compute the integral.

(4) For which values of a > 0 the r.v.Z = eaX
2

is square integrable? Com-
pute its variance.

Solution: About part (2) we can write

EY = EetX = 1√
2�

∫
R

etx e−
x2

2 dx = 1√
2�
e
t2

2

∫
R

e−
1
2 (x−t )2

dx

= 1√
2�
e
t2

2

∫
R

e−
y2

2 dy = e
t2

2 ,

where we used the change of variables x − t = y.
In part (3), since Z is a positive random variable, we obtain

E |Z | = EZ = 1√
2�

∫
R

eax
2
e−

x2

2 dx

= 1√
2�

∫
R

ex
2(a− 1

2 )dx

and this integral is finite if and only if

a <
1

2
.

Using the change of variables x
√

1
2 − a = √

2y, we obtain that

EZ = 1√
1 − 2a

.

Part (4) follows from part 3 since

E(eaX
2
)2 = Ee2aX 2 = 1√

1 − 4a

which is finite if and only if

a <
1

4
.

�
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5.6 Let a > 0. Define

f : R→ R
by

f (x) = ae−a(x−x0)1(x0,∞)(x).

(a) Prove that f is a density
(b) Compute EX and V (X ), where X is an r.v. with p.d.f f .

Solution: For x0 = 0, we are in the case of the exponential law with
parameter a. Follow the proofs of Propositions 5.18 and 5.19. �

5.7 Let X be a random variable with probability distribution U[0, 1]. Set

Y1 = max(X, 1 − X ) and Y2 = min(X, 1 − X ).

(a) Compute the cumulative distribution functions of Y1 and Y2.
(b) Calculate E (Y1 − Y2)

Solution: We compute the cumulative distribution function of Y1. For
every t ∈ [0, 1]

FY1 (t ) = P(Y1 ≤ t ) = P(X ≤ t, 1 − X ≤ t )

= = P(1 − t ≤ X ≤ t ).

and this is zero if 1 − t > t that means t < 1
2 while for t ≥ 1

2 we obtain

FY1 (t ) =
∫ t

1−t
dx = 2t − 1.

For t ≥ 0 we clearly have FY1 (t ) = 0 while for t ≥ 1, FY1 (t ) = 1. By
differentiating with respect to t we see that the density of Y1 is

21[ 1
2 ,1](x)

and thus Y1 has uniform distribution on the interval [ 1
2 , 1]. Similarly Y2

will have a uniform distribution on [0, 1
2 ].

For the second question, use the identity

max(a, b) − min(a, b) = |a − b|
if a, b ∈ R. �

5.8 Let X be a random variable with density

f (x) = 1

2
cos(x)1( �2 , �2 )(x).
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Calculate the expectation and the variance of the random variable

Y = sin X.

Solution: The expectation is

EY =
∫
R

x f (x) dx = 1

2

∫ �
2

− �
2

x cos x dx

= 0

because we integrate an odd function x cos x on an interval symmetric
around the origin. Then we can write:

V (Y ) = EY 2 = 1

2

∫ �
2

− �
2

x2 cos x dx

= [
x2 sin x

]x= �
2

x=− �
2

− 2
∫ �

2

− �
2

x sin x dx

=
(�

2

)2
− 1.

�

5.9 Let U be a random variable with uniform distribution on the interval
[0, 1] and let � > 0. Set

X = −1

�
lnU.

Find the cumulative distribution function and the law of X .

Solution: Since P (U ∈ (0, 1)) = 1 it follows easily that

P (lnU > 0) = 1.

Therefore, for any for any t ≥ 0

1 − FX (t ) = P

(
−1

�
lnU ≥ t

)
= 1.

For t ≥ 0, we have

P(X ≥ t ) = P(lnU ≤ −�t ) = P(U ≤ e−�t )

=
∫ e−�t

0
dx = e−�t .

Consequently

FX (t ) = (1 − e−�t )1t≥0.
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Note that this is the c.d.f of an exponential therefore X follows an
exponential law with parameter �. �

5.10 Show that the n-th moment of the log normal distribution with parameters
� and � is given by

EX n = en�+ 1
2 n

2�2
.

Solution: Recall the density of the log normal distribution from the for-
mula (5.10). Using this density we obtain:

EX n = 1√
2��

∫ ∞

0
xn−1e−

(log x−�)2

2�2 dx

= 1√
2��

∫
R

enye−
(y−�)2

2�2 dy.

Notice that the above expression means that

EX n = EenY

whereY ∼ N (�, �2). Completing the square under the integral we obtain

EX n = e−
1
2
�

�2
1√
2��

∫
R

e−
1

2�2 (y−(�+n�))2

dy

= e−
1
2
�

�2 e−
(n�2+�)2

2�2

= en�+ 1
2 n

2�2
.

�

5.11 Let X be with law Exp(�), � > 0, that is, with density

f (x) =
{
�e−�x if x > 0,

0 otherwise.

(a) Prove that for every s > 0 and t > 0,

P(X ≥ s + t |X ≥ s) = P(X ≥ t ).

Remark 5.64 Do you recall this property from somewhere? This property
of the distribution is useful when modeling the time to break of a material
where no external signs of aging are detected, or the waiting time (of a bus
at a stop, etc.) when no other extra information is given besides the time of
individual’s arrival.

(b) X arrives in a bank. There are n customer service counters which are
all occupied. The service time for the counters are independent exponen-
tially distributed random variables with parameter � > 0. The moment



Exercises 163

a customer service window becomes available X will be served. What is
the average waiting time before being served? Compare this time with the
expected time in the situation when there is only one customer office and
n people are before X (one at the office and n − 1 in the queue).
(c) A deposit is lighted by n light bulbs continuously on. The lifetime of
each light bulb is exponentially distributed with parameter � > 0. What
is the average time after which the first bulb burns out? What is the average
time after which the deposit is not lit at all if the maintenance department
does not change the burnt out bulbs?

Solution: We only give the solution for the first part. It is immediate to
calculate for every t > 0

P(X > t ) = �

∫ ∞

t

e−�xdx = e−�t

and for every t ≤ 0

P(X > t ) = 1.

Fix s, t > 0. We have

P(X ≥ s + t |X ≥ s) = P(X ≥ t ) = P(X > s + t, X > s)

P(X > s)

= P(X > s + t )

P(X > s)

= e−�(s+t )

e−�s
= e−�t

= P(X ≥ t ).

�

5.12 If X is a random variable such that

P(X > 0) = 1 and P(X > t ) > 0

for every t > 0 and

P(X > t + s|X > t ) = P(X > s) for every s, t ≥ 0,

then X has an exponential distribution.
Compare with exercise 5.11.

Solution: Let us define the function h : R+ → R,
h(t ) = P(X > t )
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for all t ≥ 0. Notice that h is decreasing, h(0) = 1 and h(t ) ≥ 0 for every
t ≥ 0. Using the definition of conditional probability and the hypothesis,

h(t + s) = h(t )h(s) for all s, t ≥ 0.

This can be extended by induction to

h(t1 + · · · + tn) = h(t1) . . . h(tn) for all t1, . . . , tn ≥ 0 and n ∈ N∗.
(5.13)

Relation (5.13) implies that

h(1) =
[
f

(
1

n

)]n
, ∀n ∈ N∗.

Therefore, for every positive rational numbers p
q

with p, q ∈ N, q /= 0

h

(
p

q

)
=

[
h

(
1

q

)]p
= h

p
q (1).

We choose � > 0 such that h(1) = e−� and then

h(r) = e−�r for every r ∈ Q+.

For an arbitrary t ∈ R+ \Q+ we choose r, s ∈ Q+ such that r < t < s
and since h is decreasing

e−�r = h(r) ≥ h(t ) ≥ h(s) = e−�s.

By taking s − r arbitrary small, and since h is continuous, we get

h(t ) = e−�t for all t ≥ 0.

For t < 0 we have by monotonicity and positivity of the c.d.f; that

0 ≤ F (t ) ≤ F (0) = 1 − P(X > 0) = 0.

then,F (t ) = 0 for t < 0. As a consequence,X has exponential distribution
with parameter

� = − ln P(X > 1).

�

5.13 Consider (Yn, n ≥ 1) a sequence of independent identically distributed
random variables with common law U([a, b]). For every n ≥ 1 we define

In = inf (Y1, . . . , Yn)

and

Mn = sup(Y1, . . . , Yn).
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(a) Calculate the c.d.f. of Mn.
(b) Derive the expression of the density of Mn.
(c) Derive the expression of the density of In.

Solution: We calculate the cumulative distribution function of Mn. For
every t we have

(Mn ≤ t ) = P(Y1 ≤ t, Y2 ≤ t, . . . , Yn ≤ t )

and

P(Mn ≤ t ) = P(Y1 ≤ t, . . . , Yn ≤ t )

= P(Y1 ≤ t ).....P(Yn ≤ t )

by the independence of Yi ’s. From Proposition 5.16, for every i we have

P(Yi ≤ t ) =

⎧⎪⎨
⎪⎩

0 if t < a,
t−a
b−a if t ∈ [a, b]

1 if t > b.

and thus

P(Mn ≤ t ) =

⎧⎪⎨
⎪⎩

0 if t < a,(
t−a
b−a

)n
if t ∈ [a, b]

1 if t > b.

(5.14)

Now, differentiating with respect to t in (5.14), we obtain the following
expression for the density of Mn:

fMn
(t ) =

{
0 if t < a or t > b,

n
(
t−a
b−a

)n−1 1
b−a if t ∈ [a, b]

For the random variable In it is easier to compute P(In ≥ t ) rather than
the c.d.f. We have

P(In ≥ t ) = P(Y1 ≥ t, . . . , Yn ≥ t )

= P(Y1 ≥ t ).....P(Yn ≥ t )

and since for every i = 1, . . . , n

P(Yi ≥ t ) =

⎧⎪⎨
⎪⎩

1 if t < a,

1 − t−a
b−a if t ∈ [a, b]

0 if t > b.
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we get

P(In ≥ t ) =

⎧⎪⎨
⎪⎩

1 if t < a,(
1 − t−a

b−a
)n

if t ∈ [a, b]

0 if t > b.

We differentiate with respect to t and we obtain

fIn (t ) =
{

0 if t < a or t > b,

n
(
1 − t−a

b−a
)n−1 −1

b−a if t ∈ [a, b].

�

5.14 The triangular distribution Let

f (x) = c(1 − |x|) if x ∈ [−1, 1]

and f (x) = 0 otherwise. Find the constant c that makes f a probability
density function.

Solution: f is positive and∫
R

f (x)dx = c

∫ 0

−1
(1 + x) dx + c

∫ 1

0
(1 − x) dx

= c

(
1 − 1

2

)
+ c

(
1 − 1

2

)
= c,

so c = 1. �

5.15 Let a ∈ R. For each of the next functions, determine if they can be consid-
ered as density functions. If yes, give the necessary and sufficient conditions
on a, compute the c.d.f., the expectation and the variance.
(a)

f (x) = axe−x if x > 0

and f (x) = 0 otherwise.
(b)

f (x) = x3 if x ∈ [−a, a]
and f (x) = 0 otherwise.
(c)

f (x) = a ln(x) if x ∈ [1, e]

and f (x) = 0 otherwise.
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Solution: (a) Note that a should satisfy a ≥ 0. Then, by integrating by
parts, we obtain ∫

R

f (x) dx =
∫ ∞

0
axe−xdx

= a
[
e−x

]x=∞
x=0 = a,

thus

a = 1.

The c.d.f. is

F (b) = 0 if b ≥ 0

and

F (b) =
∫ b

0
xe−xdx = 1 − (b + 1)e−b if b > 0.

Integrating by parts we will find

EX = 2 and V (X ) = 2.

(b) We will show that f is not a probability density function. In fact, the
condition f (x) ≥ 0 for every x ∈ R implies in particular

f (a) ≥ 0 and f (−a) ≥ 0

so

a3 ≥ 0 and − a3 ≥ 0

and this gives a = 0. So f (x) = 0 for every x ∈ R and we cannot have∫
R

f (x) dx = 1.

(c) we will show that f is a density if and only if a = 1. First, a should
be bigger or equal than 0 and∫

R

f (x) dx = a

∫ e

1
ln(x) dx

= [x ln x]e1 − a

∫ e

1

x

x
dx

= ae − a(e − 1) = a
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so a = 1. Then

F (b) = P(X ≤ b) =
∫ b

−∞
f (x) dx

=

⎧⎪⎨
⎪⎩

0 if b ≤ 1

1 + b ln(b) − b if b ∈ [1, e]

1 if b > e

An integration by parts yields

EX = e2 + 1

4
, EX 2 = 2e3 + 1

9

and

V (X ) = 2

9
e3 + 7

144
− 1

16
e4 − 1

8
e2.

�

5.16 Let

f (x) = 12x2 − 12x3.

when x lies in the interval (0, 1) and assume f (x) = 0 otherwise.
(a) Verify that f is a probability density function.
(b) Find the probability P(1/4 ≤ X ≤ 3/4).

Solution: Note that

f (x) = 12x2(1 − x) ≥ 0

for every x ∈ (0, 1) and∫ ∞

−∞
f (x) dx =

∫ 1

0
(12x2 − 12x3) dx

= [
4x3]1

0 − [
3x4]1

0

= 1.

Also

P(1/4 ≤ X ≤ 3/4) =
∫ 3

4

1
4

(12x2 − 12x3) dx

= [
4x3]3/4

1/4 − [
3x4]3/4

1/4 .

�
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5.17 Let X be a continuous r.v. with density f given by

f (x) = 3

64
(x + 2)2 if |x| ≤ k

and f (x) = 0 otherwise.
(a) Find k
(b) Give the density of the random variables

Y = √
X + 2 and Z = |X |.

(c) Compute EY , V (Y ).
(d) Compute EZ , V (Z ).

Solution: (a) We have

∫
R

f (x) dx = 3

64

∫ k

−k
(x + 2)2dx

= 3

64

[
1

3
(x + 2)3

]x=k
x=−k

= 1

32
(k3 + 12k).

We need to have

1

32
(k3 + 12k) = 1,

which is equivalent to

k3 + 12k − 32 = 0.

The function f (k) = k3 + 12k − 32 is increasing (its derivative is strictly
positive) and satisfies f (2) = 0. So, k = 2 is the unique solution.

(b) First we obtain the c.d.f. of X

F (b) = P(X ≤ b) =
∫ b

−∞
f (x) dx

=

⎧⎪⎨
⎪⎩

0 if b ∈ (−∞,−2]
1
64 (x + 2)3 if b ∈ (−2, 2]

1 if b > 2
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Then the c.d.f of Y will be

G(y) = P(
√
X + 2 ≤ y)

=

⎧⎪⎨
⎪⎩

0 if y ∈ (−∞, 0],
1

64 y
6 if y ∈ (0, 2],

1 if y > 2.

By differentiating G with respect to y we obtain the density of Y

g (y) =

⎧⎪⎨
⎪⎩

0 if y ∈ (−∞, 0],
1

64 y
5 if y ∈ (0, 2],

0 if y > 2.

The r.v. Z can be treated similarly. The expectation of Y is:

EY =
∫ 2

0

6

64
y6dy = 12

7
.

�

5.18 Let X be a random variable with uniform law U [0, 1] and set Y = 2X.
Compute the density of the random variable X + Y .

Solution: Obviously

X + Y = 3X

and the random variable Z = 3X follows an uniform distribution on the
interval [0, 3]. this can be seen, for example, by using the c.d.f. Then

FZ (x) = 1

3
1[0,3](x).

�

5.19 Could the following functions be the cumulative distribution functions
of a continuous random variable?
(a)

F (x) =

⎧⎪⎨
⎪⎩

0 if x < 0,
2
x

if x ∈ [1, 2],

1 otherwise.

(b)

F (x) =
{

0 if x < 0,

x if x ≥ 0.
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(c)

F (x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

x if x ∈ [0, 1),

1 if x ≥ 1.

Solution: (a) F is not a c.d.f. because F is not continuous at x = 1 and
F is not increasing on [1, 2).

(b) F is not a c.d.f because

lim
b→∞

F (b) = ∞.

(c) F could be a c.d.f, it does satisfy the required conditions. �

5.20 Let X be an r.v. with density

f (x) = xe−
1
2 x

2
if x ≥ 0

and

f (x) = 0 if x < 0.

(a) Identify the law of X
(b) Give the law of Y = X 2

(c) Compute EY and VY .

Solution: (b) We compute the c.d.f of Y .

G(y) = P(Y ≤ y)

= P(X 2 ≤ y)

= P(X ∈ (−√
y,

√
y)).

Therefore,

G(y) = 0 if y < 0

and

G(y) = F (
√
y) − F (−√

y),

where F denotes the cdf of X . By differentiating we find the density of Y

g (y) = 0 if y ≤ 0

and

g (y) = 1

2
exp

(−(
√
y)2) if y > 0.
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Consequently, Y follows an exponential law with parameter 1
2 and thus

EY = 2 and V (Y ) = 4.

�

5.21 Let a ∈ R and define

f (x) = −x2 + (a + b)x − ab if x ∈ [a, b]

and

f (x) = 0 otherwise.

Prove that f is a p.d.f. if and only if

b = a + 6
1
3 .

Solution: By factorizing the function −x2 + (a + b)x − ab = (x −
a)(b − x) we will see that it is always positive. On the other hand,∫

R

f (x) dx = − (a − b)3

6

and this gives the conclusion. �

5.22 Let

f (x) = −x2 + bx

on [0, 1] and f (x) = 0 otherwise.
(a) Find the parameter b.
(b) Find the probability that the random variable lies between 0 and 1.
(c) Find the probability that the random variable lies between 0 and 1

2 .

Solution: Since∫
R

f (x) dx =
∫ 1

0
(−x2 + bx) dx = −1

3
+ b

2

we obtain b = 8
3 .

Clearly

P(0 ≤ X ≤ 1) = 1

while

P

(
0 ≤ X ≤ 1

2

)
=

∫ 1/2

0
(−x2 + bx) dx = − 1

24
+ 8

24
= 7

24
.

�
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5.23 Let X be an r.v. with law Exp(1). Define

Y = 1 − e−X .

Find the law of Y .

Solution: The c.d.f of Y can be written as

G(y) = 1 − P(e−X ≤ 1 − y).

Thus

G(y) = 1 − 0 if 1 − y ≤ 0

and

G(y) = 1 − (1 − P(X ≤ − ln(1 − y))) if y < 1.

Finally,

G(y) = 1 if y ≥ 1, G(y) = 0 if y < 0

and

G(y) = y if y ∈ (0, 1).

We recognize the cdf of the uniform law U (0, 1). �

Problems without Solution

5.24 Let X be a random variable with uniform distribution U [−1, 1]. Show
that the density of the random variable Y = X 3 is given by

fY (y) = 1

6y
2
3

1[−1,1](y).

Hint. Study the cumulative distribution function of Y

FY (y) = P(X 3 ≤ y)

with y ∈ R. Distinguish the cases y ≤ −1, −1 ≤ y ≤ 0, 0 ≤ y ≤ 1 and
y ≥ 1.

5.25 Buffon’s needle problem. Suppose that a needle is tossed at random
onto a plane ruled with parallel lines a distance L apart, where the length
of the needle is l ≤ L.

What is the probability that the needle intersects one of the parallel
lines?

Hint: Consider the angle that is made by the needle with the parallel
lines as a random variable ˛ uniformly distributed in the interval [0, 2�]
and the position of the midpoint of the needle as another random variable
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 also uniform on the interval [0, L]. Then express the condition ‘‘needle
intersects the parallel lines’’ in terms of the position of the midpoint of
the needle and the angle ˛.

5.26 A random variable X has distribution function

F (x) = a + b arctan
x

2
, −∞ < x < ∞.

Find:
(a) The constants a and b.
(b) The probability density function of X .

5.27 What is the probability that two randomly chosen numbers between 0
and 1 will have a sum no greater than 1 and a product no greater than 15

64 ?

5.28 Choose a point A at random in the interval [0, 1]. Let L1 (respectively L2)
be the length of the bigger (respectively smaller) segment determined by
A on [0, 1]. Calculate:
(a) P (L1 ≤ x) for x ∈ R.
(b) P (L2 ≤ x) for x ∈ R.

5.29 Two friends decide to meet at the Castle gate of Stevens Institute. They
each arrive at that spot at some random time between a and a + T . They
each wait for 15 minutes and then leave if the other did not appear. What
is the probability that they meet?

5.30 Recall the Laplace density:

f (x) =
{

1
2�e

�x, if x ≤ 0,
1
2�e

−�x , if x > 0,

(a) Find the distribution function F (x) for a Laplace random variable.

Now, let X and Y be independent exponential random variables with
parameter �. Let I be independent of X and Y and equally likely to be 1
or −1.
(b) Show that X − Y is a Laplace random variable.
(c) Show that IX is a Laplace random variable.
(d) Show that W is a Laplace random variable where

W =
{
X, if I = 1,

−Y, if I = −1.

5.31 For any random variable X ,
(a) Show that if X ≥ 0 and EX = 0 then X = 0 almost surely.
(b) Show that if V (X ) = 0 then X = EX almost surely.
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5.32 Recall that Laplace’s law with parameter � > 0 has the density

f (x) = �

2
e−�|x|.

(a) Compute the c.d.f. F of Laplace’s law. Calculate its inverse F−1.
(b) Let p ∈ (0, 1). Check that the binary variable defined by

X = 1 if U < p

and

X = 0 otherwise

follows Bernoulli’s law with parameter p.

5.33 Let X be a random variable with density

f (t ) = Kt21[−˛,˛](t ).

(a) Find K in terms of ˛.
(b) Find the cumulative distribution function of X .
(c) Calculate P(X > ˛

2 ).
(d) Calculate EX .

5.34 Let X a uniformly distributed r.v. on [0, 1].
(a) Find the law of X 2 using its cumulative distribution function.
(b) Calculate the density of this law.

5.35 Let X : � → [0,+∞) a positive continuous random variable and for
every t ∈ R let

F (t ) = P(X ≤ t )

the c.d.f. of X . Show that

E(X ) =
∫ +∞

0
[1 − F (t )] dt.

5.36 Let X : � → R be an integrable continuous r.v. Show that

E(X ) =
∫ +∞

0
P(X > t ) dt −

∫ 0

−∞
P(X < t ) dt.

Hint: Use the previous problem

5.37 Let f be a density function defined:

f (x) = Axe−x for x ≥ 0

and zero otherwise.
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(a) Find the parameter A.
(b) Find the probability that a random variable X with density f lies
between 0 and 1.

Hint: One gets

A = 1 and P(0 ≤ X ≤ 1) = 1 − 2

e
.

5.38 Let X be a random variable with Gamma law 	(a, �), a, � > 0. Prove
that the r.v. cX follows the Gamma law 	(a, �

c
) for every c > 0.

5.39 Let X ∼ tn a t distributed r.v. with pdf given by Eq. (5.8). Calculate the
first two moments of the density (E[X ] and E[X 2]) when n ≥ 2. Show
that the expectation does not exist when n = 1 and likewise show that the
variance does not exist unless n > 2.



Chapter Six

Generating Random Variables

6.1 Introduction/Purpose of the Chapter

In this chapter we talk about methods used for simulating random variables. In
today’s world where computers are part of any scientific activity, it is very impor-
tant to know how to simulate a random experiment to find out what expectations
one may have about the results of the phenomenon. Applying the Central Limit
Theorem (Chapter 12) and simulation methods allows us to draw conclusions
about the expectations even if the distributions involved are very complex. How-
ever, in order to apply simulation methods, we need to be capable of generating
random variables with the needed distribution.

Throughout this chapter we assume as given a Uniform(0,1) random number
generator. Any software is capable of producing such random numbers, and the
typical name for a uniform random variable is RAND. For a more recent de-
velopment and a very efficient way to generate exponential and normal random
variables without going to uniform, we refer the reader to Rubin and Johnson
(2006). The ziggurat method developed by Marsaglia and Tsang (2000) remains
one of the most efficient ways to produce uniforms, and it is used in Matlab. The
Mersene twister is another efficient way to create these random numbers (this is
the default method in R).

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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6.2 Vignette/Historical Notes

Before modern computers, researchers requiring random numbers would either
(a) generate them through rolling dice and shuffling cards or (b) use tables of
random numbers generated previously.

The first attempt to provide researchers with a supply of random numbers
was in 1927 when the Cambridge University Press published a table of 41,600
digits developed by Leonard H. C. Tippet. In 1947, the RAND Corporation
generated numbers by the electronic simulation of a roulette wheel; the results
were eventually published in 1955 as A Million Random Digits with 100,000
Normal Deviates (Corporation, 2001, reprinted). John von Neumann was a pi-
oneer in computer-based random number generators. In 1949, Derrick Henry
Lehmer invented the linear congruential generator, used in most pseudo-random
number generators today. With the advances and the widespread use of com-
puters, algorithmic pseudo-random number generators replaced random number
tables. Today, ‘‘true’’ random number generators capable of generating numbers
without using a cycle as most pseudo-random number generators are very rare
and indeed not used on a large scale.

6.3 Theory and Applications

6.3.1 GENERATING ONE-DIMENSIONAL RANDOM
VARIABLES BY INVERTING THE CUMULATIVE
DISTRIBUTION FUNCTION (c.d.f.)

Let X be a one-dimensional random variable defined on any probability space
(�,F,P) with cumulative distribution function F (x) = P(X ≤ x). Before we
proceed with the main lemma which provides the most classical generation
method, let us formalize the notion of a quantile of a distribution.

Definition 6.1 Suppose F is a distribution function. Let ˛ ∈ (0, 1) be a constant.
Define

x+(˛) = inf {z ∈ R : F (z) > ˛},
x−(˛) = inf {z ∈ R : F (z) ≥ ˛},

where x−(˛) is defined as the ˛-percentile (or ˛-quantile) of the distribution F .

Note that since ˛ is fixed, there is nothing random in the definition above,
and x+(˛) and x−(˛) are just numbers.

Furthermore, if F is continuous at the point, then x+(˛) = x−(˛) := x˛ and
in this case the distribution admits a unique ˛-percentile (equal to x˛).

However, if the function F is discontinuous at the point which happens in
one of the two cases described in Figure 6.1, then we need to have a general
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X +(ϖ) = X (ϖ)
_

ϖ

0

1

(a) A point of discontinuity for F

X +(ϖ)X (ϖ)
_

ϖ

0

1

z

(b) An interval where the function F is constant

FIGURE 6.1 Points where the two variables X ± may have different outcomes.

definition of ˛-percentile. This is why we chose x−(˛) = inf {z ∈ R : F (z) ≥ ˛}
as the choice for the percentile.

In fact, look at Figure 6.1a. In this situation there is no problem since x+(˛) =
x−(˛). The issue appears when the ˛ level is corresponding to the horizontal line
in Figure 6.1b. In this case, any point between x−(˛) and x+(˛) is in fact an
˛-percentile. In this situation, F−1(˛) is the whole interval [x−(˛), x+(˛)].

A percentile as defined above is a special case of a quartile. Both notions were
born in statistics from observing practical applications. In statistics, one tries to
infer the distribution of a random variable by observing repeated outcomes of the
variable. Quantiles are outcomes corresponding to dividing the probabilities into
equal parts. To be more specific, if we divide the probability into 2 equal parts,
we obtain three points of which only the middle one is interesting (the others are
minimum and maximum). This point is the median.

Similarly, if we divide the total probability into three equal parts, the two
points that correspond to the 0.33 and 0.67 probability are called terciles. Quar-
tiles are the best-known percentiles, with 0.25 and 0.75 probability correspond-
ing to the first and third quartiles, respectively. The second quartile is again the
median. To sum up, here are the most popular types of quantiles:

• The 2-quantile is called the median denoted M .
• The 3-quantiles (T1,T2) are called terciles.
• The 4-quantiles (Q1, M Q3) are called quartiles.
• The 5-quantiles (QU1, . . . , QU4) are called quintiles.
• The 6-quantiles (S1, . . . , S5) are called sextiles.
• The 10-quantiles (D1, . . . , D9) are called deciles.
• The 12-quantiles (Dd1, . . . , Dd11) are called duo-deciles.
• The 20-quantiles (V1, . . . , V19) are called vigintiles.
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• The 100-quantiles are called percentiles (denoted %).
• The 1000-quantiles are called permilles (denoted ‰).

Now that we understand what is a percentile, we come back to random
numbers generation methodologies. All the distribution generation methods in
this section are based on the following lemma.

Lemma 6.2 The random variableU = F (X ) is distributed as aU (0, 1) random
variable. If we let F−1(u), denote the inverse function, that is,

F−1(u) = {x ∈ R | F (x) = u},
then the variable F (U ) has the same distribution as X .

Note: The F−1(u) as defined in the lemma is a set. The set may contain a
single number when the function is continuous. Please recall the discussion above
and the issue when the distribution function is not continuous.

Proof: The proof is simple if F is a bijective function. Note that in this case we
have

P(U ≤ u) = P(F (X ) ≤ u).

But recall that F is a probability itself so the result above is zero if u < 0 and 1 if
u ≥ 1. If 0 < u < 1 since F is an increasing function, we can write

P(U ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u,

and this is the distribution of a U (0, 1) random variable.
If F is not bijective, the proof still works but we have to work with sets. The

relevant case is once again 0 < u < 1. Recall that F is increasing. Because of this
and using the definition of F−1 above, we have

F−1 ((−∞, u]) = {x ∈ R | F (x) ≤ u}.
If the set F−1(u) has only one element (F is bijective at u), there is no problem; the
set above is just (−∞, F−1(u)] and the same proof works. If F−1(u) = {x ∈ R |
F (x) = u} has more than one element, then let xmax be the maximum element in
the set (this exists and is in the set since u < 1) and we may write

F−1 ((−∞, u]) = (−∞, xmax].

Thus we have

P(U ≤ u) = P(F (X ) ≤ u) = P
(
X ∈ F−1 ((−∞, u])

)
= P (X ∈ (−∞, xmax]) = P ◦ X −1((−∞, xmax])

= F (xmax)
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by the definition of distribution function. Now recall that xmax ∈ F−1(u),
thus F (xmax) = u. Once again we reach the distribution of a uniform random
variable. �

This lemma is very useful for generating random variables with prescribed
distribution. We only have to calculate the function F−1 to be able to generate
any distributions using only the uniform random number generator. This method
works best when the distribution function F and its inverse F −1 have analytical
formulas easy to compute. The best example of this situation is the exponential
distribution.

EXAMPLE 6.1 Generating an exponential random variable

Suppose we want to generate an Exponential(�) random variable—that is,
a variable with density:

f (x) = �e−�x1{x>0}.

Note that the expectation of this random variable is 1/�. This distribution
can also be parameterized using � = 1/�, in which case the expectation will
be �. The two formulations are equivalent.

We may calculate the distribution function in this case as

F (x) = (1 − e−�x )1{x>0}.

We need to restrict this function to F : (0,∞) → (0, 1) to have a bijection.
In this case for any y ∈ (0, 1) the inverse is calculated,

F (x) = 1 − e−�x = y ⇒ x = −1

�
log(1 − y)

⇒ F−1(y) = −1

�
log(1 − y).

So, to generate an Exponential(�) random variable, first generateU (a
Uniform(0,1) random variable) and simply calculate

−1

�
log(1 − U );

this will have the desired distribution.
As a note, a further simplification may be made since 1 − U has the

same distribution as U ; we obtain the same exponential distribution by
taking

−1

�
logU.

We use one or the other formulation to generate exponentials and never
both. Even though using U and 1 − U will produce two exponentially
distributed numbers, they are going to be related—not independent.
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For all discrete random variables the distribution function is a step function.
In this case the c.d.f. F is not bijective, thus we need to restrict it somehow
to obtain the desired distribution. The main issue is that the function is not
surjective, so we need to know what to do when a uniform is generated.

EXAMPLE 6.2 Generating rolls of a six-sided fair die

Suppose we want to generate the rolls of a fair six sided die. The c.d.f. is
easy to calculate as

F (x) =

⎧⎪⎨
⎪⎩

0 if x < 1,

i/6 if x ∈ [i, i + 1) with i = 1, . . . , 5,

1 if x ≥ 6.

The inverse function is then

F−1(0) = (−∞, 1),

F−1

(
1

6

)
= [1, 2),

. . .

F−1

(
5

6

)
= [5, 6),

F−1(1) = [6,∞).

We can pick a point in the codomain, but that would not help since the in-
verse function will only be defined on the discrete set {0, 1/6, . . . , 5/6, 1}.
Instead we extend the inverse function to (0, 1) in the following way:

F−1(y) =
⎧⎨
⎩

1 if y ∈ (0, 1
6

)
i + 1 if y ∈ [ i6 , i+1

6

)
with i = 1, . . . , 5.

Thus, we first generateU a Uniform(0,1) random variable. Depending
on its value, the roll of die is simulated as

Y = i + 1, if U ∈
[
i

6
,
i + 1

6

)
with i = 0, . . . , 5.
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EXAMPLE 6.3 Generating any discrete random variable with
finite number of outcomes

The example above can be easily generalized to any discrete probability
distribution. Suppose we need to generate the outcomes of the discrete
random variable Y which takes n values a1, . . . , an each with probability
p1, . . . , pn respectively so that

∑n
j=1 pj = 1.

To generate such outcomes, we first generate a random variable U as
a Uniform(0,1) random variable. Then we find the index j such that

p1 + · · · + pj−1 ≤ U < p1 + · · · + pj−1 + pj.

The generated value of the Y variable is the outcome aj .

Note that theoretically, the case when the generated uniform values of U
are exactly equal to pj do not matter since the distribution is continuous and the
probability of this event happening is zero. However, in practice, such events do
matter since the cycle used to generate the random variable is finite and thus the
probability of the event is not zero—it is extremely small but not zero. This is
dealt with by throwing away 1 if it is generated and keeping the algorithm as
above.

Remark 6.3 The previous example also covers the most commonly encountered need
for generating random variables—the tossing of a coin or generating a Bernoulli(p)
random variable. Specifically, first we generate U, a Uniform(0,1). If U < p output
1, else output 0.

6.3.2 GENERATING ONE-DIMENSIONAL NORMAL
RANDOM VARIABLES

Generating normal (Gaussian) random variables is important because this dis-
tribution is the most widely encountered distribution in practice. In the Monte
Carlo-type methods, one needs to generate millions of normally distributed ran-
dom numbers; in practice, this means the precision with which these numbers are
generated is crucial. Imagine if one in 1000 numbers are off, which means that
in 1 million simulated numbers about 1000 are bad and thus the simulated path
has 1000 places where the increment distribution is off.

Let us remark that if we know how to generate X , a normal variable with
mean 0 and variance 1, that is, with density

f (x) = 1√
2�
e−

x2

2 ,

then we know how to generate any normal variable Y with mean � and standard
deviation � by simply taking Y = �+ �X .
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Thus, it is enough to learn how to generate N (0, 1) random variables. The
inversion methodology presented in the previous section cannot be applied
directly since the normal CDF does not have an explicit functional form and
therefore inverting it directly is impossible. However, one of the fastest and better
methods (in fact the default in the R programming language) uses a variant of the
inversion method.

Specifically, the algorithm developed by Wichura (1988) calculates quantiles
corresponding to the generated probability values. The algorithm has two sub-
routines to deal with the hard-to-estimate quantiles from the tails of the gaussian
distribution. First, the algorithm generates a probability p using a Uniform(0,1)
distribution. Then it calculates the corresponding normally distributed value zp
by inverting the distribution function:

p =
∫ zp

−∞

1√
2�
e−x

2/2dx = �(zp),

zp = �−1(p). The respective subroutines PPND7 or PPND16 are chosen de-
pending on the generated uniform value |p − 0.5| ≤ 0.425 or |p − 0.5| > 0.425.
These routines are polynomial approximations of the inverse function�−1(·). The
algorithm has excellent precision (of the order 10−16), and it runs relatively fast
(only requires a logarithmic operation besides the polynomial operations).

Other methods of generating normally distributed numbers are presented
below. All of them take advantage of transformations of random variables. Some
are particular cases of more general methodology presented later in the chapter.

6.3.2.1 Taking Advantage of the Central Limit Theorem. Generate a
number n of Uniform(0,1) random numbers. Then calculate their sum Y =∑n

i=1Ui . The exact distribution of Y is the so-called Irwin–Hall distribution,
named after Joseph Oscar Irwin and Philip Hall, which has the probability density

fY (y) = 1

2(n− 1)!

n∑
k=0

(−1)k
(
n

k

)
(y − k)n−1sign(y − k),

where sign(x) = |x|/x is the sign function (taking value −1 if x is negative and
1 if x is positive). This particular distribution has mean n/2 and variance n/12,
as is very easy to see using the individual values for the uniforms. However, the
Central Limit Theorem (Chapter 12) guarantees that as n → ∞ the distribution
of Y approaches the normal distribution. A simple algorithm designed around
this result would generate, say, 12 uniforms and then it would calculate:

Y =
∑12

i=1Ui − 12/2√
12/12

=
12∑
i=1

Ui − 6

This new number is approximately distributed as an N (0, 1) random variable.
Since we use the 12 uniform numbers the range of the generated values is [−6, 6],
as opposed to the real normally distributed numbers which are taking values inR.
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Of course, taking a larger n will produce normals with better precision; however,
observe that we need n uniform numbers to create one normal so the algorithm
slows down considerably as n gets larger.

6.3.2.2 The Box–Muller Method. This method of generating normally
distributed random numbers is named after George Edward Pelham Box and
Mervin Edgar Muller, who developed the algorithm in 1958. The algorithm uses
two independent Uniform(0,1) random numbers U and V . Then two random
variables X and Y are calculated using

X =
√

−2 lnU cos 2�V ,

Y =
√

−2 lnU sin 2�V .

Then the two random numbers X and Y have the standard normal distribution
and are independent.

The independence and normality is easy to derive since for a bivariate normal
random vector (XY ), the variable X 2 + Y 2 is distributed as a chi-square random
variable with two degrees of freedom. This is the same as an exponential random
variable, and note that the quantity −2 lnU has this exact distribution. Fur-
thermore, the projection on the axes is determined by the angle between [0, �],
and this angle is chosen by the random variable V . Please note that the method
produces two independent random numbers that can both be used later, but
the method requires calculating the logarithm and the square root and applying
trigonometric functions; thus the practical implementation may be quite slow.

6.3.2.3 The Polar Rejection Method. This method is due to Marsaglia and
is a modification of the Box–Muller algorithm, which does not require compu-
tation of the trigonometric functions sin and cos. In this method, two random
numbers U and V are drawn from the Uniform (−1, 1) distribution, and then
S = U 2 + V 2 is calculated. If S is greater or equal to one, then the method starts
over by regenerating two uniforms; otherwise two new numbers

X = U

√
−2

ln S

S
,

Y = V

√
−2

ln S

S

are calculated. These X and Y are independent, standard normal random num-
bers. The Marsaglia polar rejection method is both faster and more accurate
(because it does not require the approximation of three complicated functions)
than the Box–Muller method. The drawback, though, is that unlike the Muller
method, it may reject many generated uniforms until it reaches values that are
acceptable.

In fact, a simple calculation shows that the probability of the generated pair
representing coordinates of points inside the unit circle is �/4, or about 79% of
generated pairs lie inside the circle.
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6.3.3 GENERATING RANDOM VARIABLES. REJECTION
SAMPLING METHOD

The polar method is in fact a particular case of the more general rejection sam-
pling method presented next. In rejection sampling (also named the accept–reject
method), the objective is to generate a random variable X having the known
density function f (x). The idea of this method is to use a different but easy-to-
generate-from distribution g (x). The method is very simple and originally was
presented by John von Neumann. The idea of this algorithm lies with the Buf-
fon needle problem (throwing the needle and accepting or rejecting, depending
whether or not the needle touches the lines).

First, determine a constant M such that

f (x)

g (x)
< M, ∀x

Once such M is determined, the algorithm is

Step 1. Generate a random variable Y from the distribution g (x)

Step 2. Accept X = Y with probability f (Y )/Mg (Y ). If reject go back to
step 1.

The accept–reject step can be easily accomplished using a Bernoulli random
variable. Specifically, step 2 is as follows:

Step 2. Generate U ∼ Uniform(0, 1) and accept the generated Y if

U <
f (Y )

Mg (Y )
;

go back to step 1 if reject.

Proposition 6.4 The random variable X created by the rejection sampling
algorithm above has the desired density f (x).

Proof: LetN be the number of necessary iterations to obtain the final number X .
Let us calculate the distribution of X . Since each trial is independent, we have

P{X ≤ x} = P

{
Y ≤ x

∣∣∣∣U ≤ f (Y )

Mg (Y )

}
=

P
(
{Y ≤ x}⋂{U ≤ f (Y )

Mg (Y )

})
P
{
U ≤ f (Y )

Mg (Y )

} .



6.3 Theory and Applications 187

Now the numerator is

P

({
U ≤ f (Y )

Mg (Y )

}
| {Y ≤ x}

)
P ({Y ≤ x})

=
∫ x

−∞
P

({
U ≤ f (y)

Mg (y)

}
| {Y = y

})
g (y) dy

=
∫ x

−∞

f (y)

Mg (y)
g (y) dy = 1

M

∫ x

−∞
f (y)dy.

Similarly the denominator is

P

{
U ≤ f (Y )

Mg (Y )

}
=
∫ ∞

−∞
P

{
U ≤ f (y)

Mg (y)
| {Y = y}

}
g (y) dy

=
∫ ∞

−∞

f (y)

Mg (y)
g (y) dy = 1

M

∫ ∞

−∞
f (y) dy = 1

M
.

Taking the ratio of the two probabilities shows that X has the desired
distribution. �

Note that calculating the denominator in the proof above shows that the proba-
bility of accepting the generated number is always 1/M . So if the constant M is
close to 1, then the method works very efficiently. However, this is dependent on
the shape of the densities f and g . If the density g is close in shape with f , then
the method works very well. Otherwise, a large number of generated variates are
needed to obtain one random number with density f .

Corollary 6.5 (Slight generalization) Suppose that we need to generate
from density f (x) = C f1(x) where we know that the functional form f1 and C is a
normalizing constant, potentially unknown. Then suppose we can find a density g (x)
easy to generate from and a constant M such that

f (x)

g (x)
< M, ∀x.

Then the rejection sampling procedure described above will create random numbers
with density f .

The corollary is proven in exactly the same way as the main proposition.
Sometimes the constant is hard to calculate, and this is why the corollary is useful
in practice.
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EXAMPLE 6.4 Generating from densities where only the
functional form is known

Let us exemplify the practical value of the corollary. Suppose I want to
generate from the density:

f (x) = Cx2(sin x)cos x | log x|, x ∈
(�

6
,
�

2

)
.

The constant C is chosen to make the density f integrate to 1. Note
that actually calculating C is impossible. A plot of this density may be
observed in Figure 6.2.

We wish to apply the rejection sampling to generate from the distribution
f . To this end, we will use the uniform distribution on the interval

(
�
6 ,

�
2

)
, and

we shall calculate the constant M so that the resulting function is majoring the
distribution. To do so, we calculate the maximum of the function, namely

m = max
x∈( �6 , �2 )

x2(sin x)cos x | log x| = 1.113645,

0.6 0.8 1.0 1.2 1.4 1.6
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.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

FIGURE 6.2 The function defining the density f (·) (continuous line) and the uniform
distribution M ∗ g(·) (dashed line) without the scaling constant C .
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and we take

M = Cm
(�

2
− �

6

)
.

With this constant M we are guaranteed that f (x) < Mg (x) for every x ∈(
�
6 ,

�
2

)
. To see this, recall that the density of the uniform on the desired interval

x ∈ (�6 , �2 ) is constant g (x) = (�2 − �
6

)−1
. Furthermore, the ratio that needs to

be calculated is

f (x)

Mg (x)
= x2(sin x)cos x | log x|

m
.

Obviously, this ratio is very good (approaches 1) when x is close to �/2, and it is
close to 0 (as it should) when x is close to 1.

The following code is written in R and implements the rejection sampling
for the example. The output of this code may be seen in Figure 6.3. Any line
which starts with the # character is a comment line.

Histogram of estimated.dist

estimated.dist

D
e
n
s
it
y

0.6 0.8 1.0 1.2 1.4 1.6

0
1

2
3

FIGURE 6.3 The resulting histogram of the generated values. This should be close in shape
to the real function if the simulation is working properly. Note that this is a proper distribution
and contains the scaling constant C .
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##Example 6.4: Rejection Sampling R code
#We calculate the constant m used later

m=max(xˆ2*(sin(x)ˆcos(x))*abs(log(x)))

# Next defines the function used to calculate the ratio f(x)/M*g(x)

ratio.calc=function(x)
{return(xˆ2*(sin(x)ˆcos(x))*abs(log(x))/m)}

#The next function returns n generated values from the distribution
f(x)

random.f=function(n)
{GeneratedRN=NULL;

for(i in 1:n)
{OK=0;

while(OK!=1){
Candidate=runif(1,pi/6,pi/2);
U=runif(1);

if(U<ratio.calc(Candidate)){OK=1;GeneratedRN=c(GeneratedRN,
Candidate)}}

}
return(GeneratedRN)}

#Now we call the function we just created to generate 10,000
numbers

estimated.dist=random.f(10000)

#Finally, to check here is the histogram of these numbers

hist(estimated.dist,nclass=75)

Next we present a seemingly more complex example which has a simpler
solution than the rejection sampling method.

EXAMPLE 6.5 An example generating from a beta mixture

As another exemplification let us generate from the mixture of beta distri-
butions:

f (x) = 0.5ˇ(x; 10, 3) + 0.25ˇ(x; 3, 15) + 0.25ˇ(x; 7, 10), x ∈ (0, 1),

where the ˇ(x, a, b) denotes the Beta distribution p.d.f. with shape param-
eters a and b:

ˇ(x, a, b) = 	(a + b)

	(a)	(b)
xa−1(1 − x)b−1,
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and 	(·) is the gamma function:

	(x) =
∫ ∞

0
t x−1e−t dt.

A plot of the resulting distribution may be observed in Figure 6.4.
The mixture of distributions is always a distribution since the individual

pdf’s integrate to 1. Please note that the beta distribution is always distributed
on (0, 1); and since we can use the uniform distribution on (0.1) to generate
candidate values, the constant M can be chosen as the maximum value of the
mixture gamma density function f . The code presented next uses the rejection
sampling to generate random numbers from the desired distribution.

#We implement the mixture density
f=function(x)
{return(0.5*dbeta(x,10,3)+0.25*dbeta(x,3,15)+0.25*dbeta(x,7,10))}

#We calculate the constant M
M=max(f(x))
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FIGURE 6.4 The mixture gamma density function (continuous line).
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FIGURE 6.5 The resulting histogram of the generated values from the gamma mixture
density. We had to use 100,000 generated values to see the middle hump.

#The next routine generates n numbers with desired distribution
random.mixturebeta=function(n)
{GeneratedRN=NULL;
for(i in 1:n)
{ OK=0;
while(OK!=1){
Candidate=runif(1);
U=runif(1);
if(U<f(Candidate)/M){OK=1;GeneratedRN=c(GeneratedRN,Candidate)}}
}
return(GeneratedRN)}

#Finally we verify by plotting the histogram of generated values
estimated.dist=random.mixturebeta(100000)

hist(estimated.dist,nclass=100,freq=F)

The resulting histogram may be observed in Figure 6.5. Once again the
simulated values look good. However, we want to remark that the generation of
simulated values may be made faster by taking advantage of the specific form of
the distribution.
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We note that the distribution in Example 6.5 is a type of distribution obtained
by mixing three classical distributions. Such random variables are much easier to
generate (and much faster) as the next section details.

6.3.4 GENERATING FROM A MIXTURE OF
DISTRIBUTIONS

Suppose that the density we need to generate from is a mixture of simple, easy to
generate from distributions. Specifically,

f (x) =
n∑
i=1

wifi(x|�i),

where the weights wi sum to 1, and the densities fi may all be different and
dependent on the vectors of parameters �i. It is much easier to generate from such
distributions, provided that we have implemented already generators for each of
the distributions fi . The idea is that the weights determine which distribution
generates the respective random number.

Specifically, we first generate a random variableU as a Uniform(0,1) random
variable. Then we find the weight index j such that

w1 + · · · + wj−1 ≤ U < w1 + · · · + wj−1 + wj.

Next, the desired random number is generated from the distribution fj . Let us
exemplify this generating strategy by continuing Example 6.5.

EXAMPLE 6.6 (Continuation of Example 6.5)

The objective is once again to generate random numbers from the mixture
beta distribution:

f (x) = 0.5ˇ(x; 10, 3) + 0.25ˇ(x; 3, 15) + 0.25ˇ(x; 7, 10), x ∈ (0, 1)

We will implement the code in R once again and we will take this oppor-
tunity to display some advanced R programming features.

The following code implements the generation of random numbers one by
one, just as one would do it in C or in some other low-level language.

## Method of generation for mixture distributions.

random.mixturebeta.v2=function(n)
{GeneratedRN=NULL;
for(i in 1:n)
{U=runif(1);
RandomVal=ifelse(U<0.5,rbeta(1,10,3),ifelse(U<0.75,rbeta(1,3,15),
rbeta(1,7,10)))
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GeneratedRN=c(GeneratedRN,RandomVal)
}
return(GeneratedRN)}

#And calling the function

random.mixturebeta.v2(100000)

The function ifelse(CONDITION, VALUEIFYES, VALUEIFNO) is
R-specific, but the code above does not take advantage of the amazing strength
of R which is working with vectors and large objects. The next function
accomplishes the same thing, but it is much faster as we shall see.

## Method of generation for mixture distributions (optimized code).
random.mixturebeta.v2.optimal=function(n)
{U=runif(n); GeneratedRN=rep(0,n)
beta1=(U<0.5);beta2=(U>=0.5)&(U<0.75);beta3=(U>=0.75);
n1=GeneratedRN[beta1]; n2=GeneratedRN[beta2];n3=GeneratedRN[beta3];
GeneratedRN[beta1]=rbeta(n1,10,3);
GeneratedRN[beta2]=rbeta(n2,3,15)
GeneratedRN[beta3]=rbeta(n3,7,10)

return(GeneratedRN)}

In the code above, the beta1, beta2, and beta3 are vectors containing values
TRUE and FALSE, depending on whether the respective condition is satisfied.
When such vectors (containing TRUE and FALSE values) are applied as indices
as in GeneratedRN [beta1], they select from the vector GeneratedRN only those
values which correspond to the TRUE indices. This allows us to operate inside
vectors very fast without going through vectors one by one. Furthermore, the
code takes advantage of the internal R method of generating beta distributions,
one of the best and fastest available in any statistical software.

We did not plot the resulting histograms of the generated values for the later
two functions since they are very similar with Figure 6.5. However, the next table
provides running times for the two methods as well as the optimized algorithm
above.

Table 6.1 presents some interesting conclusions when looking at the two
method and at the special optimized R implementation. Each of the three methods
was run 30 times and a garbage collection was performed before each run so
that interferences from the other processes run by the operating system were
minimized. The first two columns directly compare the two methods.

TABLE 6.1 Average Running Time (in Seconds) for 30 Runs of the
Three Methodsa

Rejection Sampling Mixture Gen Mixture Gen (Optimal)

Average time (sec): 20.122 20.282 0.034

Standard deviation: 0.409 0.457 0.008

aEach run generates a vector of 100,000 random numbers.
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For each number having the desired distribution, the rejection sampling
procedure generates minimum two uniform random numbers; and since it may
reject the numbers produced, the number of uniforms generated may actually
be larger. On the other hand, the mixture-generating algorithm always generates
one uniform and one beta distributed number. Both algorithms produce numbers
one after another until the entire set of 100,000 values is produced. The fact that
the times are so close to each other tells us that generating uniforms only (even
more than two) may be comparable in speed with generating from a more complex
distribution.

When comparing the numbers in the second column with the numbers in
the third column and we recall that it actually is the same algorithm, the only
difference being that the optimized version works with vectors, we can see the true
power of R on display. The 100,000 numbers are generated in about one-third
of a second; this basically means that simulating a path takes nothing at all if
done in this way and thus long simulations may be made significantly quicker by
rethinking the code.

6.3.5 GENERATING RANDOM VARIABLES. IMPORTANCE
SAMPLING

Rejection sampling works even if one only knows the approximate shape of the
target density. As we have seen from the examples, any candidate distribution
g (·) may be used, but in all examples we used the uniform distribution for it.
This happens to always be the case in practice. There are two reasons for this.
One is the fact that generating random uniforms is the most common random
number generator as well as the fastest. Two, the constant M must be chosen so
that f (x) < Mg (x) for all x in the support of f . This is generally hard to assess
unless one uses the uniform distribution and the constant M becomes related to
the maximum value of f (·) over its support as we have already seen. However, this
translates into rejecting a number of generated values which is proportional with
the difference in the area under the constant functionM and the area under f (·)
(look at the ratio between the difference in areas and the area under the dashed
line in Figure 6.2).

As we have seen, this is not so bad for one-dimensional random variables.
However, it gets really bad really quickly as the dimension increases. Importance
sampling tries to deal with this by sampling more from certain parts of the f (·)
density.

It is important to realize that, unlike the methods presented thus far, the
importance sampling method does not generate random numbers with specific
density f (·). Instead the purpose of the importance sampling method is to estimate
expectations. Specifically, suppose that X is a random variable (or vector) with
known density function f (x) and h is some other known function on the domain
of the random variable X , then the importance sampling method will help us
estimate:

E[h(X )].
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If we recall that the probability of some set A may be expressed as an expectation,
namely

P(X ∈ A) = E[1A(X )],

then we see that the importance sampling method may be used to calculate any
probabilities related to the random variable X as well. For example, probability
of the tails of the random variable X is

P(|X | > M ) = E[1(−∞,−M )(X )] + E[1(M,∞)(X )],

for some suitable M, and both may be estimated using importance sampling.

6.3.5.1 The Idea and Estimating Expectations Using Samples. The laws
of large numbers (either weak or strong) say that if X1, . . . , Xn are i.i.d. random
variables drawn from the distribution f (·) with finite mean E[Xi], then the sample
mean converges to the theoretical mean E[X ] (in probability or almost surely).
Either way, the theory says that if we have a way to draw samples from the
distribution f (·), be these x1, . . . , xn, then for each function h(·) defined on the
codomain of X we must have

1

n

n∑
i=1

h(xi) →
∫
h(x)f (x) dx = E[h(X )].

Therefore the idea of estimating expectations is to use generated numbers
from the distribution f (·). However, in many cases we may not draw from the
density f and instead we use some easy to sample from density g . The method is
modified using the following observation:

Ef [h(X )] =
∫
h(x)f (x) dx =

∫
h(x)

f (x)

g (x)
g (x) dx = Eg

[
h(X )

f (X )

g (X )

]
,

where we used the notations Ef and Eg to denote expectations with respect to
density f respectively g . The expression above is only correct if the support of
g includes the support of f ; otherwise we can have points where f (x) /= 0 and
g (x) = 0 and thus the ratio f (x)/g (x) becomes undefined.

6.3.5.2 The Algorithm Description. Combining the approximating idea
with the expression above, it is now easy to describe the importance sampling
algorithm to estimate Ef [h(X )].

1. Find a distribution g which is easy to sample from, and its support includes
the support of f (i.e., if f (x) = 0 for some x will necessarily imply g (x) = 0).

2. Draw n sampled numbers from the distribution g : x1, . . . , xn.
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3. Calculate and output the estimate:

1

n

n∑
i=1

h(xi)
f (xi)

g (xi)
=

n∑
i=1

h(xi)
f (xi)

ng (xi)
.

The reason this method is called importance sampling is the so-called impor-
tance weight f (xi )

ng (xi )
given to xi . The ratio f (xi )

g (xi )
may be interpreted as the number

modifying the original weight 1/n given to each observation xi . Specifically, if the
two densities are close to each other at xi then the ratio f (xi )

g (xi )
is close to 1 and the

overall weight given to xi is close to the weight 1/n (the weight of xi if we would
be able to draw directly from f ). Suppose that xi is in a region of f , which is very
unlikely (small values of f ). Then the ratio f (xi )

g (xi )
is going to be close to 0, and thus

the weight given to this observation is very low. On the other hand, if xi is from a
region where f is very likely, then the ratio f (xi )

g (xi )
is going to be large and thus the

weight 1/n is much increased.

6.3.5.3 Observations. First note that the weights f (xi )
ng (xi )

may not sum to 1.
However, their expected value is 1:

Eg

[
f (X )

g (X )

]
=
∫
f (x)

g (x)
g (x) dx =

∫
f (x) dx = 1,

thus the sum
∑n

i=1
f (xi )
ng (xi )

tends to be close to 1.
Second, the estimator

�̂ =
n∑
i=1

h(Xi)
f (Xi)

ng (Xi)
.

is unbiased and we can calculate its variance. That is,

E[�̂] = Ef [h(X )],

Var(�̂) = 1

n
Varg

(
h(X )

f (X )

g (X )

)
. (6.1)

Third, the variance of the estimator obviously depends on the choice of the
distribution g . However, we may actually determine the best choice for this distri-
bution. Minimizing the variance of the estimator with respect to the distribution
g means minimizing:

Varg

(
h(X )

f (X )

g (X )

)
= Eg

[
h2(X )

(
f (X )

g (X )

)2
]

− E2
f [h(X )].
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The second term does not depend on g , while using the Jensen inequality in the
first term provides

Eg

[(
h(X )

f (X )

g (X )

)2
]

≥
(

Eg

[
|h(X )| f (X )

g (X )

])2

=
(∫

|h(x)|f (x) dx

)2

.

However, the right side is not a distribution, but it does provide the optimal
importance sampling distribution:

g∗(x) = |h(x)|f (x)∫ |h(x)|f (x) dx
.

This is not really useful from a practical perspective since typically sampling
from f (x)h(x) is harder than sampling from f (x). However, it does tell us that the
best results are obtained when we sample from f (x) in regions where |h(x)|f (x) is
relatively large. As a consequence of this, using the importance sampling is better
at calculating E[h(X )] than using a straight Monte Carlo approximation (i.e.,
sampling directly from f and taking a simple average of the h(xi) values).

6.3.5.4 Practical Considerations. In practice it important that the estima-
tor has finite variance (otherwise it never improves with n). To see this, please
observe the formula for variance in (6.1). Here are sufficient conditions for the
finite variance of the estimator �̂:

• There exists someM such that f (x) < Mg (x) for all x and Varf (h(X )) < ∞,
or

• The support of f is compact, f is bounded above, and g is bounded below
on the support of f .

Remark 6.6 Choosing the distribution g is crucial. For example, if f has support
onR and has heavier tails than g , the weightsw(Xi) = f (Xi)/g (Xi) will have infinite
variance and the estimator will fail.

6.3.6 APPLYING IMPORTANCE SAMPLING

EXAMPLE 6.7

For this example we will showcase the importance of the choice of distri-
bution g . The example (distributional form) is due to Nick Whiteley in his
lecture notes on machine learning.

Suppose we want to estimate E[|X |] whereX is distributed as a Student-
t random variable with 3 degrees of freedom. In the notation used above,
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h(x) = |x| and f (x) is the t -density function

	
(

+1

2

)
√

�	

(


2

) (1 + x2




)− 
+1
2

,

with degrees of freedom 
 = 3, and 	(x) is a notation for the gamma
function used earlier in this chapter.

Please note that the target density does not have compact support; thus the
use of a uniform density for g is not possible (see the Remark 6.6). To exemplify
the practical aspects of the importance sampling algorithm, we shall use two
candidate densities:

1. g1(x), the density of a t distribution with 1 degree of freedom.

2. g2(x), the standard normal density (N(0,1)).

To compare we will also use the following:

3. A straight Monte Carlo where we generate directly from the distribution f .

The plot of these densities may be observed in Figure 6.6.
We know that the optimal choice is |h(x)|f (x) (plotted in Figure 6.6); how-

ever, generating from this density is very complex. We may also observe that while
the t density with 1 degree of freedom dominates the tails of the target distribu-
tion f , the candidate normal density is bellow the tails of the density so we expect
the estimator produced using the normal density to perform badly (the weights
f (Xi)/g (Xi) have infinite variance).

Next, we present the R-code used for the importance sampling example.

#Straight Monte Carlo:
n=10:1500
nsim=100

straightMC=NULL;
for(i in n)
{mu=NULL;
for(j in 1:nsim)
{a=rt(i,3);mu=c(mu,mean(abs(a)))}
straightMC=cbind(straightMC,c(i,mean(mu),sd(mu)))
}

#Importance Sampling using first candidate:

usingt1=NULL;
for(i in n)
{mu=NULL;
for(j in 1:nsim)
{a=rt(i,1);mu=c(mu,mean(abs(a)*dt(a,3)/dt(a,1)))}
usingt1=cbind(usingt1,c(i,mean(mu),sd(mu)))
}
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FIGURE 6.6 Candidate densities for the importance sampling procedure as well as the target
density.

#Importance Sampling using second candidate:

usingnorm=NULL;
for(i in n)
{mu=NULL;
for(j in 1:nsim)
{a=rnorm(i);mu=c(mu,mean(abs(a)*dt(a,3)/dnorm(a)))}
usingnorm=cbind(usingnorm,c(i,mean(mu),sd(mu)))

}

We plot the results of this code in Figure 6.7. To see the evolution of the
estimator, we use n (the number of generated samples) between 10 and 1500.
The images present the behavior of this estimator as n increases. The estimator
should converge to the right number, and the best estimator would have the
tightest confidence bounds. To calculate the confidence intervals, we repeat the
process 100 times for each value of n, which produces an estimate for the standard
deviation of the estimator.

To have meaningful comparisons, we also generate from the f distribution
and we simply use the average of h calculated at the generated values (this is the
straight Monte Carlo technique).

Looking at the first two plots (Figures 6.7a and 6.7b), we see that in fact the
importance sampling estimator is much better (superoptimal) than the straight
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(a) Straight Monte Carlo from f (x)
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(b) Importance sampling using g1 (x), t density
with 1 degree of freedom
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(c) Importance sampling using g2 (x), the standard
normal density

FIGURE 6.7 The evolution of different importance sampling estimators of E[|X |]. The
black line is the estimator while the gray lines give the estimated 95% confidence interval for the
estimator.

Monte Carlo estimator. The reason is easy to see by looking at the plot of densities
(Figure 6.6) and observing that the density g1 is in fact closer to the optimal
density |h(x)|f (x) than f . Furthermore, Figure 6.7c displays the suspected poor
performance of the importance sampling estimator obtained when generating
observations from the normal density. The confidence intervals never decrease in
width (since the variance never converges), and the convergence of the estimator
itself to the right value is very slow.

6.3.7 PRACTICAL CONSIDERATION: NORMALIZING
DISTRIBUTIONS

Oftentimes, in practical application, only the functional form of the distribution
is known. For instance, the importance sampling methodology may be used to
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estimate an integral of the form ∫
A

h(x)f (x) dx,

for some domain A. However, what if the function f does not integrate to 1 on
the domain A? Or what if it integrates to a finite value but is not a density (it does
integrate to 1 on the whole domain)? It turns out we can still use the methodology
in this case as well. However, we need to use the so called self-normalizing weights.

Specifically, suppose that we need to estimate the expectation, namely:

E[h(X )] =
∫
h(x)f (x) dx,

but the density f is only known up to a constant f (x) = Cf ϕ(x), where the
function ϕ(·) is known but the constant Cf is unknown.

The idea is to estimate the constant Cf as well. Note that since f is a density,
we must have

Cf = 1∫
ϕ(x) dx

= 1∫ ϕ(x)
g (x) g (x) dx

.

Thus, Cf is approximately estimated by taking samples xi from the distribution
g and constructing:

1∑n
i=1

ϕ(xi )
g (xi )

.

So proceeding exactly as in the straight importance sampling case, an estima-
tor is

�̃ =
∑n

i=1 h(Xi)
ϕ(Xi )
g (Xi )∑n

i=1
ϕ(Xi )
g (Xi )

.

Note that the estimator does not depend on the unknown constant Cf . Further
note that the weights associated with each variable Xi drawn from the distribution
g are normalized (the weights sum to 1).

Thus, the algorithm to estimate Ef [h(X )] is:

1. Find a distribution g which is easy to sample from and with its support
including the support of f .

2. Draw n sampled numbers from the distribution g : x1, . . . , xn.

3. Calculate and output the estimate:∑n
i=1 h(xi)

ϕ(xi )
g (xi )∑n

i=1
ϕ(xi )
g (xi )

.
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The estimator obtained is strongly consistent (it converges fast to the right
estimate); however, the estimator is biased (the expected value of the estimator is
under or over the target it estimates).

Lemma 6.7 Suppose we are given a random variable X with density f (x) =
Cf ϕ(x) and a function h defined on the support of the function f . Let g be another
density function such that its support includes the support of the function f , and define
w(x) = ϕ(x)/g (x). Suppose that X1, . . . , Xn are i.i.d. random variables with density
g . Then the estimator

�̃ =
∑n

i=1 h(Xi)w(Xi)∑n
i=1 w(Xi)

is strongly consistent, that is,

�̃
a.s.−→ Ef [h(X )] = �;

furthermore,

Eg [�̃] = �+ �Varg (w(X1)) − Covg (w(X1), h(X1)w(X1))

n
+ O(n−2),

Varg (�̃) = Varg (h(X1)w(X1) − �w(X1))

n
+ O(n−2).

The consistence result is immediate using the strong law for each of the two
integrals in the estimator’s formula. However, the proof of the biasedness of the
estimator is quite computational, and we refer the reader to recent work (Whiteley
and Johansen, 2011) for more details and a proof.

You may also wonder how it is possible for the estimator to be biased but
still converge to the right place. Just look at the expressions in Lemma 6.7 and
observe that the bias goes to 0 with n.

6.3.8 SAMPLING IMPORTANCE RESAMPLING

As we mentioned, the importance sampling technique is primarily used to calcu-
late expectations. However, it is possible to adapt the technique to obtain samples
from the distribution f . To do this, recall that

P(X ∈ A) = Ef [1A(X )].

Thus, following the procedure already detailed, one approximates the probability
with

P(X ∈ A) = 1

N

∑
xi

1A(xi)
f (xi)

g (xi)
.

Thus only the generated random numbers that fall into the set A are actually
counted.
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One may take this argument further and obtain an approximate discrete
distribution for f by

p̂(x) =
N∑
i=1

f (xi)

g (xi)
1{xi }(x) =

N∑
i=1

w(xi)1{xi}(x),

where the xi values are generated from the density g and obviously the corre-
sponding weights w(xi) = f (xi )

g (xi )
may not sum to 1. To generate M independent

random variables from the distribution f , one normalizes this discrete distribu-
tion p̂ and just generates from itM values whereM is much larger thanN . Once
theM new values are obtained—denoted, say, {y1, . . . , yM }—the new estimated
f distribution is

p̃(x) = 1

M

M∑
i=1

1{yi }(x).

Please note that since the values yi are generated from the xi values, the new
sample {y1, y2, . . . , yM } contains repeated observations. This method is known
as ‘‘sampling importance resampling ’’ and is due to Rubin (1998). In fact, the
technique is a simple bootstraping technique and it is not clear to us whether
the technique is better than simply using the p̂ distribution directly to generate
random variables. However, the paper is cited extensively in computer vision and
machine learning literature, so we decided to include the technique here.

6.3.9 ADAPTIVE IMPORTANCE SAMPLING

As we have shown in Example 6.7, the proper choice of g can lead to super-
efficient estimation algorithms. Specifically, using a g distribution which is close
to |h(x)|f (x) is much more efficient than using a straight Monte Carlo method
(i.e., with g (x) = f (x)). However, as the dimension of x increases (x becomes a
random vector with many dimensions), it becomes more complicated to obtain a
suitable g (x) from which to draw the samples. A strategy to deal with this problem
is the adaptive importance sampling technique, which seems to have originated in
the structural safety literature (Bucher, 1988).

The method considers a parameterized distribution g (x|�), where � is a pa-
rameter vector which is adaptable depending on the sampling results. The idea of
the method is to try and minimize the variance of the estimator �̂. Specifically,
consider a parameterized distribution g (x|�). We want to minimize

Eg [f
2(X )w2(X )] − E2

f [h(X )],

with respect to g where w(x|�) = f (x)
g (x|�) . Note that the second term does not

depend on g at all and that minimizing involves calculating the derivative of
the first term with respect to �. Since derivative and expectation commute on
a probability space if the expectation exists, the problem reduces to finding the
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roots of the derivative:

D(�) = 2Eg

[
f 2(x)w(x|�)∂w

∂�
(x|�)

]
.

A Newton–Raphson iteration procedure would find the minimum of the
original expression by using

�n+1 = �n − (∇D(�n))
−1D(�n).

However, the expectation D(�n) is hard to compute exactly. Furthermore,
the inverse of the gradient of D (or the hessian) of the original expression to
be minimized is even harder to calculate. Instead, the algorithm simply replaces
the expression (∇D(�n))

−1 with a learning constant and theD(�n) with its sample
value.

To describe the algorithm, we give a pseudo-code below. The technique starts
with a general distribution g (x|�) capable of many shapes as the � parameter varies
in some parameter space 
. Then the method adapts the parameter � to fit the
problem at hand. To this end:

• Start with an initial parameter value �0 (which produces some indifferent
shape of the distribution g ), and let n = 0.

• Do the following until the difference |�n+1 − �n| < ε, where ε is a prespeci-
fied tolerance level.

– Generate N values x1, . . . , xN from the distribution g (x|�n).
– Update the � value using

�n+1 = �n − ˛
1

N

N∑
i=1

f 2(xi)w(x|�n) ∂w
∂�n

(xi|�n).

• Check the condition |�n+1 − �n| < ε. If not satisfied, let n = n + 1 and
repeat the loop.

6.4 Generating Multivariate Distributions
with Prescribed Covariance Structure

This section talks about a multivariate distribution problem. Suppose that we have
a random number generator (from any distribution) and thus we can generate a
vector with all components independent. But what if we want to generate a vector
with a given correlation structure?

We look at a related problem involving normals.

6.4.1.1 Question. How do we generate a normal vector with known and
given mean vector � and covariance matrix �?
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Suppose that we can generate X = (X1, . . . , Xn) a vector of n independent
standard normal random variables (Xi ∼ N (0, 1)). Clearly the correlation (and
covariance matrix) is In, the identity matrix with 1 on the diagonal and 0 every-
where else. The mean vector is all 0.

Suppose that we can find a n-dimensional square matrix R such that RT R =
�. RT denotes the transpose of the matrix R.

Then the vector RT X + � is an n-dimensional vector of normals having the
required structure.

This claim is very easy to prove by just using the properties of the mean and
covariance of vectors. First, note that RT X + � is a vector with n dimensions and
that each component is a linear combination of independent normals. We know
that this is a normal. Therefore the Gaussian vector is determined completely by
its mean and covariance matrix.

Now by simply calculating the mean and covariance of the vector RT X + �,
we see that we obtain the desired distribution.

The practical application of the theory then involves finding the matrix R.
The decomposition presented next is an implementation of exactly this.

Cholesky Decomposition. Given a symmetric positive definite matrix �,
there exists U, an upper triangular matrix, and D, a diagonal matrix, such that

� = UTDU.

If we can calculate theU andD matrices from the Cholesky decomposition,
then we can write

� = UTDU = (UT
√
D)(

√
DU ) = (

√
DU )T (

√
DU ),

where
√
D is the diagonal matrix having the elements on the diagonal equal to

the squared root of the respective diagonal elements in D. Therefore the matrix
R is just simply

R =
√
DU.

Cholesky Decomposition in Practice. If one wants to code the Cholesky
decomposition in C, one has to look at the method or to use libraries that readily
compute the U and D matrices. A source is the numerical recipes book Press
et al. (2007). The 2nd edition from 1992 is still free and available online. Section
2.9 in the older edition presents an algorithm written in C which performs the
Cholesky decomposition.

You may also use MATLAB or R. In both programs the command is
‘‘chol()’’—the argument of the function is the � matrix for which the decom-
position is required. Also note that the R function provides the upper triangular
matrix R = √

DU directly, skipping the D and
√
D calculation. The matrix R is

normally all that is needed in practice.
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As a remark, please note that the input matrix should be symmetric (easy to
check) and positive definite (harder a bit). Any symmetric positive definite matrix
has positive eigenvalues. So to check if the matrix is positive definite, run the
function ‘‘eigen(matrixname)’’ in R and inspect the resulting eigenvalues. If they
are all positive, then the matrix is good to go.

6.4.1.2 Generating a Vector of Correlated Normals—Practice. If you
followed the theoretical presentation above, it should be easy to generate the
vectors required. The researcher would generate a sample of n standard normals
and put them in an n-dimensional vector X1; then RT X1 + � is the first vector
with the desired correlation structure. The process is repeated M times to create
a sample of M observations.

6.4.1.3 Extension to Generating Correlated Brownian motions. Since
a popular problem is to generate Brownian motions, we shall give a pseudo-code
that will accomplish this. When generating Brownian motions, one needs to take
advantage of the fact that that the increments of a one-dimensional Brownian mo-
tion over any interval of length�t are independent and distributed as N (0,�t ).

Using this, the goal is to generate

B(t ) =

⎛
⎜⎜⎜⎜⎝
B1(t )

B2(t )
...

Bn(t )

⎞
⎟⎟⎟⎟⎠

such that the correlation matrix of the Brownian motion is �t for some given
matrix �.

The algorithm generates the increments and then it sums them.

• First calculate the Cholesky decomposition of the correlation matrix � =
RT R. Please note that we can calculate very easily the Cholesky decomposition
of the matrix ��t by simply multiplying R with

√
�t .

• Start with the initial values and decide on a time increment �t .
• For every interval [t, t +�t ], do the following:

1. Generate n independent Normal(0,1) random variables and construct a
vector �x with these components.

2. Calculate the vector of increments on the interval as

�B(t ) = RT�x
√
�t,

where RT�x represents regular multiplication of two matrices and the
last operation is multiplication with a scalar (all elements of the matrix
get multiplied with �t ).
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3. The process value at some time T = k�t is

B(T ) =
k∑
i=1

�B(i�t )

Please note that R = √
DU is upper triangular and we are multiplying with

RT which should be lower triangular. If at step 2 the matrix multiplying the
normals is anything else, you have a mistake in the code. Of course you could also
generate independent Normal(0,

√
t ) in step 1 directly and only multiply with

RT to obtain the right increments.

EXERCISES

6.1 Look at the Box–Muller and the two resulting variables X and Y . Calculate
the joint and marginal distributions of these variables and show that they
are independent.

6.2 Look at the polar rejection method. Show that the two variables given by
this algorithm are independent.

6.3 Consider the following normal mixture density:

f (x) = 0.7
1√
2�9

e−
(x−2)2

18 + 0.3
1√
2�4

e−
(x+1)2

8 .

(a) Calculate the expected value of a random variable with this distribution.

(b) Write code and implement to generate random variables with this dis-
tribution. Use your mind or whatever methods you learned in this chapter.

(c) Use the previous part to generate 1000 independent random num-
bers with this density. Calculate the sample mean (average of generated
numbers). Compare with answer in part a.

(d) Repeat the previous part, but this time generate 10,000 numbers.
Comment.

6.4 Consider the random variable X with the density:

f (x) = C cos(x) sin(x), x ∈ [0, �/2].

(a) Calculate the constant C which makes above a probability density.

(b) Sketch this density.

(c) Implement the importance sampling method to generate random num-
bers from the density. Create a histogram by generating 1000 such numbers
and compare with the previous part.

(d) Generate 1000 such numbers and use them to estimate the probability:

P(X > �/12).
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(e) Calculate the same probability by integrating the density. Are the two
numbers close?

(f) Generate 10, 000 and use them to estimate

E
[
esin(x)].

6.5 Repeat the previous exercise for the density

f (x) = Ce− tan(x), x ∈ [0, �/2].

Skip part (e) in the previous problem.



Chapter Seven

Random Vectors in Rn

7.1 Introduction/Purpose of the Chapter

Often, we have more than one random variable describing the same object. For
example, height and weight of a person are two different random variables. Each
of the variables may be considered separately; but usually they have probabilistic
ties, which means they have to be studied jointly. There is only one case where
considering variables separately or jointly is identical: the case of independent
variables. In probability theory, a random vector is any finite collection of real-
valued random variables. More precisely, a random vector is a measurable function
X : � → RN . It is usually denoted by

X = (X1, X2, . . . , XN ),

where each component is one-dimensional. A random vector is sometimes called
a multidimensional random variable. The Xi , i = 1, . . . , N, are the components
of the vector X . Each component is a random variable from � to R.

7.2 Vignette/Historical Notes

The study of random vectors is very important today. In the big data studies
we deal with many characteristics measures for each individual. In statistics the
study of these vectors is called the multivariate analysis. Anderson (1958), in this
book entitled An Introduction to Multivariate Analysis educated a generation of

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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theorists and applied statisticians on the statistical principles of this area. Analysis
of variance (ANOVA), multivariate regression, and principal components analysis
(PCA) are all techniques born from the need of describing the distribution of com-
plex large-dimensional distributions. Today, the evolution of these distributions
in time (multivariate time series) is the subject of intense research.

Interestingly enough, the marginal distributions take their name from the
initial bivariate joint tables (which were discrete) and therefore the distribution of
the individual components was written in the margins of the table—thus marginal
distribution.

7.3 Theory and Applications

7.3.1 THE BASICS

As is the case for random variables, the random vectors are characterized by their
distribution function.

Definition 7.1 Let X = (X1, . . . , XN ) be a random vector. Its (cumulative)
distribution function FX : RN → [0, 1] is given by

FX (x1, . . . , xN ) = P
(
{X1 ≤ x1}

⋂
{X2 ≤ x2}

⋂
. . .

⋂
{XN ≤ xN }

)
for every x1, . . . , xN ∈ R. The right-hand term is usually denoted by

P(X1 ≤ x1, . . . , XN ≤ xN ).

The cumulative distributions function of a random vector has the following
properties.

Proposition 7.2 If (X1, . . . , Xn) is a random vector with c.d.f. F , then:

1. The inclusion–exclusion formula holds:

P(a1 ≤ X1 < b1, . . . , an ≤ Xn ≤ bn)

= F (b1, . . . , bn) −
n∑
i=1

F (b1, . . . , bi−1, ai, bi+1, . . . , bn

+
n∑

i,j=1; i<j

F (b1, . . . , ai, . . . , aj, . . . , bn) − · · ·

+(−1)nF (a1, . . . , an)

whenever ai, bi ∈ R with ai < bi for every i = 1, . . . , n.

2. The function F is increasing in each of its arguments.

3. The function F is left continuous in each argument.
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4. We have

lim
x1,...,xn→∞ F (x1, . . . , xn) = 1,

and for each k ∈ {1, . . . , n} we obtain

lim
xk→−∞ F (x1, . . . , xn) = 0.

Proof: The proof is left as an exercise. The reader is referred to the proof of
Proposition 3.9 as a reference. �

The random vectors are characterized by the probability distribution which
is defined next. This notion generalizes the distribution of real-valued random
variables to vectors.

Definition 7.3 (Distribution of random vectors) Let (�,F,P) be a
probability space and let X : � → RN be a random vector.

The law (or the distribution) of X , denoted by PX , is a function defined on the
Borel sets of RN (denoted B (RN )), with values in [0, 1] by

PX (B) = P ({ω : X (ω) ∈ B}) = P
(
X −1(B)

) = P ◦ X −1(B)

for every B ∈ B (RN ).

Proposition 7.4 The application PX is a probability on the measurable space(
R
N ,B (RN )

)
. Consequently,

(
R
N ,B (RN ),PX

)
is a probability space.

Proof: The proof is analogous to the proof of Proposition 3.6. �

7.3.2 MARGINAL DISTRIBUTIONS

A random vector is made of several random variables. These random variables are
called the components of the vector. Each subset of components has its own prob-
ability distribution, and all these distributions are called the marginal distributions
of the vector.

Definition 7.5 (Marginal distribution) Let X = (X1, . . . , XN ) be a ran-
dom vector. For any subset {i1, . . . , ik}, the distribution of the vector (Xi1, . . . , Xik ) is
called a marginal distribution and it may be calculated from the overal distribution.
In particular, the law of the random variable Xi , for i ∈ {1, . . . , N } is called the i-th
marginal distribution of the vector X .
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EXAMPLE 7.1 A simple example of a vector with
independent components

Roll independently two dice. Denote by X and Y the outcomes of the two
dice. Define the random vector

Z = (X, Y ).

Describe the vector Z .

Recall that any random variable or vector is entirely characterized by its
distribution. To describe the distribution ofZ , we first note thatZ (�) = X (�) ×
Y (�) = {1, . . . , 6} × {1, . . . , 6}, which is a finite set (it has 36 elements), and

P(Z = (i, j)) = P(X = i, Y = j) = P(X = i)P(Y = j) = 1

6
× 1

6
= 1

36

for every i, j ∈ {1, . . . , 6} because each die is fair and the outcome of one die
is independent of the outcome of the other die. The laws of X and Y (which
constitute the two marginal distributions of the vector Z ) are given by

X (�) = Y (�) = {1, 2, 3, 4, 5, 6}
and

P(X = i) = 1

6
= P(Y = j)

for every i, j ∈ {1, . . . , 6}.
The distribution of the vector (X, Y ) can be represented by the following

table.

Y/X 1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36
2 1/36 1/36 1/36 1/36 1/36 1/36
3 1/36 1/36 1/36 1/36 1/36 1/36
4 1/36 1/36 1/36 1/36 1/36 1/36
5 1/36 1/36 1/36 1/36 1/36 1/36
6 1/36 1/36 1/36 1/36 1/36 1/36

Remark 7.6 Given the law of a random vector X = (X1, . . . , XN ), the marginal
distributions can be easily obtained. Indeed, concerning the law of X1, we can write

PX1 (A) = P(X1 ∈ A) = P(X ∈ A × R× · · · ×R) = PX (A ×R× · · · ×R)

for every A ∈ B(R). Moreover, concerning the c.d.f. of the components, the following
rules applies: If (X, Y ) is a random vector, then

FX (x) = lim
y→∞ F(X,Y )(x, y)
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and

FY (y) = lim
x→∞ F(X,Y )(x, y)

for every x, y ∈ R. But the converse direction is not true: That is, if we know each
marginal distribution, we cannot obtain in general the law of the vector. The law of the
vector contains more complex information in the sense that it says how the components
of the vector are connected one to each other.

Remark 7.7 If the components of the vector X are independent, then the law of
the vector can be obtained from the marginal laws. Indeed,

P(X ∈ (A1 × · · · × AN )

= P(X1 ∈ A1, . . . , XN ∈ AN ) = P(X1 ∈ A1) · · · P(XN ∈ AN ).

We will treat separately the discrete and continuous random vectors.

7.3.3 DISCRETE RANDOM VECTORS

Definition 7.8 We will say that a random vector is discrete if X (�) is a finite or
countable subset of Rn.

In the single-variable case, the probability function of a discrete random
variableX assigns nonzero probabilities to a countable number of distinct values of
X such that the sum of the probabilities is equal to 1. Similarly, in the bivariate case
(two-dimensional random vector) the joint probability function p(x, y) assigns
nonzero probabilities to only a countable number of pairs of values (x, y). Further,
the nonzero probabilities must sum to 1.

Remark 7.9 In this case the law of X = (X1, X2, . . . , XN ) is completely deter-
mined by the set X (�) and the probabilities

PX ({x}) = P(X = x) = P(X1 = x1, X2 = x2, . . . , XN = xN )

for every x = (x1, x2, . . . , xN ) ∈ X (�). Further, we have

∑
x∈X (�)

P(X = x) = 1.

Proposition 7.10 Let X1, . . . , Xn be discrete random variables and put

X := (X1, . . . , Xn).
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Then the c.d.f. of the vector X can be computed as follows:

FX (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

=
∑

u1∈X1(�);u1≤x1

· · ·
∑

un∈Xn(�);un≤xn
P(X1 = u1, . . . , Xn = un)

for every x1, . . . , xn ∈ R.

Proof: This follows since

(X1 ≤ x1, . . . , Xn ≤ xn) =
⋃

u1∈X1(�);u1≤x1

· · ·
⋃

un∈Xn(�);un≤xn
(X1 = u1, . . . , Xn = un).

�

EXAMPLE 7.2 Another die example

Consider the experiment of tossing a red and green die where X1 is the
number of the red die and X2 is the number on the green die. Let X =
(X1, X2).

Now let us find the distribution of the vector: FX (2, 3).

FX (2, 3) = P(X1 ≤ 2, X2 ≤ 3)

=
∑

u1≤2,u2≤3

P(X1 = u1, X2 = u2)

= P(X1 = 1, X2 = 1) + P(X1 = 1, X2 = 2) + P(X1 = 1, X2 = 3)

+P(X1 = 2, X2 = 1) + P(X1 = 2, X2 = 2) + P(X1 = 2, X2 = 3)

= 1

36
+ 1

36
+ 1

36
+ 1

36
+ 1

36
+ 1

36

= 6

36
= 1

6
.

Once the joint probability function has been determined for discrete ran-
dom variables X1, X2, . . . , Xn, calculating joint probabilities involving the vector
X1, X2, . . . , Xn is straightforward.

The following proposition show how the marginal laws can be obtained from
the law of the vector.

Proposition 7.11 Let Z = (X, Y ) be a random vector with values inR2. Then

X (�) = {x ∈ R, ∃y ∈ R such that (x, y) ∈ Z (�}
and

Y (�) = {y ∈ R, ∃x ∈ R such that (x, y) ∈ Z (�}.
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For every x ∈ X (�) we have

P(X = x) =
∑
y∈Y (�)

P(X = x, Y = y)

and for every y ∈ Y (�) we obtain

P(Y = y) =
∑
x∈X (�)

P(X = x, Y = y)

Proof: The conclusion follows by writing, for every x ∈ X (�)

P(X = x) = P(X = x, Y ∈ R)

= P

⎛
⎝ ⋃
y∈Y (�)

(X = x, Y = y)

⎞
⎠

=
∑
y∈Y (�)

P(X = x, Y = y).

�

Clearly, the result extends to the n-dimensional case. Specifically, if X =
(X1, . . . , Xn) is a discrete vector in Rn, then

P(X1 = x1) =
∑
x2

∑
x3

..
∑
xn

P(X = x1, X2 = x2, . . . , Xn = xn)

for every x1 ∈ X1(�). Similarly for any subset of random variables; for instance,

P(X1 = x1, X2 = x2, Xn−1 = xn−1) =
∑
xn

P(X = x1, X2 = x2, . . . , Xn = xn).

EXAMPLE 7.3 Obtaining the marginal distributions

Consider a random vector (X, Y ) whose distribution is described by the
following table.

Y/X 2 4 6
1 0.1 0.05 0.1
3 0.2 0.15 0.15
5 0.1 0.1 0.05

Let’s write the marginal distributions. We have

X (�) = {2, 4, 6}
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and

Y (�) = {1, 3, 5}.
We next calculate the law of X (the marginal of X ). To calculate P(X = 2), we
add the probabilities on the column below the outcome 2.

P(X = 2) = P(X = 2, Y = 1) + P(X = 2, Y = 3) + P(X = 2, Y = 5)

= 0.1 + 0.2 + 0.1 = 0.4.

In the same way, we obtain

P(X = 4) = 0.05 + 0.15 + 0.1 = 0.3

and

P(X = 6) = 0.1 + 0.15 + 0.05 = 0.3.

Proposition 7.12 Let X, Y be two discrete random variables. Then X and Y
are independent if and only if

P(X = x, Y = y) = P(X = x)P(Y = y) (7.1)

for every x ∈ X (�) and y ∈ Y (�).

Proof: Suppose that X and Y are independent. Then we apply Definition 3.16
to the sets A = {x} and Y = {y} and the direct implication follows. For the
reciprocal, assume (7.1) is true for all x and y. Take A, B ⊂ X (�). Then

(X ∈ A) ∩ (Y ∈ B) = {(X, Y ) ∈ A × B}
and

A × B =
⋃

x∈A,y∈B
{(x, y)}.

We can thus write

P(X ∈ A, Y ∈ B) =
∑

x∈X (�), y∈Y (�)

P(X = x, Y = x)

=
∑
x∈X (�)

∑
y∈Y (�)

P(X = x)P(Y = y)

=
∑
x∈X (�)

P(X = x)
∑
y∈Y (�)

P(Y = y)

= P(X ∈ A)P(Y ∈ B),

which implies the independence of X and Y . �
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EXAMPLE 7.4

Consider a random vector (X, Y ) with distribution

X (�) = Y (�) = {0, 1}
and

P(X = 0, Y = 0) = (1 − p)2, P(X = 1, Y = 1) = p2

and

P(X = 0, Y = 1) = P(X = 1, Y = 0) = p(1 − p).

Here p ∈ (0, 1). Show that X, Y are independent.

Proof: We easily get

P(X = 0) = 1 − p, P(X = 1) = p

and

P(Y = 0) = 1 − p, P(y = 1) = p.

Then we can check that

P(X = x, Y = y) = P(X = x)P(Y = y)

for every x, y ∈ {0, 1}. There are only 4 pairs of outcome, but all need to be
verified. �

EXAMPLE 7.5 Checking independence

Consider a random vector (X, Y ) whose distribution is described by the
following table.

Y/X 1 2 3
4 0.1 0.2 0.3
5 0.1 0.2 0.1

Check if the random variables X and Y are independent.

Solution: We have

X (�) = {1, 2, 3} and Y (�) = {4, 5}
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with

P(X = 1) = 0.2,P(X = 2) = 0.4 and P(X = 3) = 0.4

while

P(Y = 4) = 0.6 and P(Y = 5) = 0.4.

We can see, for example, that

P(X = 1, Y = 4) = 0.1 /= P(X = 1)P(Y = 4) = 0.2 × 0.6.

Thus X and Y are not independent. �

An important example of a discrete multidimensional law is the so-called
multinomial law.

7.3.4 MULTINOMIAL DISTRIBUTION

The multinomial distribution is a generalization of the binomial distribution.
Specifically, assume that n independent trials may each result in one of the
k outcomes generically labeled S = {1, 2, . . . , k}. The probability of outcome
1, 2, . . . , k is respectively p1, . . . , pk . Now define a vector X = (X1, . . . , Xk)
where each of the Xi counts the number of outcomes 1, . . . , k in the resulting
sample of size n. We clearly must have X1 + · · · + Xk = n.

Furthermore, the joint distribution of the vector X is

f (x1, . . . , xk) = n!

x1! . . . xk !
px1

1 . . . p
xk
k 1{x1+···+xk=n}.

To see that the probability formula is correct, note that the product of probabilities
is the probability that the sequence of n trials will contain exactly x1 outcomes
1, . . . , xk outcomes k. Thus one only needs to count how many such outcomes
exist; and the factorial term is precisely the number of ways in which we can
divide the set {1, . . . , n} into k subsets, each subset having the respective number
of terms.

In the same way that the binomial probabilities appear as coefficients in
the binomial expansion of (p + (1 − p))n, the multinomial probabilities are the
coefficients in the multinomial expansion: (p1 + · · · + pk)n so they will sum to
1, thus creating a proper probability mass function. This expansion in fact gives
the name of the distribution.

Remark 7.13 It is very easy to see that if we label the outcome i as a success and
everything else a failure, then Xi simply counts successes in n independent trials and
thus Xi ∼ Binom(n, pi).

We refer to exercises 7.17 and 7.18 for the proof.
As a consequence of this remark, the expected value of the random vector

and the diagonal elements in the covariance matrix are easy to calculate as npi and
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npi(1 − pi) respectively. The off-diagonal elements (covariances) are not compli-
cated to calculate either. If we do the calculation, the multinomial’s random vector
first two moments are

E[X] =

⎛
⎜⎜⎜⎜⎝
np1

np2

...

npk

⎞
⎟⎟⎟⎟⎠

and

Cov(X) =

⎛
⎜⎜⎜⎜⎝
np1(1 − p1) −np1p2 . . . −np1pk

−np1p2 np2(1 − p2) . . . −np2pk
...

...
. . .

...

−npkp1 −npkp2 . . . npk(1 − pk)

⎞
⎟⎟⎟⎟⎠

Important. As mentioned in the remark, the one-dimensional marginal dis-
tributions are binomial. However, in the joint distribution of (X1, . . . , Xr ) the
first r components are not multinomial.

However, if we group the rest of categories into one and we let Y =
Xr+1 + · · · + Xk , we do obtain the multinomial again. It is easy to see that since
the categories are linked (X1 + · · · + Xk = n) we also have that Y = n − X1 −
· · · − Xr . Therefore, it is easy to see that the vector (X1, . . . , Xr, Y ) or equiva-
lently ((X1, . . . , Xr , n − X1 − · · · − Xr ) will have a multinomial distribution with
associate probabilities (p1, . . . , pr , pY ) = (p1, . . . , pr , pr+1 + · · · + pk).

Let us present one last result about this distribution. Consider the conditional
distribution of the first r components given the last k − r components—that is,
the distribution of

(X1, . . . , Xr) | Xr+1 = nr+1, . . . , Xk = nk

This conditional distribution is also multinomial with n the sample size
replaced by n− nr+1 − · · · − nk and probabilities

(p′1, . . . , p
′
r ), with p′

i = pi
p1 + · · · + pr

.

7.3.5 TESTING WHETHER COUNTS ARE COMING FROM A
SPECIFIC MULTINOMIAL DISTRIBUTION

We conclude the section dedicated to this distribution with an important problem.
Suppose we have observed and obtained a sample of n observations (n1, . . . , nk)
which we suspect comes from the multinomial distribution with probabilities
(�1, . . . , �k). Assuming that the right probability is the multinomial, suppose we
want to test if all outcomes are equally likely.



7.3 Theory and Applications 221

To test the hypotheses

H0 : (p1, . . . , pk) = (�1, . . . , �k),

Ha : Not all probabilities are equal

we use the statistic

k∑
i=1

(ni − n�i)2

n�i
,

which is also called the Pearson’s Chi-squared statistic. This statistic is asymptoti-
cally distributed as a (univariate) Chi-squared random variable with k − 1 degrees
of freedom when the sample size n goes to infinity.

Such a test would be very useful, for instance, when testing whether or not a
six-sided die is fair—that is, whether all outcomes have the same chance.

EXAMPLE 7.6 Conditions for the multinomial distribution

Consider the following statistical experiment. Toss two dice three times,
and record the outcome on each toss. This is a multinomial experiment
because:

• The experiment consists of repeated trials. We toss the dice three times.
• Each trial can result in a discrete number of outcomes, 2 through 12.
• The probability of any of the outcomes is constant; it does not change

from one toss to the next.
• The trials are independent; that is, getting a particular outcome on one

trial does not affect the outcome on other trials.

7.3.6 INDEPENDENCE

The following result is very useful. It shows that the independence of two random
variables implies the independence of every functions applied to these random
variables.

Proposition 7.14 Let X, Y be two discrete random variables on (�,F,P).
Then X and Y are independent if and only if for every functions f, g : R→ R, the
random variables f (X ) and g (Y ) are independent.

Proof: If f (X ) and g (Y ) are independent for every function f, g , let us to choose
f (x) = x and g (y) = y. This immediately implies X , Y are independent.
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Conversely, suppose X , Y are independent and let x ′ ∈ f (X )(�) and y ′ ∈
g (Y )(�) outcomes of the random variables f (X ) and g (Y ). Then

(f (X ) = x ′) = (X ∈ f −1(x ′))

and

(g (Y ) = y′) = (Y ∈ g−1(y)).

We have

P(f (X ) = x ′, g (Y ) = y′) = P(X ∈ f −1(x ′), Y ∈ g−1(y))

= P(X ∈ f −1(x ′))P(Y ∈ g−1(y))

= P(f (X ) = x ′)P(g (Y ) = y′)

and thus f (X ) and g (Y ) are independent. �

It is also possible to state a variant of Proposition 7.14 in terms of expectations.

Proposition 7.15 Let X, Y be two discrete random variables on (�,F,P).
Then X and Y are independent if and only if for every function f, g : R→ R such
that f (X ) and g (Y ) are integrable, we obtain

E[f (X )g (Y )] = E[f (X )]E[g (Y )]. (7.2)

Proof: If X, Y are independent, then relation (7.2) can be obtained from Propo-
sition 7.14. Let us show the converse direction. Let x ∈ X (�) and Y ∈ Y (�) be
fixed and define

f (s) = 1x (s), g (s) = 1y(s),

the indicator function of a point. Then

f (X ) = 1x (X ), g (Y ) = 1y(Y ).

Therefore, by definition we have

Ef (X ) = P(X = x), Eg (Y ) = P(Y = y). (7.3)

On the other hand,

Ef (X )g (Y ) = E1(X=x)1(Y=y) = E1(X=x,Y=y) = P(X = x, Y = y). (7.4)

Using (7.3) and (7.4), we obtain

P(X = x, Y = y) = P(X = x)P(Y = y)

and thus X is independent by Y . �
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Remark 7.16 As a particular case of Proposition 7.15, we obtain that if X and
Y are two independent integrable random variables, then XY is integrable and

E(XY ) = EXEY.

Consequently,

Cov(X, Y ) = 0.

Also it can be seen that, if X, Y are square integrable, then

V (X + Y ) = V (X ) + V (Y ).

This follows from the fact that

V (X + Y ) = V (X ) + V ′Y ) + 2Cov(X, Y ).

Remark 7.17 The fact that Cov(X, Y ) = 0 does not imply the independence of
X and Y .

7.3.7 CONTINUOUS RANDOM VECTORS

The following definition is an extension of Definition 5.1.

Definition 7.18 A function f : Rn → R is called a probability density on Rn

if it is Lebesque integrable and positive and we have∫
Rn

f (x)dx =
∫
R

· · ·
∫
R

f (x1, . . . , xn) dx1 · · · dxn = 1.

Definition 7.19 A random vector

X = (X1, . . . , Xn)

has a density f : Rn → R if for any Borel set D in Rn, we have

P ((X1, . . . , Xn) ∈ D) =
∫
D

f (x1, . . . , xn) dx1 · · · dxn.

It follows that the distribution function of the vector X is given by

FX (x) = FX1,...,Xn (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

=
∫ x1

−∞
· · ·

∫ xn

−∞
f (x1, . . . , xn) dx1 · · · dxn.

As in the case of discrete random vectors, we define the marginal distributions
of the components of the random vector X = (X1, . . . , Xn).
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Proposition 7.20 Let (X1, . . . , Xn) = X be a random vector with density f .
Then the density of the random variable Xi (1 ≤ 1 ≤ n) is given by

fXi (xi) =
∫
Rn−1

f (x1, . . . , xn)dx1 · · · xi−1dxi+1 · · · dxn (7.5)

for every 1 ≤ i ≤ n.

Proof: Indeed, for every a ∈ R, we obtain

P(Xi ≤ a) = P (Xi ≤ a, X1, . . . , Xi−1, Xi+1, . . . , Xn ∈ R)

= P

(
(X1, . . . , Xn)

∫
(R×R · · · × (−∞, a) ×R · · · ×R)

)

=
∫
R

dx1 · · ·
∫
R

dxi−1

∫ a

−∞
dxi

∫
R

dxi+1 · · ·
∫
R

dxnf (x1, . . . , xn)

=
∫ a

−∞
dxi

(∫
Rn−1

dx1 · · · xi−1dxi+1 · · · dxnf (x1, . . . , xn)

)

and this shows that the density of Xi is by (7.5). �

The above result can be generalized as follows.

Proposition 7.21 Let (X1, . . . , Xn) be a continuous random vector with c.d.f.
F and density f . If i1, . . . , ik ∈ {1, . . . , n} with i1 < i2 < · · · < ik , then:

1. The function

Fi1,...,ik : Rk → R
given by

Fi1,...,ik (xi1, . . . , xik ) = lim
xj→∞; j /= i1,...,ik

F (x1, . . . , xn)

is the joint c.d.f. of the vector

(Xi1, . . . , Xik ).

2. The joint density of the vector

(Xi1, . . . , Xik )

is given by

fi1,...,ik (xi1 , . . . , xik ) =
∫
Rn−k

f (x1, . . . , xn) dxj1 · · · dxjn−k

where j1, . . . , jn−k ∈ {1, . . . , n} \ {i1, . . . , ik} and j1 < · · · < jn−k.
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EXAMPLE 7.7 Uniformly distributed vector

Let f : R2 → R be given by

f (x, y) = 1

(b − a)(d − c)
1[a,b](x)1[c,d ](y),

where a < b and c < d . Then f is a density function on R2.

Indeed, f (x, y) ≥ 0 for every x, y ∈ R and

∫
R2
f (x, y) = 1

(b − a)(d − c)

∫ b

a

dx

∫ d

c

dy = 1;

therefore f is a proper density.
In fact the above density is corresponding to the coordinates of a point uni-

formly distributed over the rectangle [a, b] × [c, d ] in R2.
More general, a random vector (X1, . . . , Xn) has an n-dimensional uniform

distribution on the rectangle:

I = [a1, b1] × · · · × [an, bn]

in Rn, where ai < bi for every i = 1, . . . , n if the joint density of said vector is
given by

f (x1, . . . , xn) = 1

(b1 − a1) · · · (bn − an)
1I ,

where we use the indicator notation.

EXAMPLE 7.8 Standard normal vector

Let f : R2 → R be given by

f (x, y) = 1

2�
e−

x2+y2
2 .

Then f is a density function on R2.
A random vector with such a density is called a two-dimensional stan-

dard normal vector or a bivariate normal vector. A detailed study of Gaussian
random vectors is performed in one of the next chapters.

The two examples presented above are of densities coming from one-
dimensional probability density functions. Recall that if the individual random
variables are independent, the joint distribution is just the product of marginals.
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Specifically, if f, g are two densities on R, then

h(x, y) = f (x)g (y)

is a density on R2. And of course this can be generalized to Rn.

Proposition 7.22 Let X, Y be two continuous random variables and assume that
the couple (X, Y ) admits a density f(X,Y ). Let us denote by fX and fY the probability
density functions of X and Y respectively. Then X and Y are independent if and
only if

f(X,Y )(x, y) = fX (x)fY (y) (7.6)

for every x, y ∈ R.

Proof: Suppose that relation (7.6) is true. Then for every a, b ∈ R, we have

P(X ≤ a, Y ≤ b) =
∫ a

−∞

∫ b

∞
fX,Y (x, y)dydx

=
∫ a

−∞

∫ b

∞
fX (x)fY (y)dydx =

∫ a

−∞
dxfX (x)

∫ b

∞
dyfY (y)

= P(X ≤ a)P(Y ≤ b)

and then X is independent by Y . Suppose that X, Y are independent and let us
show (7.6).

P(X ≤ a, Y ≤ b) = P(X ≤ a)P(Y ≤ b) =
∫ a

−∞
dxfX (x)

∫ b

∞
dyfY (y)

=
∫ a

−∞

∫ b

∞
fX (x)fY (y) dydx,

and this implies that fX (x)fY (y) is the density of the vector (X, Y ) by Defini-
tion 7.19 and using the fact that the indicator functions 1(−∞,a)×(∞,b), a, b ∈ R
generates the Borel sets of R2. �

The above result extends to a n-dimensional random vector.

Corollary 7.23 Let Xi , i = 1, . . . , n be independent random variables with
densities fXi respectively. Then the density of the vector X = (X1, . . . , Xn) is

fX (x1, . . . , xn) =
n∏
i=1

fXi (xi)

for every x1, . . . , xn ∈ R.

Proof: The proof can be easily done by induction. �
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The following examples contain situations where the joint is not the product
of the marginals. That is, the components are not independent.

EXAMPLE 7.9

Let f : R2 → R,

f (x, y) = 1

6
(x + 4y)1(0,2)(x)1(0,1)(y).

Check that f is a probability density function onR2. If (X, Y ) is a random
vector with density f , compute the marginal densities of X and Y .

One can easily check that
∫
R2 f (x, y) dxdy = 1.We can calculate the marginal

densities by integrating out the other variable:

fX (x) = 1(0,2)(x)
∫ 1

0

1

6
(x + 4y)dy

= 1(0,2)(x)
[
xy + 2y2]y=1

y=0

= 1

6
(x + 2)1(0,2)(x)

while

fY (y) = 1(0,1)(y)
∫ 2

0
dx

1

6
(x + 4y)

= 1

6
(2 + 8y)1(0,1)(y).

Obviously f (x, y) /= fX (x)fY (y), and thus the two components of the vector are
not independent.

EXAMPLE 7.10

Define f : R2 → R,

f (x, y) = �2e−�x1[0,x](y),

where � > 0. This function f is a density on R2. Check that the function
defines a proper density and calculate the marginal distributions.
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Indeed, f is clearly positive and∫
R2
f (x, y) dxdy = �2

∫ ∞

0
dx

∫ x

0
dye−�x

= �2
∫ ∞

0
xe−�xdx = 1,

where we used integration by parts to obtain the last value.
Let us compute the marginal densities. The density of the random variable

X is

fX (x) =
∫
R

f (x, y) dy

= �2e−�x1(x>0)

∫ x

0
dy = �2xe−�x1(x>0).

We note that this is the density of the law �(2, �).
The density of Y is

fY (y) =
∫
R

f (x, y) dx

= �21(y>0)

∫ ∞

y

e−�xdx

= �e−�y1(y>0),

which is an exponential law with parameter �.
Please note that the two random variables X and Y are not independent

because the joint is not equal to the product of the marginals. This is typically
true when the function f (x, y) cannot be separated as a product of functions of x
and y only.

EXAMPLE 7.11 Uniformly distributed point on the disk

Let

f (x, y) = 1

�
1�(0,1)(x, y),

where�(0, 1) denotes the unit disk centered in (0, 0) and radius 1. Math-
ematically,

�(0, 1) = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
This is the density of the random vectors (X, Y ), which represent the coor-
dinates of a point uniformly chosen from the unit disk �(0, 1).



7.3 Theory and Applications 229

Using polar coordinates x = r cos �, y = r sin �, we have

∫
R2
f (x, y) dxdy = 1

�

∫ 1

0
dr

∫ 2�

0
d�r = 1,

which shows that this is a proper density. The reader is left with the calculation of
marginals and the verification whether or not the random variables representing
the coordinates X and Y are independent of each other (they should not be).

Let F : Rn → Rm be such that all its partial derivatives exist. Let

F1, F2, . . . , Fm : Rn → R

be the real-valued component function of F . Then the Jacobian matrix associated
with F is denoted by JF and is a matrix withm lines and n rows whose coefficients
are given by

(JF )i,j = ∂Fi

∂xj

for every i = 1, . . . , m and j = 1, . . . , n.

7.3.8 CHANGE OF VARIABLES. OBTAINING DENSITIES OF
FUNCTIONS OF RANDOM VECTORS

The following result is very useful. It gives a formula to obtain the density of a
random variable Y which can be written as a function of X if only the density of
the random vector X is known.

Theorem 7.24 [ Change of variables] Let X be a random vector with density fX
with support an open set O ⊂ Rd . Let O′ be another open set in Rd and let

ϕ : O → O′

be a diffeomorphism (i.e., ϕ is bijective and both ϕ and its inverse ϕ−1 are differen-
tiable). Then the density of the random vector Y := ϕ(X ) is given by

fY (y) = fX (ϕ−1(y)]
∣∣J (ϕ−1(y))

∣∣ ,
where J denotes the Jacobian1.

Proof: In the first place, let us recall the definition of the Jacobian. Ifϕ : Rn → Rn
and

ϕ(x1, . . . , xn) = (ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)),

1 The differentiability condition is needed to make sure that the Jacobian exists
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then its Jacobian is defined as the determinant of the matrix of first-order deriva-
tives or

Jϕ =

∣∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x1

∂ϕ1

∂x2
. . . ∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2
. . . ∂ϕ2

∂xn

...
... . . .

...
∂ϕn
∂x1

∂ϕn
∂x2

. . . ∂ϕn
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, let X = (X1, . . . , Xd ). For any F : R→ R arbitrary bounded and
measurable function, we have

EF (Y ) = EF (ϕ(x)

=
∫
O
F (ϕ(x1, . . . , xd ))fX (x1, . . . , xd )dx1...dxd

=
∫
O′
F (y1, . . . , yd )

∣∣J (ϕ−1(y1, . . . , yd ))
∣∣ fX (ϕ−1(y1, . . . , yd ))

using the change of variables ϕ(x1, . . . , xd ) = (y1, . . . , yd ).
Note that it is fine if you do not remember which order to take deriva-

tives since in the end we use the absolute value of the determinant (if the
order is changed that may only change the sign of the determinant not the
magnitude). �

EXAMPLE 7.12

Let X, Y be two independent random variables with the same density

f (x) = 1

x2
1[1,∞)(x). (7.7)

Define

U = XY and V = X

Y
.

Using Theorem 7.24 find the joint density of the random vector (U,V ).

First let us note that the density of the couple (X, Y ) is

f(X,Y )(x, y) = 1

x2

1

y2
1[1,∞)(x)1[1,∞)(y)

from the independence of X and Y . We will consider the transformation:

ϕ(x, y) =
(
xy,
x

y

)
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which is a bijective function from [1,∞) × [1,∞) into the domain D where

D =
{

(u, v) ∈ [1,∞) × [1,∞) | u
v

≥ 1
}
.

The inverse is defined on D with values in [1,∞) × [1,∞) and it is calculated
as

ϕ−1(u, v) =
(√

uv,

√
u

v

)
.

The Jacobian matrix is

Jϕ−1(u, v) =
⎛
⎝

√
v

2
√
u

1
2
√
uv

sqrtu

2
√
v

−2
√
u

v
3
2

⎞
⎠

and its determinant is

det Jϕ−1(u, v) = 5

4v
.

Applying the Theorem 7.24, we obtain the density of the random vector (U,V )
as

f(U,V )(u, v) = f(X,Y )(ϕ
−1(u, v))detJϕ−1(u, v)1D(u, v)

= 1

u2

5

4v
1D(u, v).

7.3.9 DISTRIBUTION OF SUMS OF RANDOM VARIABLES.
CONVOLUTIONS

Any sum has at least two components. Let us start by analyzing the distribution
of a sum containing only two variables. Let X, Y be two random variables. Let
F,G be the distribution functions of X and Y , where F (x) = P ◦ X −1(−∞, x],
G(x) = P ◦ Y −1(−∞, x]. We are interested in the distribution of X + Y.

Definition 7.25 (Convolution) The convolution is the distribution function
of the random variable X + Y . We denote this distribution function with

F ∗ G = (F,G) ◦ s−1 = P ◦ (X + Y )−1,

where:

�
(X (ω),Y (ω))−→ R

2 s(x,y)=x+y−→ R.

The next proposition presents properties of general convolution operators.

Proposition 7.26 (Properties of convolution) Let F,G be two distri-
bution functions. Then:
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(i) F ∗ G = G ∗ F .

(ii) F ∗ (G ∗H ) = (F ∗ G) ∗H .

(iii) ıa ∗ ıb = ıa+b with a, b ∈ R, and ıa, ıb are delta distribution functions.

(iv) If F,G are discrete, then F ∗ G is discrete.

This proposition is easy to prove from the definition, and the proof is left as
an exercise (exercise 7.14).

In the special case when the random variables involved are independent and
have densities, we can obtain the density of a sum of two independent random
variables as a much simpler formula.

We next introduce the definition of a convolution of two functions.

Definition 7.27 (Convolution of two functions) Suppose that f , g are
two functions from R to R. The convolution of f with g is defined by the function

(f ∗ g )(x) =
∫
R

f (y)g (x − y) dy =
∫
R

g (z)f (x − z) dz.

We note that the last equality is obtained by performing a change of variables
z = x − y. Clearly this last inequality implies that the convolution product is
commutative (i.e., (f ∗ g )(x) = (g ∗ f )(x).

Returning to the random variables, in the special case when X and Y have
joint density f , applying Theorem 7.24, then the sum of the random variables
X + Y also has a density and

fX+Y (z) =
∫
f (z − y, y) dy.

If, in addition, X and Y are independent and have densities fX and fY , then
we have the density of X + Y :

fX+Y (z) = fX ∗ fY (z) =
∫
fX (z − y)fY (y) dy;

in other words, the density of X + Y is obtained as the convolution of the density
functions fX and fY (as in Definition 7.27). Let us prove this result.

Proposition 7.28 Let X, Y be two independent random variables with densities
denoted by fX and fY respectively. Then the density of the r.v. X + Y is given by

fX+Y (x) =
∫
R

fX (y)fY (x − y)dy = (fX ∗ fY )(x),

where ∗ denotes the convolution product.
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Proof: Since the random variables are independent, the density of the couple
(X, Y ) is

f(X,Y )(x, y) = fX (x)fY (y)

for every x, y ∈ R.
Consider the function ϕ : R2 → R2 defined as

ϕ(x, y) = (x + y, y).

Then ϕ satisfied the assumptions in the Theorem 7.24 and

ϕ−1(u, v) = (u − v, v)

with

Jϕ−1(u, v) =
(

1 0

−1 1

)
.

We then conclude using Theorem 7.24 that the density of ϕ(X, Y ) = (X + Y, Y )
is

f(X+Y,Y )(u, v) = f(X,Y )(u − v, v) = fX (u − v)fY (v)

and therefore the marginal distribution of the first component in ϕ(X, Y ) (which
is the density of the random variable X + Y ) is

fX+Y (u) =
∫
R

f(X+Y,Y )(u, v) dv

=
∫
R

fX (u − v)fY (v) dv.

which concludes the proof. �

As an application, we next show that the sum of independent normal random
variables is still a normal random variables with parameters equals to the sum of
parameters.

Proposition 7.29 Let X ∼ N (�1, �
2
1 ) and Y ∼ N (�2, �

2
2 ). Assume X and

Y are independent. Then

X + Y ∼ N (�1 + �2, �
2
1 + �2

2 ).

Proof: We will use Theorem 7.28, which gives the density of the sum of two
independent random variables. Suppose first that

�1 = �2 = 0 and �1 = �2 = 1.
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By Theorem 7.28 we can write that the density of X + Y is

fX+Y (x) = 1

2�

∫
R

e−
y2

2 e−
(x−y)2

2 dy.

We can further calculate fX+Y as follows:

fX+Y (x) = 1

2�
e−

x2

2

∫
R

e−(y2−xy)dy

= 1

2�
e−

x2

2

∫
R

e−(y− 1
2 x)2
dye

x2

4

= 1

2
√
�
e−

x2

4 ,

where we used the change of variables y − 1
2x = z√

2
. Therefore, X + Y ∼

N (0, 2). In other words, we have just shown that if X ∼ N (0, 1) and Y ∼
N (0, 1), then X + Y ∼ N (0, 2).

In the same way when X, Y ∼ N (0, 1) but using the function ϕ(x, y) =
(ax + by, y) we obtain the distribution:

aX + bY ∼ N (0, a2 + b2).

Suppose now that X ∼ N (�1, �
2
1 ) and Y ∼ N (�2, �

2
2 ). Then we may write

X = �1 + �1Z1 and Y = �2 + �2Z2

where Z1, Z2 are two standard normal random variables. The independence of X
and Y implies the independence of Z1 and Z2. Therefore. using Remark 5.12,
we obtain

Z1, Z2 ∼ N (0, 1)

and thus by the first part of the proof we have Z1 + Z2 ∼ N (0, 2) and �Z1 +
�2Z2 ∼ N (0, �2

1 + �2). We then obviously obtain X + Y ∼ N (�1 + �2, �
2
1 +

�2
2 ). �

Remark 7.30 From the proof of Proposition 7.28 we can deduce more general
results.

(a) If (X, Y ) is a random vector with density f(X,Y ), then the density of X + Y is

fX+Y (z) =
∫
R

f(X,Y )(y, z − u) du

for almost every z ∈ R.
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(b) More generally, if X1, X2, . . . , Xn are independent, then the density of X1 +
· · · + Xn is given by

fX1+···Xn = fX1 ∗ · · · ∗ fXn .

Part (b) in the remark can be easily obtained by induction.
We can also express the density of a product and of a ratio of two random

variables.

Proposition 7.31 If the random vector (X, Y ) has joint density f(X,Y ), then the
density of the product XY is

fXY (z) =
∫
R

1

|u| f(X,Y )

(
u,
z

u

)
du

for almost everywhere z ∈ R and the density of X
Y

is

f X
Y

(z) =
∫
R

|v|f(X,Y )(vz, v) dv

for a.e. z ∈ R.

Proof: The proof follows the lines of the Example 7.12. �

Remark 7.32 As a consequence, if X, Y are independent random variables with
density functions fX and fY respectively, then

fXY (z) =
∫
R

1

|u| fX (y)fY
( z
u

)
du

for a.e. z ∈ R and

f X
Y

(z) =
∫
R

|v|fX (vz)fY (v) dv

for a.e. z ∈ R.
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EXERCISES

Problems with Solution

7.1 Let X, Y be two random variables such that

P (X = 0, Y = 1) = 1

5

P (X = 0, Y = 2) = 1

5

P (X = 1, Y = 0) = 1

5
;

P (X = 1, Y = 1) = 1

5

P (X = 1, Y = 2) = 1

5
.

(a) Find the law and the c.d.f. of X .
(b) Find the law and the c.d.f. of Y .
(c) Are the r.v. X and Y independent?
(d) Find the law and the c.d.f. of the r.v.

Z = X − Y.

Solution: The sum of the five probabilities in the statement of the problem
is 1 and therefore the space is

(X, Y )(�) = {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
Consequently,

X (�) = {0, 1} and Y (�) = {0, 1, 2}.
To calculate the marginals:

P(X = 0) = P(X = 0, Y = 1) + P(X = 0, Y = 2) = 2

5

and

P(X = 1) = 3

5
.

For Y we get

P(Y = 0) = 1

5
and P(Y = 1) = P(Y = 2) = 2

5
.
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The random variables X and Y are not independent, because for example

1

5
= P(X = 0, Y = 1) /= P(X = 0)P(Y = 1) = 2

5

2

5
.

The r.v. Z = X − Y has the sample space:

Z (�) = {−2,−1, 0, 1}
with

P(Z = −2) = P(X = 0, Y = 2) = 1

5
,

P(Z = −1) = P(X = 0, Y = 1) + P(X = 1, Y = 2) = 2

5

P(Z = 0) = P(X = 1, Y = 1) = 1

5
,

P(Z = 1) = P(X = 1, Y = 0) = 1

5
.

�

7.2 Let (X, Y ) be a random vector with joint density

f (x, y) = 1

6
1[0,2]×[0,3].

(a) Check that f is a proper density.
(b) Calculate the probability:

P(1 ≤ X ≤ 3,−1 ≤ Y ≤ 2).

Solution: We can easily see that f is positive and
∫
R2 f (x, y) dxdy = 1.

Next,

P(1 ≤ X ≤ 3,−1 ≤ Y ≤ 2) =
∫ 3

1

∫ 1

−1
f (x, y) dydx

=
∫ 2

1

∫ 1

0

1

6
dydx

= 1

6
.

�

7.3 Let � > 0, and let (X, Y ) denote a random vector with joint density f on
R

2 given by

f (x, y) = C 1{x≥0 , |y|≤x} e−�x .
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(a) For which values of C is the function f a proper density?
(b) Find the marginal distributions of X and Y . Calculate the mean,
variance, and covariance of the variables X and Y .

Solution: First note that, since f should be positive, we must have C > 0.
Then∫

R

∫
R

f (x, y) dxdy

= C

∫ ∞

0
dx

∫ x

−x
dye−�x = C

∫ ∞

0
dxe−�x2x

= C
−2

�

[
xe−�x

]x=∞
x=0 + C

2

�

∫ ∞

0
e−�xdx = C

2

�

∫ ∞

0
e−�xdx

= 2C

�2
.

This gives the value C = �2

2 .
For the marginal distribution of X , we write

fX (x) =
∫
R

f (x, y) dy = �2

2
1(0,∞)(x)e−�x

∫ x

−x
dy

= �21(0,∞)(x)xe−�x .

The marginal density of Y is

fY (y) =
∫
R

f (x, y) dx = �2

2

∫ ∞

|y|
dxe−�xdx

= �

2
e−�|y|.

We leave the rest of the exercise for the reader; we note, however, that X
has a gamma distribution with parameters a = 2 and � = 1 and Y has a
Laplace distribution. �

7.4 Let X1, X2 be two independent random variables both with uniform dis-
tribution on {−1,+1}, meaning that

P(X1 = 1) = P(X1 = −1) = P(X2 = 1) = P(X2 = −1),

and let

X3 = X1X2.

(a) Are the three random variables pairwise independent?
(b) Are the three random variables mutually independent?
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Solution: First note that

P(X3 = 1) = P(X1 = 1, X2 = 1) + P(X1 = −1, X2 = −1)

= P(X1 = 1)P(X2 = 1) + P(X1 = −1)P(X2 = −1)

= 1

2
.

Let us prove that the three random variables are two by two (pairwise)
independent. Clearly X1 and X2 are independent by hypothesis. We show
that X1, X3 are independent.

P(X1 = 1, X3 = 1) = P(X1 = 1, X1X2 = 1)

= P(X1 = 1, X2 = 1)

= P(X1 = 1)P(X2 = 1)

= 1

4

and this is clearly equal to the product:

P(X3 = 1)P(X1 = 1).

In a similar way we can show that

P(X1 = i, X3 = j) = P(X1 = i)P(X3 = j)

for every i, j ∈ {−1, 1}, which means that X1 is independent by X3.
We have

P(Xi = 1) = P(Xi = −1) = 1

2

for i = 1, 2, 3 and

P(X3 = 1, X1 = 1, X2 = 1)

= P(X1X2 = 1, X1 = 1, X2 = 1) = P(X1 = 1, X2 = 1)

= P(X1 = 1)P(X2 = 1) = 1

2

1

2
= 1

4
.

On the other hand the product of all three probabilities is

P(X3 = 1)P(X2 = 1)P(X1 = 1) = 1

2

1

2

1

2
= 1

8
/= P(X3 = 1, X1 = 1, X2 = 1).

We conclude that the random variables X1, X2, X3 are not mutually
independent. �
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7.5 Let (X, Y ) be a random vector with probability density function f : R2 →
R given by

f (x, y) = 2e−x e−y(1 + e−x + e−y)−3,

where x, y ∈ R.
(a) Find the marginal distributions of X and Y . Are X and Y indepen-
dent?
(b) Define

Z = X − Y.

Give the law of the random vector (Z,−Y )?
(c) Calculate the density of Z .

Solution: The density f is symmetric with respect to its two variables x
and y. It is therefore clear that the densities of X and Y are the same
(integrating out one variable with give the same result). We compute the
density function for X .

fX (x) = 2e−x
∫
R

e−y(1 + e−x + e−y)−3dy

= 2e−x
[

1

2
(1 + e−x + e−y)−2

]y=∞

y=−∞

= e−x
1

(1 + e−x )2

since

lim
y→∞(1 + e−x + e−y)−2 = (1 + e−x )2

and

lim
y→−∞(1 + e−x + e−y)−2 = 0.

By the previous observation we also have

fy(y) = e−y
1

(1 + e−y)2

for every y ∈ R.
The random variables X and Y are not independent because the

product of the marginals is obviously not the joint density.
Let us find the density of the couple (Z,−Y ). Define the function

ϕ : R2 → R2 by

ϕ(x, y) = (x − y,−y).
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This function ϕ satisfies the hypotheses of Theorem 7.24 and

ϕ−1(u, v) = (u − v,−v)
with

Jϕ−1(u, v) =
(

1 0

−1 −1

)

Applying Theorem 7.24 we find the density of (Z,−Y ) as

f(Z,−Y )(u, v) = f (ϕ−1(u, v) det Jϕ−1(u, v)

= 2ev−uev(1 + ev−u + ev)−3

= 2e2ve−u(1 + ev−u + ev)−3

for every u, v ∈ R.
To calculate the density of Z , we write

fZ (u) =
∫
R

f(Z,−Y )(u, v) dv

=
∫
R

2e−ue−v
(
e−v + e−u + 1

)−3
dv

= e−u
[(
e−v + e−u + 1

)−3
]v=∞

v=−∞
= e−u(1 + e−u)−3.

As can be easily observed, the random variable Z = X − Y has the same
distribution as either X or Y ! �

7.6 Let X1 and X2 be two independent random variables with the same density
f given by

f (x) = 2x 1[0,1](x).

(a) Find the law of Y = X1
X2

.

(b) Are the variables Y and X2 independent?

Solution: Note first that the vector (X, Y ) has the joint probability density
function given by

f(X,Y )(x, y) = 4xy1[0,1](x)1[0,1](y)

(Theorem 7.6). Consider the function ϕ : R2 → R2 given by

ϕ(x, y) =
(
x

y
, y

)
.
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This mapping is bijective from [0, 1] × [0, 1] into the domain

D = {(u, v) ∈ [0,∞) × [0, 1] | uv ∈ [0, 1]}
with

ϕ−1 : D → [0, 1] × [0, 1]

given by

ϕ−1(u, v) = (uv, u).

The Jacobian matrix of ϕ−1 is

Jϕ−1(u, v) =
(
v u

0 1

)

and det Jϕ−1(u, v) = v. By Theorem 7.24, the density of the random

vector
(
X1
X2
, X2

)
is

h(u, v) = 4uv31[0,1](v)1[0,1](uv).

We can now obtain the density of X1
X2

.

f X1
X2

(u) =
∫
R

h(u, v) dv

= 4u1(x≥0)

∫ 1∧ 1
u

0
v3dv

= u1(x≥0)
[
v4]v=1∧ 1

u

v=0

= u

(
1 ∧ 1

u

)4

,

where x ∧ y denotes the smaller of the two numbers x and y. This gives
the final expression

f X1
X2

(u) = u−31(1,∞)(u) + u1[0,1](u).

�

7.7 Assume that the vector (X1, X2) has joint density

f (x1, x2) = 2x2e
−x11(x1≥0, 0≤x2≤1).

(a) Check that f defines a proper probability density.
(b) Find the marginal laws of X1 and X2.
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Solution: For the marginal distribution of X1,

fX1 (x1) = 1(x1≥0)

∫ 1

0
2x2e

−x1dx2

= 1(x1≥0)e
−x1

[
x2

2

]x2=1

x2=0

= 1(x1≥0)e
−x1 .

In the same way, we find

fX2 (x2) = 2x21[0,1](x2).

�

7.8 LetX be a standard normal random variableN (0, 1) and let ε be a random
variable independent of X such that

P(ε = +1) = P(ε = −1) = 1

2
.

Set

Y = εX.

(a) What is the law of Y ?
(b) Give the law of the random vector (X, Y )?
(c) Calculate Cov(X, Y ).
(d) Are the random variables X and Y independent?

Solution: We compute the cumulative distribution function of Y . For
every x ∈ R,

P(Y < x) = P(Y < x, ε = 1) + P(Y < x, ε = −1)

= P(X < x, ε = 1) + P(−X < x, ε = 1)

= P(X < −x)P(ε = 1) + P(−X < x)P(ε = −1)

= 1

2
P(X < x) + 1

2
P(−X < x),

where we used the independence of X and ε. Since X and −X have the
same law, namely N (0, 1) (see Remark 5.26), we get

P(Y < x) = P(X < x)

for every x ∈ R; therefore Y is also a standard normal N (0, 1) . Next

Cov(X, Y ) = EXY − EXEY = EXY

= EXεX = EX 2ε = EX 2Eε = 1 × 0 = 0.

We see that the random variables X and Y are uncorrelated.
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About the last question, we note that

EX 2Y 2 = EX 4ε2 = EX 4Eε2 = 3 × 1 = 3

since

EX 4 = 3 and P(ε2 = 1) = 1.

On the other hand,

EX 2EY 2 = 1 × 1 = 1.

Since EX 2Y 2 /= EX 2EY 2, we easily see that the random variables X and
Y cannot be independent.

This exercise provides an example of two uncorrelated standard normal
random variables which are not independent. We will refer to this example
later in the book. �

7.9 Let (X, Y ) be a continuous random vector with density

f (x) = �2e−�(x+y)1(x,y≥0)

with � > 0. Compute the density of

Z = X + Y.

Solution: Prove first that X, Y are independent. Use Proposition 7.28 and
check that

fZ (z) = �2ze−�z .

�

7.10 Consider the function

f (x, y) = Ky1[0,1](x)1[0,1](y).

(a) Find K so that f defines a proper density on R2.
(b) Assume that the random vector (X, Y ) has the density f with the K
computed in the previous part. Compute the marginal densities of X and
Y . Are the random variables X and Y independent?
(c) Let Z = X + Y with X , Y as above. Compute the density of Z and
its cumulative distribution function (c.d.f.).

Solution: We have∫
R

∫
R

dxdy f (x, y) = K

∫ 1

0
dx

∫ 1

0
dyy = K

[
1

2
y2

]y=1

y=0

= K

2
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and then K = 2. The density of X is

fX (x) = 21[0,1](x)
∫ 1

0
dy = 21[0,1](x)

1

2
= 1[0,1](x).

So, X follows an uniform law over the interval [0, 1]. The density of Y is

fY (y) = 2y1[0,1](y)
∫ 1

0
dx

= 2y1[0,1](y).

It is immediate to see that

f(X,Y )(x, y) = fX (x)fY (y)

for every x, y ∈ R so X and Y are independent.
The density of Y is

fY (y) = 2y1[0,1](y).

To find the density of X + Y we apply Proposition 7.28 and we obtain

fX+Y (x) =
∫
R

fY (x)fX (x − y) dy

=
∫ 1

0
2y1[0,1](x − y) dy.

�

7.11 Let X, Y be two independent random variables with the same density
function

f (x) = 1

x2
1[1,∞)(x).

Let

U = XY and V = X

Y
.

(a) Give the law of the vector (U,V ).
(b) Give the marginal densities of U and V . Are they independent?
(c) Compute

E

(
1√
UV

)
.
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Solution: The first part follows from Example 7.7. We obtain the density
of (U,V ) as

f(U,V )(u, v) = 1

u2

5

4v
1D(u, v)

with

D = {(u, v) ∈ [1,∞) × [1,∞) | u
v

≥ 1}.

We obtain the marginal densities as:

fV (v) =
∫
R

f(U,V )(u, v) du

= 5

4v
1[1,∞)(v)

∫ ∞

v

1

u2
du

= 5

4v
1[1,∞)(v)

1

4
= 5

4v2
1[1,∞)(v),

and similarly (left for the reader),

fU (u) =
∫
R

f(U,V )(u, v) du.

�

7.12 Let (X, Y ) be a random vector with joint density

f (x, y) = a2e−ay1{0<x<y}.

(a) Prove that f is a density
(b) Compute the marginal distributions
(c) Find the density of the couple

(X, X − Y ).

(d) Give the law of X − Y . Are the r.v.’s X and X − Y independent?
(e) Find the density of the couple

(X, 2X − Y ).
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Solution: ∫
R2
f (x, y) dxdy = a2

∫ ∞

0
dx

∫ x

0
dye−ay

= a2
∫ ∞

0
dyye−ay

= a2 1

a

∫ ∞

0
e−aydy

= [−e−ay]y=∞
y=0 = 1.

The density of Y is

fy(y) = a2e−ayy1(0,∞)(y)

so Y ∼ �(2, a) and the density of Y is

fX (x) = ae−ax1(0,∞)(x)

so X ∼ Exp(a) = �(1, a). Define the function

ϕ : D = {= (x, y); 0 < x < y} → D′ = (0,∞) × (−∞, 0),

which is a bijection from D to D′ with

ϕ−1(u, v) = (u, u − v).

Since detJϕ−1(u, v) = −1 the density of (X, X − Y ) is

g (u, v) = a21(0,∞)(u)1(−∞,0)(v)e
−a(u−v).

The density of X − Y is the second marginal density of the vector
(X, X − Y ). It equals

fX−Y (v) = a21(−∞,0)(v)e
av

∫ ∞

0
e−audu = a1(−∞,0)(v)e

av.

We can see that

g (u, v) = fX (u)fX−Y (v),

so X and X − Y are independent.
For the last part, define

 : D → D′′ = {(u, v); u > v, u > 0}.
This function  is a bijection from D to D′′ and

 −1(u, v) = (u, 2u, v).
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Again detJ −1(u, v) = −1 and we obtain that the density of (X, 2X − Y )
is

h(u, v) = a2e−a(2u−v)1D′′(u, v).

�

7.13 Suppose that the random vectors (X, Y ) have the joint density given by

f (x, y) = P(X = x, Y = y) = k

n(n + 1)
1{1≤y≤x≤n}

(a) Find the constant k that makes f a proper distribution.
(b) Find the marginal distributions.
(c) Are X and Y independent?
(d) For n = 5 find the probabilities:

P(X ≤ 4, Y ≤ 4), P(X ≤ 4), P(Y > 3).

Solution: We need to have∑
x,y

f (x, y) = 1

or equivalently

1 =
n∑
y=1

n∑
x=y

k

n(n+ 1)
= k

n∑
y=1

n∑
x=y

1

n(n + 1)

= k

n∑
y=1

n − y − 1

n(n + 1)

= k

n∑
y=1

(
1

n
− y

n(n + 1)

)

= k

(
1 − 1

n(n + 1)

n(n + 1)

2

)

= k

2
,

which implies k = 2.
(b) For every x = 1, . . . , n, we have

P(X = x) =
x∑
y=1

2

n(n + 1)

= 2x

n(n + 1)
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and

P(X = x) = 0 if x > n.

For every y = 1, . . . , n, we obtain

P(Y = y) =
n∑
x=y

2

n(n + 1)

= 2(n − y + 1)

n(n + 1)

and

P(Y = y) = 0 if y > n.

(c) Clearly, in general

P(X = x, Y = y) /= P(X = x)P(Y = y),

which means that X and Y are not independent.
(d) We can write

P(X ≤ 4, Y ≤ 3) =
3∑
y=1

4∑
x=y

2

5 × 6
= 3

5

and

P(X ≤ 4) =
4∑
x=1

2x

5 × 6
= 2

3

and

P(Y > 3) = 1 − P(Y ≤ 3) = 1 −
3∑
y=1

2(5 − y + 1)

5 × 6
= 1

5
.

�

Problems without Solution

7.14 Prove Proposition 7.26.

7.15 Suppose the random vector (X, Y ) has the joint density

f (x, y) = 1

�
1�(x, y)

where the set is the unit disk:

� = {(x, y) ∈ R2, x2 + y2 ≤ 1}.
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(a) Calculate

P

(
X ≥ 1√

2

)
and P

(
Y ≥ 1√

2

)

(b) Compute

P

(
X ≥ 1√

2
, Y ≥ 1√

2

)
.

Are the r.v. X, Y independent?
(c) Compute P(X ≥ Y ).

7.16 Let X, Y be independent identically distributed random variables with a
uniform distribution on [0, 1]. Denote by

Z = X + Y.

(a) Calculate EZ .
(b) Find the density of Z .
(c) Show that for every x ∈ (0, 1) the events

(Z > 1) and (−x < Z ≤ 1 + x)

are independent.

7.17 Write down an expression for the density of the random variable defined
in Example 7.6. Show that it defines a probability distribution.

7.18 Prove that the marginal distributions of the multinomial law are binomial
distributions. See Example 7.6.

7.19 Let C, ˛ > 0. Let X be an r.v. with values in N∗ such that

P(X = k) = C

k˛
, ∀k ∈ N∗.

(a) Find conditions on ˛ and C such that the expression above defines a
proper probability distribution.
(b) For what values of ˛ the random variable X is integrable (has a finite
expectation)?

7.20 Suppose X ∼ Exp(�) (exponentially distributed random variable with
parameter � > 0) and let S be a uniformly distributed random variable
on {−1,+1}. Assume S and X are independent and set

Y = XS.
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(a) Show that Y follows a Laplace distribution with parameter �. Recall
that the Laplace law with parameter � > 0 has density

f (x) = �

2
exp(−� |x|).

Let Z be an r.v. with Laplace law with parameter �. We further define
random variables T and � by

T =
{+1 if Z ≥ 0,

−1 if Z < 0,

� = |Z | .

(b) Show that T follows a discrete uniform distribution on {−1,+1},
(c) Prove that � has an exponential distribution Exp(�).
(d) Prove that the random variables T and � are independent.

7.21 We know that the random variables X and Y have a joint density given
by the function f (x, y). Assume that P(Y = 0) = 0. Find the densities of
the following variables in terms of the function f :
(a) X + Y

(b) X − Y

(c) XY
(d) X

Y

7.22 All children in Bulgaria are given IQ tests at ages 8 and 16. Let X be the
IQ score at age 8 and let Y be the IQ score at age 16 for a randomly
chosen Bulgarian 16-year-old. The joint distribution of X and Y can be
described as follows. X is normal with mean 100 and standard deviation
15. Given that X = x, the conditional distribution of Y is normal with
mean 0.8x + 30 and standard deviation 9.

Among Bulgarian 16-year-olds with Y = 120, what fraction have
X ≥ 120?

7.23 Find a density function f (x, y) such that if (X, Y ) has density f , then
X 2 + Y 2 is uniformly distributed on (0,10).

7.24 LetX be a unit exponential random variable (with density f (x) = e−x , x >
0) and let Y be an independentU [0, 1] random variable. Find the density
of T = Y/X .

7.25 You have two opponents A and B with whom you alternately play
games. Whenever you play A, you win with probability pA; whenever you
play B, you win with probability pB , where pB > pA. If your objective is to
minimize the number of games you need to play to win two in a row, should
you start playing with A or with B?
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7.26 Let X1 and X2 be independent, unit exponential random variables (so the
common density is f (x) = e−x , x > 0). Define

Y1 = X1 − X2 and Y2 = X1/(X1 − X2).

Find the joint density of Y1 and Y2.

7.27 Let Z be an r.v. with an exponential distribution Exp(a) with a > 0 and
define

X = beZ

with b > 0.
(a) Show that the density of X is given by

f (x) =
{

aba

xa+1 , if x ≥ b,

0, otherwise.

We will say that X follows a Paréto distribution denoted P(a, b).
(b) For which values of a is the r.v. X integrable (i.e., has finite expecta-
tion)? In this case, compute its expectation.
(c) For what values of a is the r.v. X square integrable (i.e., X 2 has finite
expectation)? In this case, compute the variance of X .
(d) Let Y,W be two independent random variables following Paréto dis-
tributionsP(a, 1) andP(b, 1) respectively, with a /= b, a, b > 0. Calculate
the density of (U,V ), where

U = YW and V = Y

W
.

(e) Derive the marginal laws of U and V .
(f) Are U and V independent?

7.28 Let

f (x) = K
(
1 + xy(x2 − y2)

)
1[−1,1](x)1[−1,1](y).

(a) Find K such that f is a density.
(b) Compute the marginal densities.
(c) Compute Cov(X, Y ).
(d) Are X, Y independent?
(e) LetU = XY andV = X

Y
. Compute the density of the random vector

(U,V ).

7.29 Prove Proposition 7.2 on page 211.

7.30 Let (X, Y ) be a Gaussian random vector such that X and Y are standard
normal random variables N (0, 1). Suppose that

Cov(X, Y ) = �.
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Let � ∈ R. We set

U = X cos � − Y sin �, V = X sin � + Y cos �.

(a) Show that |�| ≤ 1.
(b) Calculate E(U ), E(V ), Var(U ), Var(V ), and Cov(U,V ). What can
be said about the vector (U,V ) ?
(c) Suppose that � /= 0. Are there values of � such that U and V are
independent?.
(d) Suppose � = 0. Give the marginal densities of U and V ? Are U and
V independent in this case?

7.31 Let X and Y be two independent exponentially distributed ran-
dom variables with parameter � > 0—that is, with density f (x) =
�e−�x1(0,+∞)(x). Let

S = X + Y and Q = Y

X + Y
.

(a) Identify the law of X as a gamma law. Give its parameter values.
Calculate the law of S .
(b) Give the density of the couple (S,Q ) ? What is the density of Q ?
(c) What can be said about the r.v.’s S and Q ?

7.32 Let D be the set in R2 defined by D = {(x, y) ∈ R2 : 1 < y < x}. Let
(X, Y ) be a random vector with density f given by

f (x, y) = C

x3
1D(x, y).

(a) Draw the set D.
(b) Calculate the density of Y in terms of C and deduce the value of C .
(c) Calculate the density of X .
(d) Are X and Y independent? Do the r.v.’s X and Y have finite expec-
tations?
(e) Let A be the subset of D defined by

A = {(x, y) ∈ R2 : 1 < y < x − 1}.
Draw an image of A and calculate the probability:

P
(
(X, Y ) ∈ A)

.

7.33 Let (X, Y ) be a vector with density f :

f (x, y) = C√
x
e−y1D(x, y) ,



254 CHAPTER 7 Random Vectors in Rn

where D is the domain

D = {(x, y) ∈ R2 : x > 0, y > 0, y2 > x}.
(a) Compute the distribution of Y and then deduce C .
(b) Calculate the density of X .
(c) Are X and Y independent?
(d) Are the r.v.’s X and Z independent, where

Z = Y −
√
X ?

(e) Identify the law of Z as a distribution we learned about.
(f) Define

T = X

Y 2
.

Are T and Y independent?
(g) Calculate E(T ).

7.34 We assume that the random vectors (X, Y ) have the distribution

P(X = i, Y = j) = ˛

(i + j + 1)!

for every (i, j) ∈ N2.
(a) Explain why X and Y have the same law.
(b) Let S = X + Y . Show that

P(S = k) = ˛

k!

for all k ∈ N.
(c) Derive the value of ˛ which makes a proper density.
(d) Calculate P(X = 0). Are X and Y independent?
(e) Calculate P(X = Y ) and derive P(X > Y ).



Chapter Eight

Characteristic Function

8.1 Introduction/Purpose of the Chapter

The characteristic function of a random variable is a powerful tool for analyz-
ing the distribution of sums of independent random variables. To some readers,
characteristic functions may already be familiar in a different form: If a random
variable is continuous and thus it has a probability density function f (x), then its
characteristic function is the Fourier transform of the function f (x).

8.2 Vignette/Historical Notes

According to Kenney (1942) and (Todhunter, 1865, pp. 309–313), the first use of
an analytic method substantially equivalent to the characteristic functions is due
to Joseph Louis de Lagrange in his work Réflexions sur la résolution algébrique des
équations, published around 1770 de Lagrange (1770). In this work, de Lagrange
introduces a simple form of the Fourier transform. The Fourier transform and
the Fourier series was properly introduced and refined by Joseph Fourier in his
Mémoire sur la propagation de la chaleur dans les corps solides. He applies the series
to find the solution for the heat equation.

The first general definition of the characteristic function is due to Pierre-
Simon marquis de Laplace in his classic ‘‘Théorie analytique des probabilités’’
(Laplace, 1812, pp. 83–84). He first introduces the generating function as
‘‘fonction generatrice’’ (described in the following chapter on moment generating
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function). Laplace is recognized with the introduction of the moment-generating
function—or, in its more traditional name, Laplace transform. However, by set-
ting t x = eisx in the generating function, Laplace comes up with an equivalent
form of the Fourier transform (the characteristic function) to which he does not
assign a name. Perhaps this is done on purpose since Laplace was familiar with
the Fourier transforms and he uses the function throughout his work to solve
differential equations (which was exactly the purpose Fourier had in mind when
he introduced it in the first place). However, there are two important differences
between Laplace’s approach and that of Fourier. First, the definition Laplace in-
troduces can deal with discontinuities in the probability distributions; thus his
definition (unlike Fourier) can deal with any random variables (not only contin-
uous), a fact he explicitly recognized in his book. Second, he writes the inversion
formula—what we now call the inverse Fourier transform, and once again this
transform is written explicitly for discontinuous points as well. This creates a new
way to solve differential equations without explicitly requiring that all functions
be written as a fourier series (a requirement which is not possible because of those
discontinuities).

The name characteristic function is due to Paul Levy in his book Calcul des
probabilités Lévy (1925) who reintroduces the same function as Laplace. Since
that time, the characteristic function is one of the primary tools of the probability
theory. In fact an entire class of distributions (the Lévy distribution) is introduced
through the characteristic function rather than via the distribution function.

8.3 Theory and Applications

8.3.1 DEFINITION AND BASIC PROPERTIES

Definition 8.1 If X : � → R is a random variable, then its characteristic func-
tion

ϕX : R→ C
is defined by

ϕX (�) = E(ei�X ), for every � ∈ R.
Note that the random variable Eei�X is complex-valued. In previous chap-

ters we defined the expectation only for real-valued random variables. To take
advantage of these definitions, recall that the complex exponential can be
written as

eitx = cos(tx) + i sin(tx)

Thus, we can write

ϕX (�) = E cos(�X ) + iE sin(�X ),
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where both expectations are now of real-valued random variables. This is the
meaning of the expectation that appears in Definition 8.1.

Remark 8.2 Since |eitX (ω)| = 1 for every t ∈ R and ω ∈ � it is clear that the
expectation introduced in Definition 8.1 exists and

|ϕX (�)| ≤ 1.

This is easy to prove using Jensen inequality (see Appendix B) for the convex function
|x|.

If X has a probability density fX (x), then the characteristic function reduces
to

ϕX (�) =
∫
R

ei�x fX (x) dx. (8.1)

Formula (8.1) with −� replacing � is known as the Fourier transform of fX .
The Fourier transform is in fact defined for any integrable function f , not

only for those which happen to be probability densities. Concretely, the Fourier
transform of the function fX is given by

f̂ (�) =
∫
R

e−i�x fX (x) dx (8.2)

for every � ∈ R, so

ϕX (�) = f̂ (−�).

The Fourier transform is well-defined for every function f integrable in the sense
that ∫

R

|f (y)| dy < ∞

since |ei�x | = 1.

Remark 8.3 In books and papers on analysis, pdes, and mathematical physics,
slightly different definitions of the Fourier transform are often used—for example,

f̂ (�) = 1√
2�

∫
R

ei�x fX (x) dx.

The constant
√

2� is typically irrelevant.

We next list basic properties of the characteristic function.

Proposition 8.4 Let X be a random variable and let ϕX denote its characteristic
function. Then
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i. ϕX (t ) ≤ 1 for every t ∈ R.

ii. ϕX (0) = 1.

iii. For every t ∈ R we have

ϕX (−t ) = ϕ−X (t ) = ϕX (t ).

Proof: The first two parts are obtained very fast. For every t ∈ R
ϕX (t ) ≤ |ϕX (t )| ≤ E|eitX |

= 1

and

ϕX (0) = Eei0X = 1.

For the last part, obviously

ϕX (−t ) = Ee−itX = ϕ−X (t ) = ϕX (t ).

�

Proposition 8.5 The function ϕX is absolutely continuous.

Proof: For every h > 0 we can write∣∣∣Eei(t+h)X − EeitX
∣∣∣ ≤ E

∣∣∣ei(t+h)X − eitX
∣∣∣

= E
∣∣∣eitX (

eihX − 1
)∣∣∣ = E

[∣∣eitX ∣∣ ∣∣∣(eihX − 1
)∣∣∣]

= E
∣∣∣eihX − 1

∣∣∣ .
Note that as h → 0 the quantity eihX − 1 converges to zero for every ω. By the
bounded convergence theorem, since∣∣∣eihX − 1

∣∣∣ ≤ 2

we can conclude that E
∣∣eihX − 1

∣∣ → 0, and therefore |ϕX (x + h) − ϕ(x)| → 0
as h → 0 and thus the function ϕX is absolutely continuous. �

Proposition 8.6 If X, Y are two independent random variables, then

ϕX+Y (�) = ϕX (�)ϕY (�).

Proof: Indeed,

ϕX+Y (�) = Eei�(X+Y )

= Eei�XEei�Y = ϕX (�)ϕY (�)
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for every� ∈ R, where we use the independence to be able to write the expectation
of the product as product of expectations. �

Remark 8.7 The result above extends easily to a finite sum of random variables;
that is, if X1, . . . , Xn are independent r.v.s, then

ϕX1+···+Xn (�) = ϕX1 (�)ϕX1 (�) . . . ϕXn (�).

This can be proved by induction (we leave the proof to the reader).
In particular, if X1, . . . , Xn are independent random variables with common

distribution (i.i.d. random variables) and

X = X1 + · · · + Xn,

then

ϕX (t ) = (
ϕXi (t )

)n
for every i = 1, . . . , n.

The problem of existence of the derivative of the function ϕX is straightfor-
ward. The next theorem allows us to express the derivatives of the characteristic
function in terms of the moments of random variable. Since |ϕX | < 1, we do not
need any extra boundness assumption around 0 for the characteristic function.
Instead, we require a finiteness condition on the moments of the random variable
considered.

Theorem 8.8 Suppose X is a random variable such that

E|X |k < ∞.

Then for any j such that 0 ≤ j ≤ k, the function ϕX has the j-th derivative given by

ϕ
(j)
X (t ) = E

(
(iX )j eitX

)
.

In particular,

ϕ(k)
X (0) = ijEX j,

and this expression connects the moments of the random variable with the characteristic
function.

Proof: We will use an induction argument. The result is clear for j = 0. Suppose
that the statement is true for j − 1 and denoted by

F (t ) = (iX )j−1eitX .

Then

|F ′(t )| = |(iX )j eitX | = |X |j .
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Since E|X |k | is finite, we have that E|X |j | < ∞ for any j ≤ k. Moreover,

ϕ
(j)
X (t ) = d

dt
ϕ

(j−1)
X (t ) = d

dt
E(iX )j−1eitX

= E
d

dt
(iX )j−1eitX = E(iX )j eitX ;

thus the statement is true for step j.
Since the verification step j = 0 is true and for any j − 1 assumed true we

showed that the statement is going to be true at j, then, by the induction argument,
it follows that the statement is true for any j ∈ N. �

Remark 8.9 As a particular case of Theorem 8.8, we get

EX = −iϕ′
X (0)

and

EX 2 = −ϕ′′
X (0).

Proposition 8.10 LetX be a random variable and let ϕX denote its characteristic
function. For every a, b ∈ R

ϕaX+b = eitbϕX (at ).

Proof: Clearly

ϕaX+b(t ) = Eeit (aX+b) = eitbEeitaX

= eitbϕX (at ).

�

8.3.2 THE RELATIONSHIP BETWEEN THE
CHARACTERISTIC FUNCTION AND THE DISTRIBUTION

The characteristic function of a random variable uniquely characterizes the ran-
dom variable (hence the name). If you recall, a random variable is uniquely char-
acterized by its distribution. The clear consequence is that two random variables
with the same characteristic function will have the same law (distribution). When
the random variable has a density, this density can be recovered from the charac-
teristic function. These statements will be proved next.

Theorem 8.11 (Fourier inversion theorem) Let X be a continuous
random variable. Suppose that the characteristic function of X , f̂X given by (8.2) is
integrable on the real line. Then, X admits a density fX and fX is continuous and
bounded and given by

f (x) = 1

2�

∫
R

f̂ (�)eix�d�.
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This theorem is the classic Fourier Inversion Theorem and it is proven in any
functional analysis textbook (e.g., for a probability see Billingsley (1995)).

Remark 8.12 Here is an example where the relationship does not hold. Suppose
that X is distributed as an Exp(1). Then

ϕX (t ) = 1

1 − it

and ϕX is not integrable since

|ϕX (t )| ∼ 1

|t |

as |t | → ∞. This is consistent with the above theorem because the density of X is

f (x) = e−x1(0,∞)(x),

which is not continuous (at zero).

Clearly, the definition of the characteristic function (which is explicit) implies
that two random variables with the same distribution have the same characteristic
function. What is interesting and very useful in practice is that the reciprocal
implication is also true. From Theorem 8.11, it follows immediately that if the
random variable is continuous, the p.d.f. of the random variable f (x) is uniquely
determined by the characteristic function of the random variable.

However, this statement remains true even if the characteristic function is
not integrable; in fact, it can be extended to random variables which are not
necessarily continuous.

Theorem 8.13 (Uniqueness theorem) If two random variables X, Y
have the same characteristic function

ϕX = ϕY ,

then they have the same distribution function (c.d.f.).

Proof: Let Z be a standard normal random variable (Z ∼ N (0, 1)), independent
of X and Y . Define two new random variables:

Xa = X + aZ,

Ya = Y + aZ.

If the original variable X , Y have the same characteristic function, then these new
variables Xa and Ya will also have the same characteristic function. Indeed, for
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every t ∈ R we have

ϕXa (t ) = EeitXa = EeitX+itaZ = E[eitX ]E[eitaZ ]

= EeitX e−
a2 t2

2 = ϕX (t )e−
a2 t2

2

= ϕY (t )e−
a2 t2

2

= ϕYa (t ),

where we used the independence of Z from X and Y .
The difference now is that the random variables Xa and Ya have an integrable

characteristic function (this is easy to show and left as an exercise). Using Theorem
8.11 we obtain that Xa and Ya have the same density. Therefore, by the definition
we must have

Eg (Xa) = Eg (Ya),

for any continuous bounded function g : R→ R. Now, we let a → 0. From the
Monotone Convergence Theorem we get

Eg (X ) = Eg (Y ) (8.3)

for any continuous bounded function g . For an arbitrary x ∈ R, let us choose

g (y) =

⎧⎪⎨
⎪⎩

1 if y ∈ (−∞, x),

1 − n(y − x) if y ∈ [x, x + 1
n
],

0 if y > x + 1
n
.

This function is continuous and bounded (plotted in Figure 8.1). Applying the
result, we obtain

E1(−∞,x+ 1
n )(X ) = E1(−∞,x+ 1

n )(Y ), ∀x ∈ R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

g(
y)

FIGURE 8.1 A plot of the function g used in Theorem 8.13.
.
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Letting n → ∞ and again applying the Monotone Convergence Theorem, we
obtain

E1(−∞,x](X ) = E1(−∞,x](Y )

for any x and that means that X, Y have the same c.d.f. �

In the next section we will show that a random variable isN (�, �) distributed
if and only if its characteristic function is

ϕX (t ) = ei�t−
�2 t2

2

for every t ∈ R. This result can also be proven using that the sum of two inde-
pendent r.v. normally distributed is normal (see exercise 8.2).

Theorem 8.14 (Uniqueness theorem for moments) Let X, Y be two
r.v. and denote by FX , FY their cumulative distribution functions. If

(i) X and Y each have finite moments of all orders,

(ii) their moments are the same, that is, EX k = EY k := ˛k for all k ≥ 1, and

(iii) the radius R of the power series
∑∞

k=1 ˛k
uk

k! is nonzero,

then the two random variables have the same distribution,

FX = FY .

Remark 8.15 This theorem says that in principle two distributions are the same
if all the moments identical. Recall that having the same distribution is also the same
as having the same characteristic function.

However, all conditions are needed. It is possible for two random variables to have
the same moments but not the same distribution.

EXAMPLE 8.1 Identifying a Normal by calculating its
moments

Here is an example of the applicability of the theorem. Let X be a random
variable such that its moments

˛k := EX k

satisfy

˛k =
{

1 × 3 × 5 × (k − 3) × (k − 1) = (2p)!
2pp! if k is even = 2p,

0 if k is odd.
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Then, applying the theorem, the random variable X isN (0, 1) distributed.
Indeed, the distribution of a standard normal has these moments; and the
series in the theorem,

∞∑
k=1

˛k
uk

k!
,

has the radius of convergence R = ∞.

If the random variable is not continuous (or, in any other case), it is possible to
state an inversion-type formula similar to the Fourier inversion theorem (Theorem
8.11) for the cumulative distribution function of a random variable.

Proposition 8.16 i. Let X be a random variable with distribution function FX ,
density fX , and characteristic function ϕX . Suppose ϕX is integrable. Then

FX (b) − FX (a) = 1

2�

∫
R

e−ita − e−itb

it
ϕX (t ) dt.

ii. Drop the assumption that ϕX is integrable. Then

FX (b) − FX (a) = lim
c→0

1

2�

∫
R

e−ita − e−itb

it
ϕX (t )e−

c2 t2

2 dt.

Proof: Use Theorem 8.11. �

If the random variable is discrete (the distribution is made of a points with
corresponding probability mass function), an inversion formula can be found in
Exercise 8.9.

Proposition 8.17 Let X be an r.v. and let ϕX be its characteristic function. Then
the law of X is symmetric if and only if ϕX is real-valued.

Remark 8.18 Here, “symmetric” means that the distribution is symmetric about
zero: the distribution of X is symmetric if X and −X have the same distribution. This
is the same as saying that P(X ≥ a) = P(X ≤ −a) for all a. In particular, if the
random variable is continuous and has a density function f , it is symmetric if and
only if f is an even function (recall that this means f (−x) = f (x)).

Proof: Consider the case when X admits a continuous density f . In this case

ϕX (t ) =
∫
R

cos(tx)f (x) dx + i

∫
R

sin(tx)f (x) dx.
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If f is an even function, then

x → sin(tx)f (x)

is odd and consequently ∫
R

sin(tx)f (x) dx = 0.

So ϕX is real-valued.
Conversely, if ϕX is real-valued, by Proposition 8.4,

ϕ−X (t ) = ϕX (−t ) = ¯ϕX (t ) = ϕX (t )

and the uniqueness theorem (Theorem 8.13) implies that X and −X have the
same distribution.

The general case is identical, but the integrals are expressed in terms of the
c.d.f. F (x), that is, ∫

R

sin(tx) dF (x),

and ∫
R

cos(tx) dF (x).

�

8.4 Calculation of the Characteristic Function
for Commonly Encountered Distributions

In this section we provide examples of calculating characteristic functions for some
distributions presented earlier.

8.4.1 BERNOULLI AND BINOMIAL

Proposition 8.19 Suppose X is a Bernoulli random variable with probability
of success p. Then

ϕX (t ) = 1 − p(1 − eit ).

Proof: Using the formula for the expectation of finite random variables, we obtain

ϕX (t ) = eit0P(X = 0) + eit1P(X = 1) = 1 − p + eit p

= 1 − p(1 − eit ).

�
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Proposition 8.20 If Y follows a binomial distribution with parameters (n, p),
then

ϕY (t ) = (
1 − p(1 − eit )

)n
.

Proof: This is a consequence of the above result since Y can be written as

Y = X1 + · · · + Xn

where Xi are independent Bernoulli random variables with parameter p. Then
just apply Remark 8.7. �

8.4.2 UNIFORM DISTRIBUTION

Proposition 8.21 If X ∼ U [0, 1], then

ϕX (t ) = eit − 1

it
.

More generally, if X ∼ U [a, b], then

ϕX (t ) = eitb − eita

it (b − a)
.

Proof: Since the density of the law U [0, 1] is g (x) = 1[0,1](x), we get

ϕX (t ) =
∫ 1

0
eitxdx = 1

it

[
eitx

]x=1
x=0

= eit − 1

it
.

The more general result is obtained by noting that X ∼ U [a, b] can be written
as

X = a + (b − a)U,

with U ∼ U [0, 1]. �

Remark 8.22 If a = −b (i.e., X has a symmetric distribution X ∼ U [−b, b]),
then

ϕX (t ) = eitb − e−itb

it (b − (−b))

= sin tb

tb

and note that this is a real-valued function. This is in accord with Proposition 8.17.



8.4 Calculation of the Characteristic Function 267

8.4.3 NORMAL DISTRIBUTION

Proposition 8.23 Suppose Z is a standard normal random variable. Then

ϕZ (t ) = e−
t2

2 .

Proof: We can use a direct ‘‘calculation’’:

EeitX = 1√
2�

∫
R

eitx−
x2

2 dx

= 1√
2�

∫
R

e−(t2+(x−it )2)/2dx

= e−
t2

2
1√
2�

∫
R

e−
y2

2 dy

= e−
t2

2 ,

where we made the formal change of variables y = x − it . To mathematically
justify this change of variables (which replace a real variable by a complex one!),
we would need more complicated arguments from complex function theory. �

Remark 8.24 Even though the proof needs more arguments, the result is correct.
A different proof of this result, based on differential equations, is given in Exercise 8.5.

Proposition 8.25 Suppose X is a normal random variable with expectation �
and variance �2, X ∼ N (�, �2). Then its characteristic function is

ϕX (t ) = eit�e−
�2 t2

2 = eit�− �2 t2

2 .

Proof: Since X can be written as X = �+ �Z , where Z is a standard normal
random variable, the result is obtained using Propositions 8.23 and 8.10. �

8.4.4 POISSON DISTRIBUTION

Proposition 8.26 If X denotes a Poisson random variable with parameter
� > 0, then

ϕX (t ) = e−�(1−eit ).

Proof: Using the definition of the Poisson law, for every � ∈ R

Eei�X =
∑
k≥0

ei�k
�k

k!
e−�
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= e−�
∑
k≥0

(�eit )k

k!

= e−�(1−eit ).

�

8.4.5 GAMMA DISTRIBUTION

Proposition 8.27 If X ∼ 	(a, �), then

ϕX (t ) =
(

1

1 − it
�

)a
.

Proof: Recall that the density of the gamma distribution is (see Section 5.4.4)

f (x) = �a

	(a)
xa−1e−�x1(0,∞)(x).

We use the power series expansion of the exponential function

eitx =
∑
n≥0

(itx)n

n!

and then (the interchange of the sum and of the integral can be rigourously argued)

ϕX (t ) = �a

	(a)

∑
n≥0

∫ ∞

0
dxxa−1e−�x

(itx)n

n!

=
∑
n≥0

�a(it )n

	(a)n!

∫ ∞

0
e−�xxa+n−1dx

=
∑
n≥0

�a(it )n

	(a)n!
�−a−n

∫ ∞

0
dye−yya+n−1

=
∑
n≥0

�a(it )n

	(a)n!
�−a−n	(n + a)

=
∑
n≥0

Can

(
it

�

)n

=
(

1

1 − it
�

)a
,

using the properties of the gamma function and the power series expansion of the
function (1 − x)a. �
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Remark 8.28 Recall that the distribution 	(1, �) corresponds to the exponential
distribution with parameter � > 0. Therefore, if X ∼ Exp(�), then

ϕX (t ) = 1

1 − it
�

for every t ∈ R.

Remark 8.29 Using Proposition 8.27, it is easy to check that if X ∼ 	(a, �) and
Y ∼ 	(b, �), then

X + Y ∼ 	(a + b, �).

Indeed,

ϕX+Y (t ) = ϕX (t )ϕY (t )

=
(

1

1 − it
�

)a (
1

1 − it
�

)b

=
(

1

1 − it
�

)a+b
,

which means that X + Y ∼ 	(a + b, �). This proof is much easier than a direct
proof based on the density of the gamma distribution.

8.4.6 CAUCHY DISTRIBUTION

Proposition 8.30 Suppose X has a Cauchy distribution. Then

ϕX (t ) = e−|t |.

Proof: We will use the integral formula:∫ ∞

0

cos(tx)

b2 + x2
dx = �

2b
e−tb, t ≥ 0,

for every b ∈ R. Note that the function under the integral is even, and so we have∫
R

cos(tx)

b2 + x2
dx = �

b
e−tb, t ≥ 0,

Recall that the density of the Cauchy distribution is

f (x) = 1

�

1

1 + x2
.
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Since the imaginary part of ϕX vanishes (the law of X is symmetric) for t ≥ 0,
we have

ϕX (t ) = 1

�

∫
R

eitx
1

1 + x2
dx

= 1

�

∫
R

cos(tx)
1

1 + x2

= e−t .

In a similar way for t ≤ 0, we obtain

ϕX (t ) = et ,

which concludes the result. �

8.4.7 LAPLACE DISTRIBUTION

Proposition 8.31 Suppose X is Laplace distributed, that is, with density

fX (x) = 1

2
e−|x|.

Then

ϕX (t ) = 1

1 + t2
.

Proof: The formula follows from direct computation, using the fact that the law
is symmetric and thus

ϕX (t ) = 1

2

∫
R

eitx−|x|dx

= 1

2

∫
R

cos(tx)e−|x|dx

=
∫ ∞

0
cos(tx)e−xdx

and finally using integration by parts two times. �

Using the above result, we can prove a very interesting property of the Cauchy
random variable.

Proposition 8.32 Suppose X1, . . . , Xn are independent Cauchy distributed r.v.
Let Sn = X1 + ...+ Xn and

X̄n = Sn

n
.

Then, the average X̄n is Cauchy distributed for every n.
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Proof: Following Proposition 8.30, we obtain the characteristic function of Sn as

ϕSn (t ) = e−n|t |

and from Proposition 8.10 we obtain

ϕX̄n(t ) = ϕSn (
t

n
) = e−|t |.

Therefore, X̄n has a Cauchy law. �

This property in fact leads to Levy distributions—a distribution defined
entirely using its characteristic function. The final section in this chapter tells the
story of this distribution.

8.4.8 STABLE DISTRIBUTIONS. LÉVY DISTRIBUTION

In finance, the continuously compounded return of an asset is one of the most
studied objects. If the equity at time t is denoted with St , then the continuously
compounded return over the period [t, t +
t ] is defined as Rt = log St+
t −
log St . There are two major advantages to studying return versus the asset itself.
First, in the regular Black Scholes model (Black and Scholes, 1973) the returns
are independent, identically distributed as a Gaussian random variable. Second,
the return over a larger period, say [t, t + n
t ], is easily expressed as the sum
of the returns calculated over the smaller periods [t + i
t, t + (i + 1)
t ]. If we
denote Xi the return over [t + i
t, t + (i + 1)
t ], then clearly

X (n
t ) = log St+n
t − log St =
n∑
i=1

Xi.

Since the sum of i.i.d. Gaussians is a Gaussian, this model provides a very easy
way to work with distribution.

It is well known today that the Black Scholes model is not a good fit for
the asset prices. This is primarily due to the nature of the Gaussian distribution.
When plotting histograms of the actually observed returns, the probability of
large observations is much greater than that of a normal density (the leptokurtic
property of the distribution). However, if we use a different density, we may lose the
scaling property of the normal—that is, the ability of re-scaling the larger period
returns to the same distribution. Is it possible to have a different distribution with
this property?

Definition 8.33 (Stable distribution) Consider the sum of n independent
identically distributed random variables Xi , and denote it with

X (n
t ) = X1 + X2 + X3 + · · · + Xn.
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Since the variables are independent, the distribution of their sum may be obtained as
the n-fold convolution,

P[X (n
t )] = P(X1) ⊗ P(X2) · · · ⊗ P(Xn).

The distribution of the Xi ’s is called stable if the functional form of the
P[X (n
t )] is the same as the functional form of P[X (
t )]. More specifically, if
for any n ≥ 2, there exists a positive Cn and a Dn so that

P[X (n
t )] = P[CnX + Dn],

where X has the same distribution as Xi for i = 1, 2, . . . , n. If Dn = 0, then X is
said to have a strictly stable distribution.

The writing in the definition is generic, but refer to the distribution as the
c.d.f.

It can be shown (e.g., Samorodnitsky and Taqqu (1994)) that

Cn = n
1
˛

for some parameter ˛, 0 < ˛ ≤ 2. This ˛ is an important characteristic of the
processes of this type (which is in fact called ˛-stable), but we shall not talk about
it here.

Paul Lévy (Lévy, 1925) and Aleksandr Khintchine (Khintchine and Lévy,
1936) found the most general form of the stable distributions. The general repre-
sentation is through the characteristic function ϕ(t ) associated to the distribution.

It is very easy to understand why this form of characteristic function de-
termine the stable distributions. The characteristic function of a convolution of
independent random variables is simply the product of the respective charac-
teristic functions; thus, owing to the special exponential form above, all stable
distributions are closed under convolutions for a fixed value of ˛. Specifically,
recall that (using our previous notation)

ϕX (n
t )(t ) = (ϕ(t ))n

and

ϕCnX+Dn (t ) = eiDntϕ(Cnt ).

Thus, setting them equal in principle can provide the most general form for the
stable distributions. It took the genius of Paul Lévy to actually see the answer.

The most common parametrization of Lévy distributions is given in the next
definition.
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Definition 8.34 (Lévy distribution) A random variable X is said to have
a Lévy distribution if its characteristic function is given by

ln(ϕ(t )) =
⎧⎨
⎩
i�t − �˛|t |˛

[
1 − ǐ t

|t | tan( �˛2 )
]

if ˛ ∈ (0, 2] \ {1},
i�t − �|t |

[
1 + ǐ t

|t |
2
�

ln |t |
]

if ˛ = 1.

The parameters of this distribution are as follows:

• ˛ is called the stability exponent or the characteristic function.
• � is a positive scaling factor.
• � is a location parameter.
• ˇ ∈ [−1, 1] is a skewness (asymmetry) parameter.

Remark 8.35 All such distributions are heavy tailed (leptokurtic) and have no
second moments for any ˛ < 2. When ˛ < 1 the distribution does not even have
the first moment. Please note that neither third nor fourth moments-exist for these
distributions, so the usual measures of skewness and kurtosis are undefined.

The characterization above is due to (Khintchine and Lévy, 1936). If we take
ˇ = 0, we obtain a (Lévy) symmetric alpha-stable distribution (Lévy, 1925). The
distribution is symmetric about �.

8.4.8.1 Special Cases. In general, there is no formula for the p.d.f. f (x) of a
stable distribution. There are, however, three special cases which reduce to known
characteristic functions (and therefore to known distributions).

1. When ˛ = 2 the distribution reduces to a Gaussian distribution with mean
� and variance �2 = 2�2. The skewness parameter ˇ has no consequence.

f (x) = 1√
4��

e
−(x−�)2

4�2 .

2. When ˛ = 1 and ˇ = 0, the distribution reduces to the Cauchy (Lorentz)
distribution.

f (x) = 1

�

�

�2 + (x − �)2
.

This is the distribution of �X + �, where X is the standard Cauchy we
defined before (� = 0. � = 1).

3. When ˛ = 1
2 and ˇ = 1 we obtain the Lévy–Smirnov distribution with lo-

cation parameter � and scale parameter � .

f (x) =
√
�

2�

e−�/2(x−�)

(x − �)
3
2

if x ≥ �
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8.4.9 TRUNCATED LÉVY FLIGHT DISTRIBUTION

The leptokurtic property of the stable distributions for ˛ < 2 is very desirable
in finance. In practice, when working with daily and more frequently sampled
returns, their marginal distribution has heavy tails. However, recall that the Lévy
distribution in general does not have a second moment for any ˛ < 2; therefore,
if distributed as Lévy, the returns have infinite variance. This is an issue when
working with real data. In order to avoid this problem, Mantegna and Stanley
(1994) consider a Lévy-type distribution truncated at some parameter l . That
is, for any x > l the density of the distribution, f (x), equals zero. Clearly this
distribution has finite variance.

This distribution was named the truncated Lévy flight (TLF):

T (x) = cP(x)1(−l,l )(x),

where P(x) is any symmetric Lévy distribution (obtained when ˇ = 0) and 1A(x)
is the indicator function of the set A.

The truncation parameter l is quite crucial. Clearly, as l → ∞, one obtains
a regular Lévy distribution. However, the TLF distribution itself is not a stable
distribution for any finite truncation level l . However, this distribution has finite
variance; thus independent variables from this distribution satisfy a regular Central
Limit Theorem (as we shall see in later chapters). If the parameter l is large the
convergence may be very slow (Mantegna and Stanley, 1994). If the parameter l
is small (so that the convergence is fast), the cut that it presents in its tails is very
abrupt.

In order to have continuous tails, Koponen (1995) considered a TLF in which
the cut function is a decreasing exponential characterized by a separate parameter
l . The characteristic function of this distribution when ˛ /= 1 can be expressed as

ϕ(t ) =
exp

{
c0 − c1

(t2 + 1/ l 2)
˛
2

cos(�˛/2)
cos(˛ arctan(l |t |))(1 + il |t |ˇ tan(t arctan l |t |))

}
,

with c1 a scale factor:

c1 = 2� cos(�˛/2)

˛	(˛) sin(�˛)
At

and

c0 = l−˛

cos(�˛/2)
c1 = 2�

˛	(˛) sin(�˛)
Al−˛t.

In the case of symmetric distributions we haveˇ = 0. In this case, the variance
of this distribution can be calculated from the characteristic function:

�2 = − ∂2ϕ(t )

∂t2

∣∣∣∣
t=0

= 2A�(1 − ˛)

	(˛) sin(�˛)
l 2−˛.

The remaining presentation is for this symmetric case of the TLF.
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If we use time steps
t apart, and T = N
t , following the discussion about
returns, at the end of each interval we must calculate the sum of N stochastic
variables that are independent and identically distributed. Therefore, the new
characteristic function will be

ϕ(t, N ) = ϕ(t )N = exp

{
c0N − c1

N (t2 + 1/ l 2)˛/2

cos(�˛/2)
cos(˛ arctan(l |t |))

}
.

The model can be improved by standardizing it. If the variance is given by

�2 = −∂
2ϕ(t )

∂t2
|t=0,

we have that

−∂
2ϕ(t/�)

∂t2
|t=0 = − 1

�2

∂2ϕ(t )

∂t2
|t=0 = 1.

Therefore, a standardized model is

ln ϕS (t ) = ln ϕ
( t
�

)
= c0 − c1

((t/�)2 + 1/ l 2)˛/2

cos(�˛/2)
cos

(
˛ arctan

(
l
|t |
�

))

We leave it as an exercise to write the characteristic function in a more condensed
form.

EXERCISES

Problems with Solution

8.1 Let Y be an uniform random variable on {−1, 1}. Show that

ϕY (t ) = cos(t )

for every t ∈ R.

Solution:

EeitY = eit1P(Y = 1) + e−itP(X = −1)

= 1

2
(eit + e−it ) = cos t

because eit = cos t + i sin t and e−it = cos t − i sin t. �

8.2 Using characteristic functions, prove that if

X ∼ N (a, �2
1 )
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and

Y ∼ N (b, �2
2 )

then

X + Y ∼ N (a + b, �2
1 + �2)2.

Solution: It holds

ϕX+Y (t ) = ϕX (t )ϕY (t ) = eita−
1
2 �

2
1 t

2
eitb−

1
2 �

2
2 t

2

= eit (a+b)+ 1
2 t

2(�2
1+�2

2 ).

This implies X + Y ∼ N (a + b, �2
1 + �2

2 ). Compare this proof with the
proof given in Chapter 5. �

8.3 Let X, Y be two independent random variables with uniform law
U [−1, 1].
(a) Give the density of X + Y .
(b) Calculate the characteristic function of X + Y .
(c) Show that the function

f (x) = 1

�

(
sin x

x

)2

is a density.

Proof: (a) Using Theorem 7.28, we find that

fX+Y (x) = 1

4
(2 + x)1(−2,0](x) + 1

4
(2 − x)1(0,2)(x).

(b) Using Remark 8.22, we obtain

ϕX (t ) = ϕY (t ) = sin t

t

and thus

ϕX+Y (t ) = ϕX (t )ϕY (t ) =
(

sin x

x

)2

.

(c) We have, for every z,∫
R

f (x)e−ixzdx = 1

�

∫
R

ϕX+Y (x)e−ixzdx

= 2fX+Y (z)
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and thus ∫
R

f (x) dx = 2fX+Y (0) = 1.

�

8.4 Let (X, Y ) be a random vector with joint density

f (x, y) = 1

4

[
1 + xy(x2 − y2)

]
1(|x|<1,|y|<1).

(a) Compute the marginal distributions of X and Y .
(b) Are X and Y independent?
(c) Compute the characteristic functions of X and Y .
(d) Compute the characteristic function of

Z = X + Y.

(e) What can you conclude?

Proof: (a) We have

fX (x) = 1(−1,1)(x)
∫ 1

−1
dy

1

4

[
1 + xy(x2 − y2)

]
= 1

2
1(−1,1)(x)

and similarly

fY (y) = 1

2
1(−1,1)(y).

So X and Y have uniform laws on [−1, 1].
(b) From part a, we can easily see that X and Y are not independent.
(c) Using Remark 8.22, we obtain

ϕX (t ) = ϕY (t ) = sin t

t
.

(d) After calculation, we get

ϕZ (t ) =
(

sin t

t

)2

for every t .
(e) We notice that

ϕZ (t ) = ϕX (t )ϕY (t )
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for every t , but X and Y are not independent. This is a counterexample
for the reciprocal of Theorem 8.6. �

Problems without Solution

8.5 In this problem we shall derive the characteristic function of a normal
using a differential equation approach.

(a) Let f (x) = e−
x2

2 . Show that the function f satisfies

d

dx
f + x f = 0.

(b) Show that if Z ∼ N (0, 1), then its characteristic function ϕZ satisfies
the same equation.
(c) Deduce that

ϕZ (t ) = Ce−
t2

2 .

(d) Compute the constant C from the relation

C = ϕZ (0) = 1.

Hint: Part (a) is trivial since

d

dx

(
e−

x2

2

)
= −xe− x2

2 .

8.6 Compute the first four moments of a standard normally distributed ran-
dom variable using the characteristic function.

8.7 Let X, Y be two independent random variables. Denote by ϕX , ϕY their
characteristic functions respectively. Then

ϕXY (t ) = EϕX (tY ) = EϕY (tX ) for every t ∈ R.

8.8 Suppose the random variable X has characteristic function ϕ. Show that

P(X = x) = lim
C→∞

∫ C

−C
eitxϕ(t ) dt.

8.9 Let X be an r.v. with characteristic function ϕ. Then for every x ∈ R we
have

P(X = x) = lim
T→∞

1

2T

∫ T

−T
e−itxϕ(t ) dt.

Deduce that if ϕ(t ) → 0 as |t | → ∞, then

P(X = x) = 0 for all x ∈ R.
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8.10 Use exercise 8.9 to calculate P(X = k) in the case when X has a binomial
distribution B(n, p).

8.11 Let X be an r.v. with density

f (x) = (1 − |x|)1[−1,1](x).

This X is said to have a triangular distribution, (see exercise 5.14).
(a) Compute the characteristic function of X
(b) Let X1, X2 be two independent random variable with uniform distri-
bution on [− 1

2 ,
1
2 ]. Give the law of

S = X1 + X2.

8.12 Let Y be a random variable with density

f (y) = C e−|y|.

Calculate C and show that the characteristic function of Y is


Y (t ) = 1

1 + t2
.

State the name of the distribution with this characteristic function and
density.

8.13 LetXi, 1 ≤ i ≤ 4, be independent identically distributedN (0, 1) random
variables. Denote with

D = det

(
X1 X2

X3 X4

)
,

the determinant of the matrix.
(a) Show that the characteristic function of the random variable X1X2 is

ϕ(t ) = 1√
1 + t2

.

(b) Calculate the characteristic function of D and state the law of D.

8.14 Determine the formula for the distribution with characteristic function


(t ) = cos t

for every t ∈ R.

8.15 Determine the distribution with characteristic function


(t ) = t + sin t

2t

for every t ∈ R.



Chapter Nine

Moment-Generating Function

9.1 Introduction/Purpose of the Chapter

We chose to introduce the generating function and the moment-generating
function after the chapter on characteristic function. This is contrary to the tradi-
tional and historical approach. In modern-day probability the characteristic func-
tions are much more widespread simply because they exist and can be constructed
for any random variable or vector regardless of its distribution. On the other hand,
generating functions are defined only for positive discrete random variables. The
moment-generating function does not exist for many discrete or continuous ran-
dom variables. Despite this fact, when these functions exist, they are much eas-
ier to work with than the characteristic functions (recall that the characteristic
function takes values in the complex plain). Thus, we feel that the knowledge
of these functions cannot miss from the culture of anyone applying probability
concepts.

9.2 Vignette/Historical Notes

According to Roy (2011), Euler found a generating function for the Bernoulli
numbers around 1730’s. That is, he defined numbers Bn such that

t

et − 1
=

∑
Bn
tn

n!
.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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Around the same time, DeMoivre independently introduced the method of gener-
ating functions in a general way (similar to our definition). He used this method
to encode all binomial probabilities in a simple polynomial function. Laplace
(1812) applied the Laplace transform to probability, in effect creating the moment-
generating function.

9.3 Theory and Applications

9.3.1 GENERATING FUNCTIONS AND APPLICATIONS

First, we introduce a generating function for discrete probability distributions.
This function in fact can be defined for any sequence of numbers.

Definition 9.1 (Regular generating function) Let a = {ai}i∈{0,1,2,...}
be a sequence of real numbers. Define the generating function of the sequence a as

Ga(s) =
∞∑
i=0

ais
i .

The domain of definition of the function Ga(s) is made of values s ∈ R for which the
series converges.

Remark 9.2 Please note that we can obtain all the terms of the sequence if we
know the generating function. Specifically,

ai = G (i)
a (0)

i!
,

where we denote with G (i)
a (x0) the i-th derivative of the function Ga calculated at x0.

EXAMPLE 9.1 A simple generating function

Take the sequence a as

an = (cos˛+ i sin ˛)n = cos(n˛) + i sin(n˛) (De Moivre’s Theorem).

Then its generating function is

Ga(s) =
∞∑
n=0

sn · an =
∞∑
n=0

(s(cos˛+ i sin ˛))n

= 1

1 − s(cos˛+ i sin ˛)
,

provided that the power term converges to 0. This holds if |s| < 1 for all
˛; and obviously the radius of convergence may be increased, depending
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on the value of ˛. The DeMoivre theorem may be proven easily by taking
derivatives of this expression and calculating them at s = 0.

Definition 9.3 The convolution of two sequences {ai} and {bi} is the sequence
{ci} with

cn = a0bn + a1bn−1 + · · · + anb0.

We write c = a ∗ b.

Lemma 9.4 If two sequences a and b have generating functions Ga and Gb , then
the generating function of the convolution c = a ∗ b is

Gc (s) = Ga(s)Gb(s).

Proof: We have

Gc(s) =
∞∑
n=0

cns
n =

∞∑
n=0

sn
n∑
k=0

akbn−k =
∞∑
n=0

n∑
k=0

(aks
k)(bn−ksn−k)

Fubini=
∞∑
k=0

aks
k

∞∑
n=k

bn−k sn−k = Ga(s)Gb(s).

�

9.3.1.1 Generating Functions for Discrete Random Variables.

Definition 9.5 (Probability generating function(discrete)) If X is
a discrete random variable with outcomes i ∈ N and corresponding probabilities pi ,
then we define

GX (s) = E(sx ) =
∑
i

siP(X = i) =
∑
i

sipi .

This is the probability-generating function of the discrete random
variable X .

Remark 9.6 The first observation we want to make is that the definition is only
for discrete random variables with positive integer values. However, the definition can
be extended to any discrete random variable taking values in any countable set. Recall
that the countable sets all have the same number of elements, so to use the definition
we need to first relabel the outcomes of the random variable as x0 → 0, x1 → 1,
x2 → 2, and so on, then the definition above will apply.

Lemma 9.7 Suppose that two independent discrete random variables X and
Y have associated probability distributions p = {pn} and q = {qn} and generating
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functionsGX (s) = ∑
i s
ipi andGY (s) = ∑

i s
iqi respectively. Then the random vari-

able X + Y has distribution the convolution of the two probability sequences p ∗ q
as in Definition 9.3 and its generating function is

GX+Y (s) = GX (s)GY (s).

Proof: The proof is an exercise. Just use the preceding lemma and calculate

P(X + Y = n),

in terms of pi and qi . �

This definition and the lemma above explain the main use of the generating
functions. Recall that the probability distribution may be recovered entirely from
the generating function. On the other hand, the generating function of a sum
of two random variables is the product of individual generating functions. Thus,
while the distribution of the sum using the convolution definition is complicated
to calculate, calculating the generating function of the sum is a much simple
process. Once calculated, the probability distribution of the sum may be obtained
by taking derivatives of the generating function.

Proposition 9.8 (Properties of probability-generating function)
Let GX (s), GY (s) be the generating functions of two discrete random variables
X and Y .

(i) There exists R ≥ 0, a radius of convergence such that the sum is convergent
if |s| < R and diverges if |s| > R. Therefore, the corresponding generating
function GX exists on the interval [−R, R].

(ii) The generating function GX (s) is differentiable at any s within the domain
|s| < R.

(iii) If two generating functionsGX (s) = GY (s) = G(s) for all |s| < R where R =
min{RX , RY }, then X and Y have the same distribution. Furthermore, the
common distribution may be calculated from the generating function using

P(X = n) = 1

n!
G (n)(0).

(iv) As particular cases of the definition, we readily obtain that

GX (0) = P(X = 0),

GX (1) =
∑
i

pi = 1.

The last relationship implies that the probability-generating function always
exists for s = 1, thus the radius of convergence R ≥ 1.

Proof: Exercise 9.8. �
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9.3.1.2 Generating Functions for Simple Distributions. Bellow we
present the generating function for commonly encountered discrete random vari-
ables.

Once again we stress that the generating functions are very useful when
working with discrete random variables (basically when they exist).

(i) Constant variable, identically equal to c (i.e., P(X = c) = 1):

G(s) = E(sx ) = sc .

(ii) Bernoulli(p):

G(s) = E(sx ) = 1 − p + ps.

(iii) Geometric(p):

G(s) =
∞∑
k=1

sk(1 − p)k−1p

= sp ·
∞∑
k=1

(s(1 − p))k−1

= sp

1 − s(1 − p)
.

(iv) Poisson(�):

G(s) =
∞∑
k=1

sk · �
k

k!
e−� = e�s · e−� = e�(s−1).

Lemma 9.9 If X has generating function G(s), then:

(i) E(X ) = G ′(1).

(ii) E[X (X − 1) · · · (X − k + 1)] = G (k)(1), the k-th factorial moment of X.

Proof: Again these results are easy to prove and are left as exercises. �

9.3.1.3 Examples. In the next examples we show the utility of the generating
functions.

EXAMPLE 9.2 Using generating function for Poisson
distribution

Let X, Y be two independent Poisson random variables with parameters �
and �. What is the distribution of Z = X + Y ?
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Solution: We could compute the convolution fZ = fX ∗ fY using the formulas
in the previous section. However, calculating the distribution using generating
functions is easier. We have

GX (s) = e�(s−1),

GY (s) = e�(s−1).

By independence of X and Y and from the Lemma 9.7 above, we have

GZ (s) = GX (s)GY (s) = e�(s−1)e�(s−1) = e(�+�)(s−1).

But this is the generating function of a Poisson random variable. Identifying the
parameters imply that Z has a Poisson(�+ �) distribution. �

EXAMPLE 9.3 Using generating function for Binomial
distribution

We know that for a Binomial(n, p) random variable X may be written
as X = X1 + · · · + Xn, where Xi ’s are independent Bernoulli(p) random
variables. What is its generating function? What is the distribution of a
sum of binomial random variables?

Solution: Again applying the Lemma 9.7, we obtain the generating function of a
Binomial(n, p) as

GX (s) = GX1 (s)GX2 (s) · · ·GXn (s) = (1 − p + sp)n.

What if we have two independent binomially distributed random variables
X Binomial(m, p) and Y Binomial(k, p)? Note that p the probability of success is
identical. What is the distribution of X + Y in this case?

GX+Y (s) = (1 − p + sp)m(1 − p + sp)k = (1 − p + sp)m+k.

We see that we obtain the generating function of a Binomial random variable
with parameters m + k and p.

This is of course expected. If X can be written and a sum of n Bernoulli(p)
and Y can be written along with a sum of k Bernoulli(p), then of course X + Y
is a sum of n+ k Bernoulli(p) random variables. Even more intuitively, suppose
X is the number of heads obtained in n tosses of a coin with probability p, and
Y is the number of Heads obtained in k tosses of the same coin (separate tosses).
Then of course X + Y is the total number of heads in n + k tosses. �

Let us expand this results in which we presented the distribution of a sum
of a fixed number of terms. Consider the case when the sum contains a random
number of terms. The next theorem helps with such a situation.
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Theorem 9.10 Let X1, X2, . . . denote a sequence of i.i.d. random variables with
generating function GX (s). LetN be an integer-valued random variable independent
of the Xi ’s with generating function GN (s). Then the random variable

S = X1 + · · · + XN

has generating function:

GS (s) = GN (GX (s))

Now let us give an example of application of the previous theorem.

EXAMPLE 9.4 A chicken and eggs problem

Suppose a hen lays N eggs. We assume that N has a Poisson distribution
with parameter �. Each egg then hatches with probability p independent of
all other eggs. Let K be the number of chicken that hatch. Find E(K |N ),
E(N |K ), and E(K ). Furthermore, find the distribution of K .

Solution: We know that

fN (n) = �n

n!
e−�,

fK |N (k|n) =
(
n

k

)
pk(1 − p)n−k.

The last distribution is the distribution of the number of eggs hatching if we know
how many eggs were laid.

We may then calculate the conditional expectations. Let

ϕ(n) = E(K |N = n) =
∑
k

k ·
(
n

k

)
pk(1 − p)n−k = np

since that is the formula for the expectation of a Binomial(n, p) random variable.
Therefore, E(K |N ) = ϕ(N ) = Np. Recall that E[E[X |Y ]] = E[X ]. Using this
relation, we get

E[E[K |N ]] = E[K ] = E[Np] = �p.
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To find E(N |K ), we need to find fN |K :

fN |K (n|k) = P(N = n|K = k) = P(N = n, K = k)

P(K = k)

= P(K = k|N = n) · P(N = n)

P(K = k)

=
(n
k

)
pk(1 − p)n−k �

n

n! e
−�∑

m≥k
(
m
k

)
pk(1 − p)m−k �m

m! e
−�

= (q�)n−k

(n− k)!
e−q�

if n ≥ k and 0 otherwise, where q = 1 − p and for the denominator we have used
the following:

P(K = k) =
∞∑
m=0

P(K = k,N = m) =
∞∑
m=0

P(K = k|N = m)P(N = m)

=
∞∑
m=k

P(K = k|N = m)P(N = m)

since P(K = k|N = m) = 0 for any k > m (it is not possible to hatch more
chicks than eggs laid).

Consequently, we immediately obtain

E(N |K = k) =
∑
n≥k

n · (q�)n−k

(n − k)!
e−q�

change of var. n−k=m=

= e−q�
∞∑
m=0

(m+ k)
(q�)m

m!

= e−q�
( ∞∑
m=0

m
(q�)m

m!
+ k

∞∑
m=0

(q�)m

m!

)

= e−q�
(

0 + q�

∞∑
m=1

(q�)m−1

(m− 1)!
+ keq�

)
= q�+ k,

which gives us E(N |K ) = q�+ K.
Note that in the previous derivation we kind of obtained the distribution of

K . We still have to calculate a sum to find the closed expression. Even though this
is not that difficult, we will use generating functions to demonstrate how easy it
is to calculate the distribution using them.
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Let K = X1 + · · · + XN , where the Xi ∼Bernoulli(p). Then using the the
above theorem, we obtain

GK (s) = GN (GX (s)),

GN (s) =
∞∑
n=0

sn
�n

n!
e−� = e�(s−1),

GX (s) = 1 − p + ps.

Using the above equations, we conclude that

GK (s) = GN (1 − p + ps) = e�(1−p+ps−1) = e�p(s−1).

But since this is a generating function for a Poisson r.v., we immediately conclude
that

K ∼ Poisson(�p).

�

EXAMPLE 9.5 A Quantum mechanics extension

In an experiment a laser beam emits photons with an intensity of �
photons/second. Each photon travels through a deflector that polarizes
(spin up) each photon with probability p. A measuring device is placed
after the deflector. This device measures the number of photons with a spin
up (the rest are spin down). LetN denote the number of photons emitted by
the laser bean in a second. Let K denote the number of photons measured
by the capturing device. Assume that N is distributed as a Poisson random
variable with mean �. Assume that each photon is spinned independently
of any other photon. Give the distribution of K and its parameters. In
particular, calculate the average intensity recorded by the measuring device.

Solution: Exercise. Please read and understand the previous example. �

9.3.2 MOMENT-GENERATING FUNCTIONS. RELATION
WITH THE CHARACTERISTIC FUNCTIONS

Generating functions are very useful when dealing with discrete random variables.
To be able to study any random variables, the idea is to make the transformation
s = et in G(s) = E(sx ). Thus, the following definition is introduced.

Definition 9.11 (Moment-generating function) The moment-
generating function of a random variable X is the function M : R→ [0,∞) given
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by

MX (t ) = E(etx ),

defined for values of t for which MX (t ) < ∞.

The moment-generating function is related to the Laplace transform of the
distribution of the random variable X .

Definition 9.12 (Laplace transform of the function f ) Suppose we
are given a positive function f (x). Assume that∫ ∞

0
e−t0x f (x) dx < ∞

for some value of x0 > 0. Then the Laplace transform of f is defined as

L{f }(t ) =
∫ ∞

0
e−tx f (x) dx

for all t > t0. If the random variable X has distribution function F , the following
defines the Laplace–Stieltjes transform:

LLS{F }(t ) =
∫ ∞

0
e−txdF (x),

again with the same caution about the condition on the existence.

With the previous definitions it is easy to see that the moment-generating
functions is a sum of two Laplace transforms (provided either side exists). Specif-
ically, suppose the random variable X has density f (x). Then,

MX (t ) = E(etx ) =
∫ ∞

−∞
etx f (x) dx

=
∫ 0

−∞
etx f (x)dx +

∫ ∞

0
etx f (x) dx

=
∫ ∞

0
e−tx f (−x)dx +

∫ ∞

0
e−(−t )x f (x) dx

= L{f−}(t )1(0,∞)(t ) + L{f+}(t )1(−∞,0](t ),

where

f−(x) =
{
f (−x), if x > 0,

0, else

and

f+(x) =
{
f (x), if x > 0,

0, else.
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This result is generally needed to use the theorems related to Laplace and specially
inverse Laplace transforms.

Proposition 9.13 (Properties) Suppose that the moment-generating func-
tion of a random variable X , MX (t ) is finite for all t ∈ R.

(i) If the moment-generating function is derivable, then the first moment is E(X ) =
M ′
X (0); in general, if the moment generating function is k times derivable, then

E(X k) = M (k)
X (0).

(ii) More general, if the variable X is in Lp (the first p moments exist), then we
may write (Taylor expansion of ex ):

M (t ) =
∞∑
k=0

E(X k)

k!
t k.

(iii) If X, Y are two independent random variables, then MX+Y (t ) =
MX (t )MY (t ).

Remark 9.14 It is the last property in the above proposition that makes it desirable
to work with moment-generating functions. However, as mentioned these functions
have a big disadvantage when compared with the characteristic functions. The expec-
tation and thus the integrals involved may not be finite and therefore the function may
not exist. Obviously, point iii in the Proposition 9.13 generalizes to any finite sum of
independent random variables.

Remark 9.15 Another important fact concerning the moment-generating function
is that, as in the case of the characteristic function, it characterizes the law of a random
variable completely. See exercise 9.16.

EXAMPLE 9.6 Calculating moments using the M.G.F.

Let X be an r.v. with moment-generating function

MX (t ) = 1

2
(1 + et ).

Derive the expectation and the variance of X .

Solution: Since

M ′
X (t ) = 1

2
et ,
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we get for t = 0 and Proposition 9.13

EX = M ′
X (0) = 1

2
.

By differentiating MX , twice, we obtain

M ′′
X (t ) = 1

2
et

and

EX 2 = M ′′
X (0) = 1

2
.

Thus

VarX = 1

2
− 1

4
= 1

4
.

�

Let us compute the moment-generating function for certain common prob-
ability distribution.

Proposition 9.16 Suppose X ∼ N (0, 1). Then

MX (t ) = e
t2

2

for every t ∈ R.

Proof: For every t ∈ R, we have

MX (t ) =
∫ ∞

−∞
etz

1√
2�
e−

z2

2 dz

= e
t2

2
1√
2�

∫ ∞

−∞
e−

(z−t )2
2 dz

= e
t2

2 .

�

Proposition 9.17 If X ∼ N (�, �2), prove that for every t ∈ R, we have

MX (t ) = e�t+
t2�2

2 .

Proof: See problem 9.3. �

Proposition 9.18 If X ∼ Exp(�) with � > 0, then

MX (t ) = �

�− t
.
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Proof: See exercise 9.5. �

Proposition 9.19 If X ∼ �(a, �) (gamma distribution with parameters a, � >
0), then the moment-generating functionMX exists for t < � and in this case we have

MX (t ) =
(

1

1 − t
�

)a
.

Proof: By the definition of the gamma density, we have

MX (t ) =
∫ ∞

0

�a

�(a)
e−�xxa−1etxdx

=
∫ ∞

0

�a

�(a)
e−x(�−t )dx.

Use the change of variables y = x(�− t ) to conclude. �

9.3.3 RELATIONSHIP WITH THE CHARACTERISTIC
FUNCTION

If the moment-generating function of a random variable X exists, then we obvi-
ously have

ϕX (t ) = MX (it ).

We recall that just as the moment-generating function is related to the Laplace
transform, the characteristic function was related to the Fourier transform.

We note that the characteristic function is a better-behaved function than
the moment-generating function. The drawback is that it takes complex values
and we need to have a modicum of understanding of complex analysis to be able
to work with it.

9.3.4 PROPERTIES OF THE MGF

The following theorems are very similar with the corresponding theorems for the
characteristic function. This is why if the moment-generating function exists, it
is typically easier to work with it than the characteristic function. We will state
these theorems without proofs. The proofs are similar with the ones given for the
characteristic function.

Theorem 9.20 (Uniqueness theorem) If the MGF of X exists for any t
in an open interval containing 0, then the MGF uniquely determines the c.d.f. of X .
That is, no two different distributions can have the same values for the MGF’s on an
interval containing 0.

The uniqueness theorem in fact comes from the uniqueness of the Laplace
transform and inverse Laplace transform.
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Theorem 9.21 (Continuity Theorem) Let X1, X2, . . . a sequence of
random variables with c.d.f.’s FX1 (x), FX2 (x), . . . and moment generating functions
MX1 (t ),MX2 (t ), . . . (which are defined for all t ). Suppose that

MXn (t ) → MX (t )

for all t as n → ∞. Then,MX (t ) is the moment generating function of some random
variable X . If FX (x) denote the c.d.f. of X , then

Fn(x) → FX (x)

for all x continuity points of FX

We note that the usual hypothesis of the theorem include the requirement that
MX (t ) be a moment-generating function. This is not needed in fact, the inversion
theorem stated next makes this condition obsolete. The only requirement is that
the MGF be defined at all x.

Recall that the MGF can be written as a sum of two Laplace transforms. The
inversion theorem is stated in terms of the Laplace transform. This is in fact the
only form in which it actually is useful.

Theorem 9.22 (Inversion theorem) Let f be a function with its Laplace
transform denoted with f ∗, that is,

f ∗(t ) = L{f }(t ) =
∫ ∞

0
e−tx f (x) dx.

Then we have

f (x) = 1

2�i
lim
T→∞

∫ c+iT

c−iT
etx f ∗(t ) dt,

where c is a constant chosen such that it is greater than the real part of all singularities
of f ∗. The formula above gives f as the inverse Laplace transform, f = L−1{f ∗}.

Remark 9.23 In practice, computing the complex integral is done using the
Residuals Theorem (Cauchy residue theorem). If all singularities of f ∗ have neg-
ative real part or there is no singularity then c can be chosen 0. In this case
the integral formula of the inverse Laplace transform becomes identical to the in-
verse Fourier transform (given in the chapter about the characteristic function,
Chapter 8).

If no complex analysis knowledge is available, the typical way of computing
Laplace transform and inverse Laplace is through tables.
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EXERCISES

Problems with Solution

9.1 Suppose that X has a discrete uniform distribution on {1, 2, . . . , n},
that is,

P(X = i) = 1

n

for every i = 1, . . . , n.
(a) Compute the moment-generating function of X .
(b) Deduce that

EX = n+ 1

2
and EX 2 = (n + 1)(2n+ 1)

6
.

Solution: We have

MX (t ) =
n∑
j=1

1

n
etj

= 1

n
(et + e2t + · · · + ent )

= et (ent − 1)

n(et − 1)
.

By differentiating with respect to t ,

EX = M ′
X (0) = 1

n
(1 + 2 + · · · + n) = n + 1

2

and

EX 2 = M ′′
X (0) = 1

n
(12 + 22 + · · · + n2) = (n + 1)(2n+ 1)

6
.

�

9.2 Suppose X has uniform distribution U [a, b] with a < b. Show that for
every t ∈ R \ {0}, we have

MX (t ) = etb − eta

t (b − a)

and MX (0) = 1.
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Solution: Clearly, MX (0) = 1. For t /= 0,

MX (t ) = 1

b − a

∫ b

a

etxdx

= 1

b − a

[
1

t
etx

]t=b
t=a

= etb − eta

t (b − a)
.

�

9.3 Prove Proposition 9.17.

Solution: For every t , we have

MX (t ) =
∫ ∞

−∞
ety

1√
2��

e−
(y−�)2

2�2

= e�t+
t2�2

2

∫ ∞

−∞

1√
2��

e−
1

2�2 [(y−�)2−�2t2]

= e�t+
t2�2

2

since

1√
2��

e−
1

2�2 [(y−�)2−�2t2] = 1

(density of a normal law). �

9.4 Use the moment-generating function of X ∼ N (�, �2) to prove that

EX = � and Var X = �2.

Solution: From exercise 9.3, we get

M ′
X (t ) = e�t+

t2�2

2 (�+ �2t )

and thus

M ′
X (0) = �.

Also,

M ′′
X (t ) = e�t+

t2�2

2 �2 + e�t+
t2�2

2 (�+ �2t )2
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and thus EX 2 = M ′′
X (0) = �2 + �2. Then

VarX = �2 + �2 − �2 = �2.

�
9.5 Prove Proposition 9.18.

Solution: We have

MX (t ) =
∫ ∞

0
etx�e−�xdx

= �

∫ ∞

0
e−(�−t )xdx

= �

�− t

for every t ∈ R. �

9.6 Suppose that X admits a moment-generating function MX . Prove that

P(X ≥ x) ≤ e−txMX (t ) for every t > 0

and

P(X ≤ x) ≤ e−txMX (t ) for every t < 0.

(These are called the Chernoff bounds.)

Proof: One has

P(X ≥ x) = P(etX ≥ etx ) if t > 0

and

P(X ≤ x) = P(etX ≥ etx ) if t < 0.

We can use Markov’s inequality to conclude. �

Problems without Solution

9.7 If X ∼ Binom(n, p), use the moment generating function to get

EX = np and VarX = np(1 − p).

9.8 Prove Proposition 9.8.
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9.9 Show that

(cos � + i sin �)n = cos n� + i sin n�

for any n ∈ N and � ∈ [0, 2�], using generating functions.

9.10 Find the generating functions, both ordinary and moment-generating
function, for the following discrete probability distributions.
(a) The distribution describing a fair coin.
(b) The distribution describing a fair die.
(c) The distribution describing a die that always comes up 3.

9.11 Let X, Y be two random variables such that

P(X = 1) = 1

3
, P(X = 4) = 2

3

and

P(Y = 2) = 2

3
, P(Y = 5) = 1

5
.

(a) Show that X and Y have the same first and second moments, but not
the same third and fourth moments.
(b) Calculate the moment generating functions of X and Y .

9.12 Let X be a discrete r.v. with values in {0, 1, . . . , n}. Let MX denote
its moment-generating function. Find in terms of MX the moment-
generating functions of
(a) −X.
(b) X + 1.
(c) 3X.
(d) aX + b.

9.13 Use Proposition 9.19 to show that X ∼ �(a, �) and Y ∼ �(b, �) are two
independent random variables, then

X + Y ∼ �(a + b, �).

9.14 Suppose X has the density

f (x) = a

xa+1
1(x>1),

where a > 0. This means that X follows a Pareto distribution (power law).
(a) Show that MX (t ) = ∞ for every t ∈ R.
(b) Show that

EX n < ∞
if and only if a > n.
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9.15 Suppose X ∼ Poisson(a) with a > 0. Use exercise 9.6 to show that

P(X ≥ x) ≤ en−a
(a
n

)n
.

9.16 Let X, Y be two random variables with moment-generating functionsMX

and MY respectively. Show that X and Y have the same distribution if
and only if

MX (t ) = MY (t )

for any t ∈ R.

9.17 LetX ∼ Exp(�). Calculate EX 3 and EX 4. Give a general formula for EX n.

9.18 Using the properties of the MGF, show that if Xi are i.i.d. Exp(�) random
variables, then

S = X1 + · · · + Xn

is distributed as a gamma random variable with parameters n and �.

9.19 Prove the following facts about Laplace transform:
(a)

L{e−�x}(t ) = 1

�+ t

(b)

L{tn−1e−�x}(t ) = �(n)

(�+ t )n
,

where �(n) denote the gamma function calculated at n.

9.20 Suppose f ∗ denotes the Laplace transform of the function f . Prove the
following properties:
(a)

L{
∫ x

0
f (y)dy}(t ) = f ∗(t )

t

(b)

L{f ′(x)}(t ) = tf ∗(t ) − f (0+),

where f (0+) denote the right limit of f at 0.
(c)

L{f (n)(x)}(t ) = tnf ∗(t ) − t n−1f (0+) − t n−2f ′(0+) − . . . f (n)(0+).
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9.21 Suppose that X1 ∼ Exp(�1) and X2 ∼ Exp(�2) are independent. Given
that the inverse laplace transform of the function 1

c+t is e−cx and that the
inverse Laplace transform is linear, calculate the p.d.f. of X1 + X2.

9.22 Repeat the problem above with three exponentially distributed random
variables, that is, Xi ∼ Exp(�i), i = 1, 2, 3. As a note, the distribution of
a sum of n such independent exponentials is called the Erlang distribution
and is heavily used in queuing theory.



Chapter Ten

Gaussian Random Vectors

10.1 Introduction/Purpose of the Chapter

Gaussian random variables and Gaussian random vectors (vectors whose
components are jointly Gaussian, as defined in this chapter) play a central role in
modeling real-life processes. Part of the reason for this is that noise like quantities
encountered in many practical applications are reasonably modeled as Gaussian.
Another reason is that Gaussian random variables and vectors turn out to be
remarkably easy to work with (after an initial period of learning their features).
Jointly Gaussian random variables are completely described by their means and
covariances, which is part of the simplicity of working with them. Estimating
these joint Gaussians means approximating only their means and covariances.

A third reason why Gaussian random variables and vectors are so important is
that, in many cases, the performance measures we get for estimation and detection
problems for the Gaussian case often bounds the performance for other random
variables with the same means and covariances. For example, the minimum mean
square estimator for Gaussian problems is the same as the linear least squares esti-
mator for other problems with the same mean and covariance and, furthermore,
has the same mean square performance. We will also find that this estimator has
a simple expression as a linear function of the observations. Finally, we will find
that the minimum mean square estimator for non-Gaussian problems always has
a better performance than that for Gaussian problems with the same mean and
covariance, but that the estimator is typically much more complex. The point
of this example is that non-Gaussian problems are often more easily and more
deeply understood if we first understand the corresponding Gaussian problem.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
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In this chapter, we develop the most important properties of Gaussian random
variables and vectors, namely the moment-generating function, the moments, the
joint densities, and the conditional probability densities.

10.2 Vignette/Historical Notes

The Gaussian distribution is named after Johann Carl Friedrich Gauss (30 April
1777–23 February 1855), one of the most famous mathematicians and physical
scientists of the 18th century. Besides probability and statistics, Gauss contributed
significantly to many other fields, including number theory, analysis, differential
geometry, geodesy, geophysics, electrostatics, astronomy, and optics.

Gauss work on a theory of the motion of planetoids disturbed by large planets,
eventually published in 1809 as Theoria motus corporum coelestium in sectionibus
conicis solem ambientum (Theory of motion of the celestial bodies moving in conic
sections around the sun), contained an influential treatment of the method of least
squares, a procedure which is used today in all sciences to minimize the impact of
measurement error. Gauss proved the method under the assumption of normally
distributed errors, a methodology that today is the first step in analysis of errors
produced by very complex processes.

With the proper formulation of the Brownian motion (Wiener process) by
Norbert Wiener in the 1950s the Gaussian process became mainstream for the
theory of stochastic processes. The chaos theory developed in the 1970s owes
a lot of gratitude to Gaussian processes to be able to produce useful formulas
and bounds. Most of the machine learning theory uses assumptions about errors
behaving like Gaussian processes. For all these reasons, learning about them is a
crucial skill to be acquired by any aspiring student in probability.

10.3 Theory and Applications

10.3.1 THE BASICS

Let us first recall that a random variable follows the normal law N (�, �2) with
� > 0 if its density is given by

f (x) = 1√
2��2

e−
(x−�)2

2�2 .

Before introducing the concept of Gaussian vector, let us list some properties of
Gaussian random variables, which are already proven in the previous chapters of
this book.

• The parameters � and � completely characterize the law of X .
• X ∼ N (�, �2) if and only if

X = �+ �Z,
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where Z ∼ N (0, 1) is a standard normal random variable (a N (0, 1) r.v.).
See Remark 5.27.

• If X ∼ N (�, �2) and we denote �p = E(X − EX )p = E(X − �)p, the p-
central moment, then

�2k+1 = 0

and

�2k = (2k)!

k!

(
�2

2

)k
.

Note in particular that the third central moment is zero, and the fourth
central moment is equal to 3�4. We point this out because these are crucial
to describe the shape of distributions. The third standardized moment of a
random variable X is defined as

Skeweness(X ) = E

[(
X − EX√
V (X )

)3
]

= E

[(
X − �

�

)3
]

and is a measure of the skew of a distribution (how much it deviates from
being symmetric). This measure is typically compared to 0 which shows very
little skew. A negative value of the measure indicates that the random variable
is more likely.

The fourth standardized moment of a random variable X is defined as

Kurtosis(X ) = E

[(
X − EX√
V (X )

)4
]

= E

[(
X − �

�

)4
]

and is a measure of the tails of the distribution compared with the tails of a
Gaussian random variable. Once again, recall that the kurtosis for a Gaussian
is equal to 3.

A random variable with Kurtosis(X ) > 3 is said to have a leptokurtic
distribution—in essence the random variable takes large values more often
than an equivalent normal variable. These random variables are crucial in
finance where the observed behavior of returns calculated from price pro-
cesses have this property. The Cauchy and t distributions are examples of
distributions having this property.

A random variable with Kurtosis(X ) < 3 is said to have a platykurtic
distribution (extreme observations are less frequent than a corresponding
normal). An example is the uniform distribution on a finite interval.
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• If X ∼ N (�, �2), then

P(a < X < b) = �

(
b − �

�

)
−�

(
a − �

�

)

for every a, b ∈ R, a < b, where

�(x) = 1

2�

∫ x

−∞
e−

u2

2 du

is the cumulative distribution function of the standard normal N (0, 1) (its
values can be usually found in the table of the normal distribution).

• The sum of two independent normal random variables is normal; that is, if
X ∼ N (�1, �

2
1 ), Y ∼ N (�2, �

2
2 ) and X, Y are independent, then

X + Y ∼ N (�1 + �2, �
2
1 + �2

2 ).

The result has been proven in Proposition 7.29. Clearly, the result can be
easily extended by induction to finite sums of independent Gaussian random
variables. That is, if Xi ∼ N (�i, �2

i ) for i = 1, . . . , n, then

X1 + · · · + Xn ∼ N

(
n∑
i=1

�i,

n∑
i=1

�2
i

)
.

• The characteristic function of X ∼ N (�, �2) is

ϕX (t ) = exp

(
it�− �2t2

2

)
(10.1)

for every t ∈ R.
• The moment-generating function of X ∼ N (0, 1) is (see Proposition 9.16)

MX (t ) = e
t2

2

for every t ∈ R.

10.3.2 EQUIVALENT DEFINITIONS OF A
GAUSSIAN VECTOR

Let us now define the Gaussian vector.

Definition 10.1 A random vector X = (X1, . . . , Xd ) defined on the probability
space (�,F,P) is Gaussian if every linear combination of its components is a Gaussian
random variable. That is, for every ˛1, . . . , ˛d ∈ R the r.v.

˛1X1 + · · · + ˛dXd
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is Gaussian.

The following two facts are immediate.

Proposition 10.2

1. If X = (X1, . . . , Xd ), then Xi is a Gaussian random variable for every i =
1, . . . , d .

2. If Xi is a Gaussian random variable for every i = 1, . . . , d and the r.v. Xi are
mutually independent, then the vector

X = (X1, . . . , Xd )

is a Gaussian vector.

Proof: 1. Indeed, this follows from the definition by choosing ˛i = 1 and ˛j = 0
for every j /= i, j = 1, . . . , d .

2. It is a consequence of the definition of the Gaussian vector and of the
Proposition 7.29. We mention that the assumption that Xi are independent is
crucial. In this chapter, we will see examples showing that it is possible to have
random vectors with each component Gaussian which are not Gaussian. �

Remark 10.3 A standard normal Gaussian vector is a random vector

X = (X1, . . . , Xd )

such that Xi ∼ N (0, 1) for every i = 1, . . . , d and Xi are independent. In this case
the mean of X is EX = 0 ∈ Rd and the covariance matrix is Id , the unit matrix
(matrix with 1 on the main diagonal and zero everywhere else). We denote

X ∼ N (0, Id ).

As we mention above, the mean and the variance characterize the law of a
Gaussian random variable (one-dimensional). In the multidimensional case, the
mean (which is a vector) and the covariance matrix will completely determine the
law of a Gaussian vector.

Recall that if X = (X1, . . . , Xd ) is a random vector, then

EX = (EX1, . . . ,EXd ) ∈ Rd

and the covariance matrix of X , denoted by �X = (�X (i, j))i,j=1,...,d , is defined
by

�X (i, j) = Cov(Xi, Xj)

for every i, j = 1, . . . , d .
Let us first remark that the mean and the covariance matrix of a Gaussian

vector entirely characterize the first two moments (and thus the distribution) of
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every linear combination of the components of the vector. We recall the notation
of a scalar product of two vectors:

〈x, y〉 = xT y =
d∑
i=1

xiyi

if x = (x1, . . . , xd ), y = (y1, . . . , yd ) ∈ Rd , and we denoted by xT the transpose
of the d × 1 matrix x.

Proposition 10.4 Let X = (X1, . . . , Xd ) be a d -dimensional Gaussian vector
with mean vector� and covariance matrix�X . Let ˛ = (˛1, . . . , ˛d ) ∈ Rd . Define

Y = ˛1X1 + · · · + ˛dXd ,

a linear combination of the vector components. Then

Y ∼ N (〈˛,�〉, 〈˛,�X ˛〉) .

Proof: It follows from Definition 10.1 that Y is a Gaussian r.v. (a linear combination
of Gaussian random variables). It remains to compute its expectation and its variance.
First

EY = ˛1EX1 + ....+ ˛dEXd
= 〈˛,EX 〉 = 〈˛,�〉

and

VarY = Cov(
d∑
i=1

˛iXi,

d∑
j=1

˛jXj)

=
d∑

i,j=1

˛i˛jCov(Xi, Xj)

=
d∑
i=1

˛i

⎛
⎝ d∑
j=1

˛jCov(Xi, Xj)

⎞
⎠

= 〈˛,�X ˛〉
by noticing that the components of the vector �X˛ ∈ Rd are⎛

⎝ d∑
j=1

˛jCov(Xi, Xj)

⎞
⎠
i=1,...,d

.

�

Using Proposition 10.4, it is possible to obtain the characteristic function of
a Gaussian vector.
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Theorem 10.5 Let X = (X1, . . . , Xd ) be a Gaussian vector and denote by � its
expectation vector and by �X its covariance matrix. Then the characteristic function
of X is

ϕX (u) = ei〈�,u〉−
1
2 〈u,�X u〉 (10.2)

for every u ∈ Rd . Here we applied Proposition 8.23.

Proof: By definition, we have

ϕX (u) = E
(
ei〈X,u〉

)
.

Using Proposition 10.4, we have that, by Eq. (10.1),

Y ∼ N (〈˛,EX 〉, 〈˛,�X˛〉),
where Y = 〈X, u〉. It suffices to note that

ϕX (u) = ϕY (1) = eiEY− 1
2 (V (Y ))2

= ei〈�,u〉−
1
2 〈u,�X u〉

for every u ∈ Rd . �

Remark 10.6 Often in the literature, a Gaussian vector is defined through its
characteristic function given in Theorem 10.5. That is, a random vector X is called a
Gaussian random vector if its characteristic function is given by

ϕX (u) = ei〈�,u〉−
1
2 〈u,	u〉

for some vector � and some symmetric positive definite matrix 	.

Theorem 10.7 If X is a d -dimensional Gaussian vector, then there exists a vector
m ∈ Rd and a d -dimensional square matrix A ∈ Md (R) such that

X =(d ) m+ AN,

(where =(d ) stands for the equality in distribution) where N ∼ N (0, Id ).

Proof: Let A ∈ Md (R) and define

Z = m+ AN.

For every u ∈ Rd we have

ϕZ (u) = Eei〈u,Z 〉

= ei〈m,u〉Eei〈u,AN 〉

= ei〈m,u〉Eei〈A
T u,N 〉

= ei〈m,u〉ϕN (AT u).
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Suppose that X is a Gaussian vector. Since�X is symmetric and positive definite,
there exists A ∈ Md (R) such that

�X = AAT .

Let N1 ∼ N (0, Id ). We apply Theorem 10.5 and the beginning of this proof. It
follows that X and m + AN1 have the same characteristic function and therefore
the same law. �

The converse of Theorem 10.7 is also true.

Theorem 10.8 If

X = m+ AN

with m ∈ Rd , A ∈ Md (R), and N ∼ N (0, 1), then X is a Gaussian vector.

Proof: Let

a = (a1, . . . , ad ) ∈ Rd
and consider the linear combination

Y = a1X1 + · · · + adXd

= a1(m1 + (AN )1) + · · · + ad (md + (AN )d ),

where (AN )i is the component i of the vector AN ∈ Rd , i = 1, . . . , d . Then,
due to Proposition 10.4, we have

Y ∼ N (aTm, aT AAT a).

So every linear combination of the components of X is a Gaussian random vari-
able, which means that X is a Gaussian vector. �

By putting together the results in Theorems 10.5, 10.7, and 10.8, we obtain
three alternative characterization of a Gaussian vector.

Theorem 10.9 Let X = (X1, . . . , Xd ) be a random vector with � = EX the
mean vector and �X the covariance matrix. Then the following are equivalent.

1. X is a Gaussian vector.

2. The characteristic function of X is given by

ϕX (u) = ei〈�,u〉−
1
2 〈u,�X u〉

for every u ∈ Rd .

3. There exist a vector m ∈ Rd and a matrix A ∈ Md (R) such that

X =(d ) m+ AZ

(equality in distribution), where Z ∼ N (0, Id ) is a standard Gaussian vector.
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Proof: The implication 1 �→ 2 follows from Theorem 10.5. The implication
2 �→ 3 is a consequence of the proof of Theorem 10.7. The implication 3 �→ 1
has been showed in Theorem 10.8. �

Remark 10.10 Let us notice that the sum of two independent Gaussian vectors
is a Gaussian vector. This follows easily from the definition of a Gaussian vector and
the additivity property of the Gaussian random variables.

EXAMPLE 10.1 A vector with all components Gaussian but
which is not a Gaussian vector

Let us give an example of a vector with each component Gaussian which
is not a Gaussian vector. Consider N1 ∼ N (0, 1) and define the random
variable N2 by

N2 = −N1 if N1 ∈ [−a, a]
(a > 0 is some fixed constant) and

N1 = N2 otherwise.

Let us show that N2 is a Gaussian random variable. We compute its cumu-
lative distribution function. It holds that

FN2 (x) = P(N2 < x)

= P ((N2 < x) ∩ ((N2 ∈ [−a, a]) ∪ (N2 /∈ [−a, a])))
= P ((N2 < x) ∩ (N2 ∈ [−a, a]))

+P ((N2 < x) ∩ (N2 /∈ [−a, a]))
= P ((N2 < x) ∩ (N1 ∈ [−a, a]))

+P ((N2 < x) ∩ (N1 /∈ [−a, a]))
= P(N1 < x).

As a consequence, N2 has the same law as N1, so

N2 ∼ N (0, 1).

However, the vector

(N1, N2)

is not a Gaussian vector. Indeed, the sum

S = N1 + N2
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(which constitutes a linear combination of the components of (N1, N2) )
is such that

P(S = 0) = P(N1 + N2 = 0) = P(N1 ∈ [−a, a]) > 0,

so S has strictly positive probability for a fixed value; thus it cannot be a
random variable with a normal density (or any other continuous density).

Remark 10.11 See also Example 10.5 for a situation when a non-Gaussian
random vector has Gaussian marginals.

10.3.3 UNCORRELATED COMPONENTS
AND INDEPENDENCE

One of the most important properties of a Gaussian vector is the fact that its
components are independent if and only if they are uncorrelated. One direction is
always true for every random variable: If two random variables are independent,
then they are uncorrelated. On the other hand, the converse is strongly related
to the structure of the Gaussian vector, and it does not hold in general for other
random variables. In Example 10.5 we show that that there exist Gaussian random
variables (without the gaussian vector structure) which are uncorrelated but are
not independent.

Theorem 10.12 Let X = (X1, . . . , Xd ) be a d -dimensional Gaussian vector.
Then for every i, j = 1, . . . , d , i /= j, the random variablesXi andXj are independent
if and only if

Cov(Xi, Xj) = 0.

Proof: If Xi is independent by Xj , then clearly Cov(Xi, Xj) = 0, i /= j.
Suppose that Cov(Xi, Xj) = 0, i /= j. Denote by � = EX and �X =

(
i,j)i,j=1,...,d the mean vector and covariance matrix of the vector X . Since the
individual covariances are zero, this matrix is a diagonal matrix and we have

ϕX (u) = Eei〈u,X 〉 = ei〈�,u〉e−
1
2 〈u,�X u〉

= ei
∑d

j=1 uj�j− 1
2

∑d
j=1 
jju

2
j

=
d∏
j=1

ϕXj (uj)

for every u = (u1, . . . , ud ) ∈ Rd . We used the fact that for every j = 1, . . . , d ,
one has

Xj ∼ N (�j, 
jj).



310 CHAPTER 10 Gaussian Random Vectors

Since the characteristic function of the vector is the product of individual
characteristic functions, the components of the vector X are independent. �

EXAMPLE 10.2

Let X, Y be two independent standard normal random variables and define

U = X + Y and V = X − Y.

Then U and V are independent.

Solution: Indeed, it is easy to see that (U,V ) is a Gaussian vector (every linear
combination of its components is a linear combination of X and Y and (X, Y ) is
a Gaussian vector). Moreover,

Cov(U,V ) = EUV − EUEV

= E [(X + Y )(X − Y )]

= E(X 2 − Y 2) = 1 − 1 = 0

and the independence is obtained from Theorem 10.12. �

EXAMPLE 10.3

Let X1, X2, X3, X4 be four independent standard normal random variables.
Define

Y1 = X1 + X2,

Y2 = 1

4
(X1 − X2 + X3 + X4) ,

Y3 = 1

2
(X3 − X4).

We will show that (Y1, Y2, Y3) is a Gaussian vector with independent
components.

Solution: Let us first show that Y is a Gaussian vector. We note that

X = (X1, X2, X3, X4)
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is a Gaussian vector with zero mean and covariance matrix I4. Take˛1, ˛2, ˛3 ∈ R.
Then

˛1Y1 + ˛2Y2 + ˛3Y3

=
(
˛1 + 1

4
˛2

)
X1 +

(
˛1 − 1

4
˛2

)
X2

+
(

1

4
˛2 + 1

2
˛3

)
X3 +

(
1

4
˛2 − 1

2
˛3

)
X4,

and this is a Gaussian r.v. since X is a Gaussian vector. Moreover,

Cov(Y1, Y2)

= 1

4
V (X1) − 1

4
Cov(X1, X2) + 1

4
Cov(X1, X3) + 1

4
Cov(X1, X4)

−1

4
Cov(X2, X1) − 1

4
VX2 + 1

4
Cov(X2, X3) + 1

4
Cov(X2, X4)

= 1

4
V (X1) − 1

4
V (X2) = 0.

In the same way, we have

Cov(Y2, Y3) = Cov(Y1, Y3) = 0,

so Y1, Y2, Y3 are independent random variables. In fact, the vector Y is a Gaussian
vector with EY = 0 and covariance matrix

�Y =

⎛
⎜⎝

2 0 0

0 1
4 0

0 0 1

⎞
⎟⎠ .

�

EXAMPLE 10.4

Let (X, Y ) be a Gaussian couple with mean the zero vector such that
VarX = �2

X and VarY = �2
Y . Find a scalar ˛ such that X − ˛Y and Y

are independent random variables.

Solution: Since X − ˛Y and Y are Gaussian random variables, it suffices to im-
pose the condition

E(X − ˛Y )Y = 0;

this implies

˛ = EXY

EY 2
= Cov(X, Y )

�2
Y

= �
�X

�Y
,
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where we denoted with

� := Cov(X, Y )

�X �Y

the correlation coefficient between X and Y . �

EXAMPLE 10.5 Two uncorrelated normals which are not
independent

Let X ∼ N (0, 1) and let ε be a random variable such that

P(ε = 1) = P(ε = −1) = 1

2
.

Suppose that X and ε are independent and define

Y = εX.

Then, both of these random variables (X and Y ) are normal, they are
uncorrelated but they are not independent.

Solution: Let us show first that

Y ∼ N (0, 1).

Indeed, by computing the cumulative distribution function of Y , we get for every
t ∈ R

FY (t ) = P(Y ≤ t ) = P(εX ≤ t )

= P(X ≤ t, ε = 1) + P(−X ≤ t, ε = −1)

= P(X ≤ t )P(ε = 1) + P(−X ≤ t )P(ε = −1)

= 1

2
(P(X ≤ t ) + P(−X ≤ t ))

= P(X ≤ t )

by using the fact that −X ∼ N (0, 1). So X, Y have the same law N (0, 1). Let us
show that X, Y are uncorrelated. Indeed,

Cov(XY ) = EXY = E(X 2
)

= EX 2Eε = 0

since Eε = 0. But it is easy to see that X and Y are not independent.
This example shows that it is possible to find two Gaussian uncorrelated r.v

which are not independent. The reason why they are not independent is that the
vector (X, Y ) is not a Gaussian vector (see exercise 7.8). �
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A more general result can be stated as follows. The proof follows the arguments
in the proof of Theorem 10.12.

Theorem 10.13 Suppose X ∼ N (0,�X ) with �X ∈ Mn(R). Suppose that
the components of X can be divided into two groups (Xi)i∈I and (Xj)j /∈I , where
I ⊂ {1, 2, . . . , n}, and further suppose that

Cov(Xi, Xj) = 0

for all i ∈ I and j /∈ I . Then the family (Xi)i∈I is independent of the family (Xj)j /∈I .

Remark 10.14 A Gaussian vector X is called degenerated if the covariance matrix
�X is not invertible (i.e., det�X = 0). For example, the vector

X = (X1, X1),

with X1 a Gaussian r.v., is a degenerated Gaussian vector.

10.3.4 THE DENSITY OF A GAUSSIAN VECTOR

Let X = (X1, . . . , Xd ) be a Gaussian vector with independent components. As-
sume that for every i = 1, . . . , d we have

Xi ∼ N (�i, �
2
i ).

In this case it is easy to write the density of the vector X . It is, from Corollary
7.23,

f (x1, . . . , xd ) = 1

(2�)
d
2 �1 . . . �d

e
−
(

(x1−�1)2

2�2
1

+···+ (xd−�d )2

2�2
d

)
. (10.3)

In the case of a standard normal vector X ∼ N (0, Id ), we have

f (x1, . . . , xd ) = 1

(2�)
d
2

e−
1
2 (x2

1 +···+x2
d ).

When the components of X are not independent, we have the following.

Theorem 10.15 Let X = (X1, . . . , Xd ) be a Gaussian vector with � = EX
and covariance matrix denoted by�X . Assume that�X is invertible. Then X admits
the following probability density function:

f (x) = 1

(2�)
d
2 (det(�X ))

1
2

= e−
1
2 (x−�)T �−1

X (x−�) (10.4)

for any x ∈ Rd .
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Proof: From Theorem 10.7 we can write

X = AN + �

where

N ∼ N (0, Id ) and �X = AAT .

We apply the change of variable formula (Theorem 7.24) to the function h :
Rd → Rd :

h(x) = Ax + �.

We have

h−1(x) = A−1(x − �).

We obtain

fX (x) = fN (h−1(x))| det Jh−1 (x)|
where fN denotes the density of the vector N ∼ N (0, Id ). Since

det Jh−1 (x) =
√
�−1
X = 1√

�X

and

‖A−1(x − �)‖2 = (x − �)T�−1
X (x − �),

we obtain the conclusion of the theorem. �

Remark 10.16 The above result applies only to non-degenerated Gaussian vectors.
Indeed, if det�X = 0, the formula (10.4) has no sense. In fact, if X is a degenerated
Gaussian vector, then X does not have a probability density function.

However, in the case of degenerated Gaussian vectors, we have the property
stated by the next proposition. We need to recall the notion of rank of a matrix. The
rank of a matrix is the dimension of the vector space generated by its columns (or
its rows). It is the largest possible dimension of a minor with determinant different
from zero. A minor in a matrix can be constructed by eliminating any number of
rows and columns. Obviously, if the d -dimensional matrix is invertible, then the
rank of the matrix is d .

Proposition 10.17 Let X ∼ N (�,�X ) in Rd and assume that

rank(�X ) = k < d,

a degenerated random vector.
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Then, there exists a vector spaceH ⊂ Rd of dimension d − k such that 〈a, X 〉 =
aT X is a constant random variable for every a ∈ H .

EXAMPLE 10.6

Let X = (X1, X1) with X1 Gaussian one-dimensional. Then clearly

rank�X = 1 < 2.

Let

H = {C = (c,−c), c ∈ R} ⊂ R2.

Then H is a subspace of R2 and 〈C, X 〉 = CTX = 0 for every C ∈ H .

EXAMPLE 10.7

Let X be a two-dimensional Gaussian vector with zero mean and covariance
matrix

�X =
(

4 1

1 4

)
.

Let us write the density of the vector X . First det�X = 15 and

�−1
X = 1

15

(
4 −1

−1 4

)
.

Therefore

f (x, y) = 1

2�
√

15
e−

1
30 (x,y)T �−1

X (x,y)

= 1

2�
√

15
e−

1
30 (4x2−2xy+4y2).

Remark 10.18

1. As we mentioned, we can see that � and �X completely characterize the law of
a Gaussian vector. This is not true for other types of random vectors.

2. It is easy to see that in the case when the components ofX are independent, formula
(10.4) reduces to (10.3).

In the case of a Gaussian vector of dimension 2 (a Gaussian couple), we have
the following:
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Proposition 10.19 Let X = (X1, X2) be a Gaussian couple with

EX = � = (�1, �2)

and

�X =
(

�2
1 Cov(X1, X2)

Cov(X1, X2) �2
2 .

)
=
(

�2
1 ��1�2

��1�2 �2
2 .

)
,

where we denoted the correlation,

� := Cov(X1, X2)

�1�2
.

Assume �2 /= 1. Then the density of the vector X is

fX (X1, X2) = 1

�2
1�

2
2

√
1 − �2

e
− 1

2(1−�2)

[
(x1−�1)2

�2
1

−2� (x1−�1)(x2−�2)
�1�2

+ (x2−�2)2

�2
2

]
.

Proof: This follows from Theorem 10.4 since

�−1
X = 1

�2
1�

2
2 (1 − �2)

(
�2

2 −��1�2

−��1�2 �2
1 .

)
.

�

10.3.5 COCHRAN’S THEOREM

Recall that if X ∼ N (0, 1), then X 2 ∼ �( 1
2 ,

1
2 ), the gamma distribution with

parameters a = 1
2 and 
 = 1

2 . This law is called the chi square distribution and is
usually denoted by �2(1), with 1 denoting one degree of freedom. More generally,
if X1, . . . , Xd are independent standard normal random variables, then

‖X ‖2 := X 2
1 + · · · + X 2

d

follows the law�( d2 ,
1
2 ) and this is called the chi square distribution with d degrees

of freedom, denoted by �2(d ).
This situation can be extended to nonstandard normal random variables.

Definition 10.20 If X = (X1, . . . , Xd ) is a Gaussian vector with EX = � and
�X = Id , then the law of ‖X ‖2 is denoted by

�2(d, ‖�‖2)

and it is called the noncentral chi square distribution with d degrees of freedom and
noncentrality parameter �. When ‖�‖ = 0, then obviously �2(d, 0) = �2(d ).
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Recall that the modulus (or the Euclidean norm) of a d -dimensional
vector is

‖�‖ =
√
�2

1 + · · · + �2
d .

Remark 10.21 The law of the random variable ‖X ‖2 depends only on ‖�‖ and
d . Indeed, if Y ∈ Rd is such that

Y ∼ N (�′, Id )

with ‖�′‖ = ‖�‖, then there exists an orthonormal matrix U such that

� = U�′.

Therefore,

UY ∼ N (�, Id )

and

‖Y ‖2 = ‖UY ‖2 ∼ ‖X ‖2.

Remark 10.22 We know that the density of the �2(d ) law is

f (x) = 2− d
2�(

d

2
)−1e−

x
2 x

d
2 −11(0,∞)(x).

In the case of the noncentral chi square distribution �2(d, a) we can prove that the
density is

g (x) =
∞∑
i=0

e−
a
2

(a
2

)i 1

i!
fYk+2i (x) (10.5)

where Yq denotes a random variable with distribution �2(q).

We can now state the Cochran theorem.

Theorem 10.23 (Cochran’s theorem) Assume

R
d = E1 ⊕ · · · ⊕ Er,

where Ei, i = 1, . . . , r are orthogonal subspaces of Rd with dimension d1, . . . , dr
respectively. Denote by

XEi , i = 1, . . . , r

the orthogonal projection of X on the subspace Ei .
Then XE1, . . . , XEr are independent random vectors, ‖XE1‖2, . . . , ‖XEr‖2 are

also independent, and(‖XE1‖2, . . . , ‖XEr‖2) ∼ (
�2(d1, ‖�E1‖2), . . . , �2(d1, ‖�Er‖2)

)
,
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where �Ei is the projection of � on Ei for every i = 1, . . . , r .

Proof: Let

(ej1, . . . , ejdj )

be an orthonormal basis of Ej . Then

XEj =
dj∑
k=1

ejk (ejkX )t .

The random vectors (ejkX )t are independent of distribution N ((ejk�)t , 1), so the
random vectors XE1, . . . , XEr are independent. To finish, it suffices to remark that

‖XEj‖2 =
dj∑
k=1

((ejk X )t )2

for every j = 1, . . . , d . �

Let us give an important application of the Cochran’s theorem to Gaussian
random vectors.

Proposition 10.24 Let X = (X1, . . . , Xn) denote a Gaussian vector with
independent identically distributed N (�, �2) components. Let us define

X̄n = 1

n

n∑
i=1

Xi

and

S2
n =

n∑
i=1

(Xi − X̄n)
2,

the sample mean and sample variance respectively.
Then

1. X̄n and S2
n are independent.

2. X̄n ∼ N (�, �
2

n
).

3. nSn
�

∼ �2(n− 1).

Proof: We set for every i = 1, . . . , n

Yi = Xi − m

�
.
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Then Yi are independent identically distributed N (0, 1). We also set

e = (1, . . . , 1) ∈ Rn and E = Vect (e)

(by Vect (e) we mean the vector space of Rn generated by the vector e). Then

R
n = E ⊕ E⊥.

The projections of Y = (Y1, . . . , Yn) on E , E⊥ are independent and given by

YE = 1

n

n∑
i=1

Yi × e

and

YE⊥ =
(
Y1 − 1

n

n∑
i=1

Yi, . . . , Yn − 1

n

n∑
i=1

Yi

)
.

We therefore have

1

�
(X̄n − �) × e = YE

and

nSn

�
= ‖YE⊥‖2,

which gives the conclusion. �

10.3.6 MATRIX DIAGONALIZATION AND
GAUSSIAN VECTORS

We start with some notion concerning eigenvalues and eigenvectors of a matrix.

Definition 10.25 Let A be a matrix in Mn(R). We say that 
 is an eigenvalue
of the matrix A if there exists a vector u ∈ Rn, u /= 0 such that

Au = 
u.

In this case we will say that u is an eigenvector of the matrix A.

Remark 10.26 For every vector u ∈ Rn we have Inu = u (where we denoted
with In the identity matrix in Mn(R)). This implies that every vector u ∈ Rn is an
eigenvector of the identity matrix In associated to the eigenvalue 
 = 1.

If D = Diag (D1, . . . , Dn) is a diagonal matrix, then every Di , i = 1, . . . , n,
is an eigenvalue of the matrix D and every vector ei = (0, 0, . . . , 1, . . . , 0) of the
canonical basis of Rn is an eigenvector of D associated to the eigenvalue Di .

Proposition 10.27 If 
 is an eigenvalue of the matrix A ∈ Mn(R), then the set
E
 of the eigenvectors of A associated to 
 is a vectorial subspace of Rn.
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Proof: Let 
 be an eigenvalue of A. If u ∈ E
 is a corresponding eigenvector, then
for every ˛ ∈ R, ˛ /= 0 we have

A(˛u) = ˛Au = ˛
u = 
(˛u)

so

˛u ∈ E
, (10.6)

which shows that E
 is closed under multiplication with scalars.
If v is another vector in E
, then

A(u + v) = Au + Av = 
u + 
v = 
(u + v)

so

u + v ∈ E
. (10.7)

Relations (10.6) and (10.7) show that E
 is a vector space in Rn. �

Definition 10.28 The vector space E
 is called the eigenspace associated with the
eigenvalue 
.

Definition 10.29 If A ∈ Mn(R) is an n-dimensional matrix, we define

KerA = {u ∈ Rn, Au = 0},

the kernel or the null space of the matrix A.

Proposition 10.30 Let A ∈ Mn(R). Then the eigenvalues of A are solutions of
the equation

det (A − 
In) = 0,

and the eigenvectors associated with 
 are the elements of Ker(A − 
In).

Proof: If 
 is an eigenvalue for A, there exists u /= 0, u ∈ Rn such that Au = 
u;
therefore

(A − 
In)u = 0.

This implies that the matrix A − 
In is not invertible and thus det(A − 
In) = 0.
Conversely, if det(A − 
In) = 0, then A − 
In is not invertible so there exists

u ∈ Rn nonidentically zero such that (A − 
In)u = 0.
Finally, if 
 is an eigenvalue of A, then the set of associated eigenvectors are

the vectors u ∈ Rn satisfying (A − 
In)u = 0, which in fact is the definition of
Ker(A − 
In). �
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EXAMPLE 10.8

Let

A =
(

1 −3

−2 2.

)
,

then

A − 
I2 =
(

1 − 
 −3

−2 2 − 


)

and det(A − 
I2) = 
2 − 3
− 4. The solution of the equation det(A −

I2) = (which are the eigenvalues of A) is


1 = −1 and 
2 = 4.

Further,

E
1 = {(x, y) ∈ R2, A(x, y)T = −(x, y)T }
= {(x, y) ∈ R2, 2x − 3y = 0}

and

E
2 = {(x, y) ∈ R2, A(x, y)T = 4(x, y)T }
= {(x, y) ∈ R2, x + y = 0}.

Definition 10.31 A matrix A ∈ Mn(R) is diagonalisable if there exists a matrix
P ∈ Mn(R) invertible such that

P−1AP = D,

where D is a diagonal matrix.

In the case when A is diagonalizable, every column of the matrix P represents
an eigenvector for A and the diagonal matrix D contains on its diagonal the
eigenvalues of A. Each column i is an eigenvector for the eigenvalue i on the
diagonal of D.

The following results apply to any random vector and not only the Gaussian
random vectors. We shall review the requirement of a covariance matrix.

Definition 10.32 A matrix A is called symmetric iff it is equal to its transpose
A = AT or element-wise aij = aji for all i, j. Note that from definition a symmetric
matrix needs to be a square matrix (number of columns equal to the number of rows).

A d × d -dimensional matrix A is called positive definite if and only if

uT Au > 0,
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for any u =

⎛
⎜⎝
u1

...

ud

⎞
⎟⎠ ∈ Rd , u /= 0.

The matrix A is called non-negative definite if and only if

uT Au ≥ 0.

Please note that uT Au is a number, thus its sign is unique. Further, we always
consider vectors in Rd as matrices having dimension d × 1.

Proposition 10.33 Let X =

⎛
⎜⎝
X1

...

Xd

⎞
⎟⎠ be a random vector with mean � and

covariance matrix �X . Then the matrix �X is symmetric and non-negative definite.

Proof: To prove this proposition, let us first remark that the covariance matrix is
a square matrix. Next, the element on row i column j is

�X (i, j) = Cov(Xi, Xj) = E[(Xi − �i)(Xj − �j)] = Cov(Xj, Xi) = �X (j, i),

thus the matrix must be symmetric.

About the positive definiteness for any u =

⎛
⎜⎝
u1

...

ud

⎞
⎟⎠ ∈ Rd , we can construct

the one-dimensional random variable: uT X . Since this is a valid random variable,
its variance must be non-negative. So let us calculate this variance:

Var(uT X ) = E[(uT X − uT�)2].

Since the number squared is one-dimensional, and a one-dimensional number is
equal to its transpose, we may write

Var(uT X ) = E
[
(uT X − uT�)((uT X − uT�))T

]
= E

[(
uT (X − �)

) (
uT (X − �)

)T ]
= uTE

[
(X − �) (X − �))T

]
u

= uT�X u.

Thus, the condition that variance is non-negative translates into the condition
that the covariance matrix is non-negative definite. �

Remark 10.34 The distinction between non-negative and positive definite matri-
ces is important for random variables. If it is possible to create a random variable which
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is identically zero, then its variance will be zero. If the components are independent,
then the covariance matrix will be positive definite.

As a simple example, consider the random vectorX = (X1,−X1) for some random
variable X1. The covariance matrix of the vector will be non-negative definite since
there exists the vector u = (1, 1) ∈ R2 and uT X = 0 and thus its variance will be
zero.

Checking that a square matrix is positive definite can be complicated. How-
ever, there is an easy way to check involving the eigenvalues of the matrix.

Lemma 10.35 A matrix A ∈ Md (R) is positive definite if all its eigenvalues are
real and positive. A matrix is non-negative definite if all eigenvalues are non-negative.

The following result is important because it can be applied to the covariance
matrices.

Theorem 10.36 Let A be a symmetric, positive definite n× n matrix. Then A
is diagonalizable by an orthonormal matrix P . That is, there exists an orthonormal
matrix P (i.e., PT = P−1) such that

A = PTDP

with D ∈ Mn(R) a diagonal matrix.

The above result says that every symmetric positive definite matrix is diago-
nalizable in an orthonormal basis. That is, it can be transformed by elementary
transformations into a diagonal matrix.

Definition 10.37 Two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) inRn are
called orthogonal if

〈x, y〉 =
n∑
i=1

xiyi = 0.

A vector is called with norm 1 if ‖x‖2 = 〈x, x〉 = x2
1 + · · · + x2

n = 1.
The vectors x and y are called orthonormal if they are orthogonal and ‖x‖ =

‖y‖ = 1.

Theorem 10.38 Let X be a d -dimensional Gaussian vector with zero mean and
covariance matrix �X . Then there exists a matrix B ∈ Md (R) such that BX is a
Gaussian vector with independent components.

Proof: The proof follows by using Theorem 10.36. Since �X is a symmetric
matrix, it can be diagonalizable in an orthonormal basis. That is, there ex-
ists an orthogonal matrix B such that B�X BT is diagonal. The covariance of
BX is B�XB

T , so the components of BX are independent Gaussian random
variables. �
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EXAMPLE 10.9

Let X be a centered Gaussian vector with

�X =
(

3 2

2 3

)
.

Note first that this matrix is symmetric. To be a valid covariance matrix, it
needs to be positive definite, which can be checked by looking at the sign of
the eigenvalues (all eigenvalues should be positive) so it can diagonalizable.
Then two eigenvalues are the solution of the equation

det (�X − 
I2) =
(

3 − 
 2

2 3 − 


)
= 
2 − 6
+ 5 = 0

and thus


1 = 1 and 
2 = 5.

The matrix therefore is positive definite and symmetric. To find the eigen-
vectors, we need to solve using the definition �Xu = 
iu for both i = 1
and i = 2. This gives

E
1 = {(x, y) ∈ R2, x + y = 0}
and

E
2 = {(x, y) ∈ R2, x − y = 0}.
The eigenspaceE
1 is generated by the vector (1,−1), whileE
2 is generated
by the vector (1, 1). This two vectors are orthogonal but not orthonormal
(their euclidian norm is not 1). To make them ortonormal, we normalize
them. We define

e1 = (1,−1)

‖(1,−1)‖ =
(

1√
2
,− 1√

2

)

and

e2 = (1, 1)

‖(1, 2)‖ =
(

1√
2
,

1√
2

)

and therefore the matrix P given by

P =
( 1√

2
1√
2

− 1√
2

1√
2
.

)

Then it can be checked that

PT�X P = D,
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where D is the diagonal matrix with the eigenvalues of�X on the diagonal

D =
(

1 0

0 5

)
.

Remark 10.39 If the matrix �X is small, then the decomposition shown above
will work. However, if the dimensionality of the matrix is large while the methodology
presented here will still work, it will become very tedious. In this case, one will enroll the
use of a computer and reach the same decomposition using the methodology presented
in Section 6.4.

EXERCISES

Problems with Solution

10.1 Suppose

(X1, X2) ∼ N (0, I2)

and define

Y1 = aX1 + X2 and Y2 = X1 + bX2.

(a) Find a, b ∈ R such that Y = (Y1, Y2) is a Gaussian vector with
independent components.
(b) Write the density of the vector Y .

Solution: Y is clearly a Gaussian vector since Y = AX with

A =
(
a 1

1 b

)
,

where each component of Y is a linear combination of the original
independent components Gaussian vector. To have the components of
Y independent we need to impose the condition

Cov(Y1, Y2) = 0.

But

Cov(Y1, Y2) = aV (X1) + abCov(X1, X2) + Cov(X1, X2) + bV (X2)

= aV (X1) + bV (X2) = a + b.
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Therefore if a + b = 0, the components Y1, Y2 are independent. Since

Y1 ∼ N (0, a2 + 1) and Y2 ∼ N (0, b2 + 1)

we will have in this case (a + b = 0)

fY (x, y) = 1

2�
√

(a2 + 1)(b2 + 1)
e
−
(

x2

2(a2+1)
+ y2

2(b2+1)

)
.

�

10.2 Let X = (X1, X2, X3) be a random vector in R3 with density

f (x1, x2, x3) = k exp

{
−1

2

(
3x2

1 + 2x2
2 + x2

3 + 4x1x2 − 2x1x3 − 2x2x3
)}
.

(a) Find the law of X . Derive k which makes the law a proper density
function.
(b) Let

X̃2 = aX1 + bX2 and X̃3 = cX1 + dX2 + eX3.

Find the parameters a, b, c, d, e such that the covariance matrix of
(X1, X̃2, X̃3) is I3.
(c) What can be said about the variables X1, X̃2, and X̃3 ?

Solution: Note that

(
3x2

1 + 2x2
2 + x2

3 + 4x1x2 − 2x1x3 − 2x2x3
) = (x1, x2, x3)M

⎛
⎜⎝
x1

x2

x3

⎞
⎟⎠ ,

where

M =

⎛
⎜⎝

3 2 −1

2 2 −1

−1 −1 1

⎞
⎟⎠ .

To see this decomposition, please think about how the polynomial terms
appear. It helps to note that the diagonal elements give the squares in
a unique way and thus they are easy to recognize. For the off diagonal
elements note that twice the element gives the coefficient (because the
matrix is symmetric).

Once we write it in this form, we recognize the density of a Gaussian
vector X with zero mean and covariance matrix

�X = M−1.
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Consequently,

k = 1

(2�)
3
2

√
det(M−1)

=
√

detM

(2�)
3
2

To solve part (b), we need to impose that

Cov(X1, X̃2) = Cov(X1, X̃3) = Cov(X̃2, X̃3) = 0

and

VX1 = V X̃2 = V X̃3 = 1.

To impose these conditions, we need to calculate the covariance matrix:

�X = M−1.

Thus we need to know how to invert a matrix or to use a software
program to do so. Using R gives

�X = M−1 = solve(M ) =

⎛
⎜⎝

1 −1 0

−1 2 1

0 1 2

⎞
⎟⎠ .

The command ‘‘solve(M)’’ is the R command to find the inverse of the
matrixM . We can now read the covariances between the original vector
components X1, X2, X3.

Now, using the matrix above and the formulas for the vector, the
conditions are

Cov(X1, X̃2) = aV (X1) + bCov(X1, X2) = a − b = 0,

Cov(X1, X̃2) = cV (X1) + dCov(X1, X2) + eCov(X1, X3) = c − d = 0,

Cov(X̃2, X̃3) = ac − ad − bc + 2bd + be = 0,

V (X̃2) = a2 + 2b2 − 2ab = 1,

V (X̃3) = c2 + 2d 2 + 2e2 − 2cd + 2de = 1.

V (X1) is already 1. Using a = b and c = d from the first two equations,
the later equations become

a(c + e) = 0,

a2 = 1,

c2 + 2e2 + 2ce = 1.

The first two equations are incompatible with a = 0, so we must have
c = −e and either a = 1 or a = −1. Using this in the last equation gives
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e = 1. Thus the problem has more than one solution. Either of these
vectors

(X1, X̃2, X̃3) = (X1, X1 + X2,−X1 − X2 + X3),

(X1, X̃2, X̃3) = (X1, X1 + X2, X1 + X2 − X3),

(X1, X̃2, X̃3) = (X1,−X1 − X2,−X1 − X2 + X3),

(X1, X̃2, X̃3) = (X1,−X1 − X2, X1 + X2 − X3)

will have the desired properties.
Finally, for part (c), since either one of these vectors is Gaussian by

requiring that the covariance matrix is the identity, we found components
which are mutually independent. �

10.3 Let X, X, Z be independent standard normal random variables. Denote

U = X + Y + Z

and

V = (X − Y )2 + (X − Z )2 + (Y − Z )2. (10.8)

Show that U and V are independent.

Solution: Define

A = (X, Y, Z ).

Clearly, A is a Gaussian vector with EA = 0 ∈ R3 and covariance matrix

�A = I3

the identity matrix. It follows that the vector

B = (X + Y + Z, X − Y, X − Z, Y − Z )

is also a Gaussian vector (every linear combination of its components is
a linear combination of X, Y, Z ). We will show that the first component
is independent of all the other three. To prove this since the vector is
Gaussian, it suffices to show that the first component is uncorrelated
with the other three. We have

Cov(X + Y + Z, X − Y ) =
V (X ) + Cov(Y, X ) + Cov(Z, X ) − Cov(X, Y ) − V (Y ) − Cov(Z, Y ) = 0

and in a similar way

Cov(X + Y + Z, X − Z ) = Cov(X + Y + Z, Y − Z ) = 0.

Therefore the r.v. X + Y + Z is independent of X − Y, X − Z , and
Y − Z respectively. By the associativity property of the independence,
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we have that X + Y + Z is independent of (X − Y, X − Z, Y − Z )
and, thus, independent of V . �

10.4 Let X1, . . . , Xn be independent N (0, 1) distributed random variables.
Let a ∈ Rn. Give a necessary and sufficient condition on the vector a in
order to have X − 〈a, X 〉a and 〈a, X 〉 independent.

Solution: The vector

(X − 〈a, X 〉a, 〈a, X 〉)
is an (n + 1)-dimensional Gaussian vector and for every i = 1, . . . , n
we obtain

Cov

⎛
⎝Xi − n∑

j=1

ajXjai,

n∑
k=1

akXk

⎞
⎠

=
n∑
k=1

akCov(Xi, Xk) − ai

n∑
j,k=1

ajakCov(Xj, Xk)

= ai − ai

n∑
j=1

a2
j

= ai(1 −
n∑
j=1

a2
j ).

Therefore if we impose the condition

n∑
j=1

a2
j = 1,

then all covariances between 〈a, X 〉 and the other terms of the vector will
be zero. This will accomplish what is needed in the problem. �

10.5 Let X = (X1, X2, . . . , Xn) denote an n-dimensional random vector
with independent components such that Xi ∼ N

(
�, �2

)
for every

i = 1, . . . , n. Define

X n = 1

n

n∑
1

Xi,

(a) Give the law of X n
(b) Let a1, . . . , an in R. Give a necessary and sufficient condition
(in terms of a1, . . . , an) such that X n and a1X1 + · · · + anXn are
independent.
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(c) Deduce that the vector (X1 − X n, X2 − X n, . . . , Xn − X n) is inde-
pendent of X n.

Solution: As a sum of independent normal random variables, X̄n is a
normal random variable. Its parameters can be easily calculated as mean
� and variance �2

n
. So

X̄n ∼ N

(
�,
�2

n

)
.

Note that the vector

(X̄n, a1X1 + · · · + anXn)

is a Gaussian random vector. Indeed, every linear combination of its
components is a linear combination of the components of X , so it is
a Gaussian random variable. Therefore, X̄n and a1X1 + · · · + anXn are
independent if and only if they are uncorrelated; and after calculating
the covariance, this is equivalent to

a1 + · · · + an = 0.

Hint for part (c): Wn is invariant by translation: Wn(X ) = Wn(X + a)
if X + a = (X1 + a, . . . , Xn + a) for a ∈ R. Consider also
Proposition 10.24. �

10.6 Let (X, Y ) be a Gaussian vector with mean 0 and covariance matrix

� =
(

1 �

� 1

)

with � ∈ [−1, 1]. What can be said about the random variables

X and Z = Y − �X ?

Solution: Clearly, (X, Z ) is a Gaussian vector as a linear transformation
of a Gaussian vector. Since

Cov(X, Z ) = EXY − �EX 2 = � − � = 0,

we note that the r.v.’s X and Z are independent. �

10.7 Suppose X ∼ N (0, 1). Prove that for every x > 0 the following inequal-
ities hold:

1√
2�
e−

x2

2

(
1

x
− 1

x3

)
≤ P(X ≥ x) ≤ 1√

2�
e−

x2

2
1

x
.
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Solution: Consider the following functions defined on (0,∞):

G1(x) = 1√
2�
e−

x2

2

(
1

x
− 1

x3

)

and

G2(x) = 1√
2�
e−

x2

2
1

x
.

We need to show that

G1(x) < 1 − F (x) < G2(x)

for every x > 0, where F is the c.d.f. of an N (0, 1) distributed random
variable.

Since the normal c.d.f. does not have a closed form, we look at the
derivatives of these functions. We need to check that for x > 0:

G ′
1(x) > −f (x) > G ′

2(x),

where f = 1√
2�
e−x2/2 is the standard normal density. Therefore, inte-

grating the respective positive functions on (0,∞), we obtain

G1(x) − (1 − F (x)) < lim
x→∞G1(x) − (1 − F (x)) = 0

and

(1 − F (x)) − G2(x) < lim
x→∞(F (x) − G2(x)) = 0.

�

Problems without Solution

10.8 Suppose

(X, Y ) ∼ N (0, I2).

Show that XY has the same law as 1
2 (X 2 − Y 2).

Hint : Use the polarization formula

XY = 1

4

(
(X + Y )2 − (X − Y )2) .

10.9 Prove the expression of the density function of the noncentral chi square
distribution (10.5).

10.10 Let (X, Y ) be a two-dimensional Gaussian vector with zero expectation
and I2 covariance matrix. Compute

E [max(X, Y )] .
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10.11 Let X, Y be two independent N (0, 1) distributed random variables.
Define

U = X 2 + Y 2 and Y = X 2

U
.

(a) Prove that U and V are independent.
(b) Show that U ∼ Exp( 1

2 ).
(c) Show that the function

f (x) = 1

�

1√
x(1 − x)

1(0,1)(x)

defines a probability density.
(d) Show thatV admits as density the function f above (this distribution
is called the arcsin distribution).

10.12 Let X1, . . . , Xn be i.i.d. N (0, 1) random variables. Define

U =
∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣ and V = 1

n

n∑
i=1

|Xi|.

Compare and calculate EU and EV .

10.13 10.13 Let (X1, X2) ∼ N2(0, 	) with

	 =
(

�2
1 ��1�2

��1�2 �2
2

)
and � ∈ [−1, 1] .

(a) Let (Y1, Y2) a standard Gaussian vector (i.e., Y1, Y2 are independent
standard Gaussian random variables). Find a function

(Y1, Y2) �→ (X1, X2) = (aY1, bY1 + cY2)

such that (X1, X2) ∼ N2(0, 	).
(b) Let � ∼ U⇐(0, 2�]) and R2 ∼ Exp( 1

2 ) two independent random
variables with the respective distributions. Let R ≥ 0 be the square root
of R2.
Prove that the random variables X = R cos(�) and Y = R sin(�) are
standard Gaussian and independent.

(c) Deduce that if U1, U2 are independent U([0, 1]), then the r.v.s

X =
√

−2 lnU1 cos(2�U2)

and

Y =
√

−2 lnU1 sin(2�U2)

are standard Gaussian and independent.
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(d) Consider U1, U2 independent with law U((0, 1]). Construct from
U1, U2 a vector (X1, X2) with law N2(0, 	).

10.14 Suppose X ∼ N (0,�) where

�Y =

⎛
⎜⎝

7
2

1
2 −1

1
2

1
2 0

−1 0 1
2

⎞
⎟⎠ .

Let

Y1 = X2 + X3,

Y2 = X1 + X3,

Y3 = X1 + X2.

(a) Give the law of Yi , i = 1, 2, 3.
(b) Write down the density of the vector

Y = (Y1, Y2, Y3).

10.15 Let X = (X1, X2, X3) be a Gaussian vector with law N3(m,C ) with
density

f (x) = 1√
120�3

eP(x)

where

P(x) = −x
2
1

6
− 7x2

2

15
− 3x2

3

10
− x1x2

3
+ 2x2x3

5
+ x1

3
+ 2x2

15
+ 4x3

5
− 13

15
.

(a) Calculate m and C−1.
(b) Calculate C and the marginal distributions of X1, X2, X3.
(c) Give the law of

Y =
(

1 −3 0

4 2 1

)
X +

(
0

1

)
.

10.16 Let (X, Y ) be a normal random vector such that X and Y are standard
normal N (0, 1). Suppose that Cov(X, Y ) = �. Let � ∈ R and put

U = X cos � − Y sin �, V = X sin � + Y cos �.

(a) Show that |�| ≤ 1.
(b) Calculate E(U ), E(V ), Var(U ), Var(V ), and Cov(U,V ). What can
we say about the vector (U,V ) ?

Suppose � /= 0. Do there exist values of � such that U and V are
independent?
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(c) Assume � = 0. Give the laws of U and V ?
(d) Are the r.v. U and V independent?

10.17 Let (X, Y, Z ) be a Gaussian vector with mean (1, 2, 3) and covariance
matrix

� =

⎛
⎜⎝

5 −1 −5

−1 1 0

−5 0 10

⎞
⎟⎠ .

Set

U = X − 3Y and V = X + 2Y.

(a) Give the law of the couple (U,V ). What can be said about U and
V ? Write without calculation the density of (U,V ).
(b) Find constants c and d such that the r.v. W = Z + cU + dV is
independent by (U,V ).
(c) Write the covariance matrix of the vector (U,V,W ).

10.18 If X is a standard normal random variable N (0, 1), let ϕ denote its
characteristic function and F its c.d.f. For every p ≥ 1 integer, denote
the p moment with

C (p) = E(|X |p).
Let (Yn , n ≥ 1) be a sequence of independent r.v. with identical distri-
bution N (0, 1). For every k ≥ 1 and n ≥ 1 integers, let

Xk =
k∑
j=1

Yj and Sn =
n∑
k=1

Xk.

(a) Give the distribution of Xk .
(b) CalculateCov (Xk, Xk+1). Are the variables (Xk, k ≥ 1) independent?
(c) Show that Sn = ∑n

k=1 (n + 1 − k)Yk . Deduce that for every integer
n ≥ 1 the r.v. Sn follows the law

N

(
0,

1

6
n (n + 1) (2n+ 1)

)
.

Hint: We recall the formula

n∑
k=1

k2 = n (n + 1) (2n+ 1)

6

(d) For every integer p ≥ 1, calculate E(|Sn|p) in terms of C
(
p
)
.
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(e) Let ˛ > 3
2 . Show that the sequence (n−˛ Sn , n ≥ 1) converges to 0

in L2, that is,

E

[(
Sn

n˛

)2
]

→ 0,

as a sequence of numbers.
(f) Show that for every ˇ > 0 and for every p ≥ 1 integer, there exists
a constant Kp > 0 such that

P(n−˛ |Sn| ≥ n−ˇ) ≤ Kp n
−p(˛− 3

2 −ˇ).

(g) Show that the sequence (n−˛ Sn , n ≥ 1) converges almost surely to
an r.v. and identify this limit.
(h) Calculate the characteristic function ϕSn of Sn using ϕ.
(i) Let

Tn = n− 3
2 Sn.

Deduce the expression of the characteristic function of Tn.
(j) Show that the sequence (Tn, n ≥ 1) converges in law to a limit and
identify this limit.

10.19 LetX1,X2, andX3 be three i.i.d. random variables where their distribution
has zero mean and variance �2 > 0. Denote

Y1 = X1 − 2X2 + 3X3,

Y2 = X1 − X2.

(a) Calculate the covariance matrix of the vector (X1, Y1, Y2).
(b) Give an upper bound for

a = P(|Y1| ≥ 10 �)

using Bienaymé–Tchebychev inequality in Appendix B.
(c) Suppose that X1, X2, and X3 are Gaussian. In this case, give another
upper bound for a and compare with the previous question.
(d) Give an upper bound for

b = P(Y1 < Y2 + �).

Hint: Use 10√
14

∼ 2.67 and 1√
10

∼ 0.32.

10.20 If X ∼ N (0, 1) and Y ∼ �2(n, 1) and X, Y are independent, show that

Z = X√
Y
n
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has a Student t distribution (tn) with n degrees of freedom. Specifically,
show that the probability density function of Z is given by

f (x) = �( n+1
2 )√

n��( n2 )

(
1 + x2

n

)− n+1
2

.

10.21 Assume X and Y are two independent N (0, 1) random variables. Find
the law of

W = X + Y

|X − Y | .

Hint: We know (how to prove) that X + Y and X − Y are inde-
pendent and each has N (0, 2) distribution. Then, once we show that

Z = (X − Y )2

2

is �2(1) distributed, we will obtain

W =
X+Y√

2√
Z
,

which follows a Student distribution with one degree of freedom
(see exercise 10.20).

10.22 Consider the matrix

A =
(

6 1

1 2.

)
.

(a) Find the eigenvalues of A.
(b) Find the eigenspaces associated with each eigenvalue.
(c) Diagonalize the matrix A.
(d) Let X be a Gaussian random vector with covariance matrix A and
zero mean. Find a linear transformation that transforms X in a Gaussian
vector with independent components.

10.23 Consider the matrix

A =

⎛
⎜⎝

0 2 2

2 3 4

2 4 3

⎞
⎟⎠ .

(a) Check that 
1 = 8 is an eigenvalue of A.
(b) Find the other eigenvalues of A.
(c) Find the eigenspaces associated with each eigenvalue.
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(d) Diagonalize the matrix A.
(e) Can there exist a Gaussian random vector with covariance matrix A?

10.24 Let the matrix 	 be defined as

	 =

⎛
⎜⎝

2 2 3

2 4 4

3 4 9

⎞
⎟⎠ .

Check that the matrix is symmetric and positive definite. Find its eigen-
values and the associated eigenvectors. Now, let X be a Gaussian random
vector with covariance matrix 	 and zero mean. Find a linear trans-
formation that transforms X in a Gaussian vector with independent
components.



Chapter Eleven

Convergence Types. Almost
Sure Convergence.
Lp-Convergence. Convergence
in Probability

11.1 Introduction/Purpose of the Chapter

In probability theory, there exist several different notions of convergence of ran-
dom variables. The convergence of sequences of random variables to some limit
random variable is an important concept in probability theory, and it is a very
important application to statistics and stochastic processes. The same concepts
are known in more general mathematics as stochastic convergence, and they for-
malize the idea that a sequence of essentially random or unpredictable events
can sometimes be expected to settle down into a behavior that is essentially un-
changing when items far enough into the sequence are studied. The different
notions of convergence relate to how such a behavior can be characterized. We
can talk about a sequence that approaches a random variable exactly, with proba-
bility one and looking at the moments of the distribution. In this chapter we will
talk about a notion of convergence defined purely by the distribution of random
variables.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
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11.2 Vignette/Historical Notes

In their development of the calculus both Newton and Leibniz used ‘ìnfinites-
imals,’’ quantities that are infinitely small and yet nonzero. They found it con-
venient to use these quantities in their computations and their derivations of
results. Cauchy, Weierstrass, and Riemann reformulated Calculus in terms of
limits rather than infinitesimals. Thus the need for these infinitely small (and
nonexistent) quantities was removed and was replaced by a notion of quantities
being ‘‘close’’ to others. The derivative and the integral were both reformulated
in terms of limits of functions. In probability theory the notion of convergence is
fundamental, and in fact the entire construction of the probability theory is based
on limits. Historically, measure theory gave birth of the notions used in probabil-
ity theory. However, because the space is finite (has probability one), the theorems
are much more precise and more results may be generated for this simpler case.
Without the convergence results in probability, there would be no statistics and
the problem of estimating distributions and parameters by observing real-life data
would be impossible to solve.

11.3 Theory and Applications: Types
of Convergence

Let (�,F,P) be a probability space and let Xn : � → R be a sequence of random
variables and X : � → R be a target random variable. Throughout this chapter
we shall take n ∈ N. In the theory of the stochastic processes in continuous time
the index may be t ∈ (0,∞). The notations and notions introduced here extend
to that case as well.

11.3.1 TRADITIONAL DETERMINISTIC CONVERGENCE
TYPES

Before we introduce notions taking advantage of the structure of the probability
space, we would like to recall the more traditional Real analysis types of conver-
gence. Any random variable is essentially a function from� → R. The following
two definitions are a reminder of these classic types of convergence.

Definition 11.1 (Uniform convergence) The sequence of random vari-
ables {Xn}n∈N is said to converge to X uniformly if and only if:
for all ε > 0 there exists an nε ∈ N such that

|Xn(ω) − X (ω)| < ε, ∀n ≥ nε, ∀ω ∈ �.

Note that in the previous definition the number nε is the same for all points
ω ∈ �. Thus, it does not depend onω; therefore the convergence takes place sim-
ilarly throughout the entire space. There exists no point in�where the sequence is
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farther than the target at some n. This is why the convergence is called uniform—
uniform on the whole�. This type is the most powerful convergence mode. Next,
we drop the restriction that the convergence is uniform on the space.

Definition 11.2 (Pointwise convergence) The sequence {Xn}n is said to
converge to X pointwise if and only if:
for any ω fixed, for all ε > 0 there exists nε(ω) such that

|Xn(ω) − X (ω)| < ε, ∀n ≥ nε(ω).

Note that as in the previous type, we have convergence for each point in �.
However, for some points it may take a larger n to be close enough to the limit
than for other points.

Both these definitions are related to the concept of all the points—this is in fact
the reason why they are called deterministic notions. Specifically, if the convergence
does not hold for a single point, then the convergence pointwise or uniform does
not hold. In other words, one point determines the fate of the whole concept.

EXAMPLE 11.1

Let � = [0, 1] and define

Xn(ω) =
(

1 + ω

n

)n
.

Prove that Xn converges pointwise on � as n → ∞ to the r.v. X given by

X (ω) = eω.

Solution: This follows easily since for every ω ∈ � = [0, 1]

lim
n→∞

(
1 + ω

n

)n
= eω.

�

EXAMPLE 11.2

Let � = [0, 1] and define

Xn(�) = ωn, ∀ω.
Let X (ω) = 0 for every ω ∈ �. Is the sequence Xn converging pointwise
to X ?
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Solution: Note that for every ω ∈ [0, 1) we have

wn → 0

as n → ∞. However, when ω = 1 we obtain Xn(ω) = 1, which converges to
1. Therefore, the sequence Xn does not converge pointwise to X . It converges
pointwise to the r.v. Y given by

Y (ω) =
{

0, if ω ∈ [0, 1),

1, if ω = 1.

�

11.3.2 CONVERGENCE OF MOMENTS OF AN
r.v.—CONVERGENCE IN Lp

Unlike the classic mathematical world, in the real-world things do not happen
strictly. Probability theory allows for this, and a statement does not need to hold
at all points in the space in order to be true. If the points for which a statement
occur very rarely then, in reality, we do not need to care about them.

In Real Analysis there is a notion of convergence which is applicable to
Probability theory. That concept is looking at the convergence of integrals of
functions instead of the convergence of the functions. The integrals may have
a limit even though the functions themselves may not converge at some points.
The integral of a random variable with respect to the probability density is called
a moment in Probability Theory. If we look at the convergence of moments, we
are referring to convergence in Lp.

Definition 11.3 (Convergence in Lp) Let p > 0. The sequence of random

variables {Xn}n is said to converge to X in Lp (Xn
Lp−→ X or Xn → X in Lp) if and

only if

lim
n→∞ E|Xn − X |p = 0.

The particular case when p = 2 is special. This case is known by several
names such as convergence in L2, convergence in the quadratic mean (or, simply
quadratic convergence), convergence in mean squared, and so on.

Remark 11.4 The concept of mean-square convergence (or convergence in mean-
square) is based on the following intuition: Two random variables are “close to each
other” if the square of their difference is, on average, small.

Any Lp space is a complete normed vector space. This is interesting from the
Real Analysis perspective. In probability theory the Lp-norm of a random variable
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X defined on (�,F,P) is

‖X ‖p = (
E

[|X |p]) 1
p =

(∫
�

xpdF (x)

) 1
p

=
(∫

�

xpf (x) dx

) 1
p

,

with the last equality valid if the random variable X has a density f (x). For our
purposes the following result is important:

Proposition 11.5 Let X denote a random variable on (�,F,P). Then the
sequence of norms ‖X ‖p is nondecreasing (increasing) in p. In other words, ‖X ‖p1 ≤
‖X ‖p2 for any p1 < p2.

This immediately implies that if a variable is in Lq for some q fixed, then it also
is in any Lr with r ≤ q. Therefore, as spaces of functions we have

L1(�) ⊇ L2(�) ⊇ L3(�) . . . .

Proof: Let p1 < p2. Then the function f (x) = |x|p2/p1 is convex on [0,∞). This
is true since p2/p1 > 1, and we can apply Jensen’s inequality (Lemma 14.5) for
the convex function f (x) and the non-negative r.v. Y = |X |p1 . The inequality
immediately yields the desired result. �

Corollary 11.6 If Xn
Lp−→ X and p ≥ q then Xn

Lq−→ X .

Proof: This follows from the inequality

E |Xn − X |q ≤ E |Xn − X |p

(see Lemma 13.11). �

11.3.3 ALMOST SURE (a.s.) CONVERGENCE

The next two definitions are convergence types on probability spaces. The con-
cepts mimic the definitions of uniform and pointwise convergence. As we shall
see, one of the concepts is superfluous in probability spaces (finite total measure
spaces).

Definition 11.7 (Almost uniform convergence) The sequence of ran-
dom variables {Xn}n is said to converge toX almost uniformly (Xn

a.u.−→ X orXn → X
a.u.) if for all ε > 0 there exists a set N ∈ F with P(N ) < ε and {Xn} converges to
X uniformly on N c.

This concept mimics the uniform convergence for probability spaces. The
next concept presented—the almost sure convergence (or a.s. convergence)—is a
corresponding type to the concept of pointwise convergence in the whole space.
As we have seen, a sequence of random variables X, X2, . . . , Xn, . . . is pointwise
convergent if and only if the sequence of real numbers {Xn(ω)}n is convergent for
all ω ∈ �. Achieving convergence for all the omega points in Omega is a very
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stringent requirement and does not use the probability at all. This requirement
is weakened, by requiring only the convergence for the points which are relevant
to the probability measure.

Definition 11.8 (Almost Sure Convergence ) The sequence of random
variables {Xn}n is said to converge to X almost surely (Xn

a.s.−→ X or Xn → X a.s.)
if for all ε > 0 there exists a set N ∈ F with P(N ) = 0 and {Xn} converges to X
pointwise on N c , or written mathematically:

P{ω ∈ � : |Xn(ω) − X (ω)| > ε,∀n ≥ nε(ω)} = P(N ) = 0.

An alternative way to write the a.s. convergence is

P{ω ∈ � : lim
n→∞Xn(ω) = X (ω)} = P(N c ) = 1.

In other words, the convergence has to happen only for the points ω ∈ N c ,
since this set has probability 1. We do not care about the rest of the points in
N = � \ N c since the probability of this set is zero.

Remark 11.9 It turns out that almost uniform and almost sure convergence,
despite their apparent different forms, are completely equivalent on a finite measure
space (probability space has total measure 1, thus finite). This is the reason why most
books and papers never even mention almost uniform convergence. The following
proposition (due to Egorov) has this result.

Proposition 11.10 (Egorov Theorem) If the space� has a finite measure,
then the sequence {Xn}n converges almost uniformly to X if and only if it converges
almost surely to X .

The proof of the theorem uses measure theory, and it is not all that illustrative
for our purpose. The interested reader is directed to Theorem 10.13 in Wheeden
and Zygmund (1977).

11.3.3.1 Complete Probability Space. Here is the time to talk about a
technical aspect of probability spaces.

It is possible to construct a sequence of random variables Xn which has a limit
in the a.s. sense; however, the limiting variable is not a random variable itself. More
specifically, it is possible that the limit is not B (R)-measurable anymore. The
main issue lies in the following problem. Suppose that a set A has probability 0.
Then you would think that any set B included in A also has probability 0. This in
fact would be true if any B ⊂ A is in the �-algebra F. If it is not, then we cannot
calculate its probability.

To avoid this technical problem, we assume that the probability space is
complete (as defined next). And as a consequence, if it exists, the limit of random
variables (in any sense) will always be a random variable.
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Throughout this book we will always assume that the proba-
bility space we work with is complete.

Definition 11.11 (Complete probability space) We say that the prob-
ability space (�,F,P) is complete if any subset of a probability zero set in F is also
in F. Mathematically: If N ∈ F with P(N ) = 0, then for all M ⊂ N we have
M ∈ F.

The issue arises from the definition of a �-algebra which does not require
the inclusion of all subsets only of all the unions of sets already existing in the
collection.

We can easily ‘‘complete’’ any probability space (�,F,P) by simply adding
to its �-algebra all the sets included in sets of probability zero and setting the
probability of any one of them equal to zero.

11.3.4 CONVERGENCE IN PROBABILITY

As we mentionned, different concepts of convergence are based on different ways
of measuring the distance between two random variables (how ‘‘close to each
other’’ two random variables are). Let us go now to the concept of convergence,
in probability. In the definition of a.s. convergence, the limit was inside the
probability. Suppose we want to take the limit out of the probability and instead
look at the measure ofN as n → ∞. This means that instead of looking atN , we
need to construct a specific set for every n. But then, the set also needs to depend
on some small ε. Therefore we look at

Nn(ε) = {ω ∈ � | |Xn(ω) − X (ω)| > ε},

which expressed in words is: For some epsilon, this set is made of the points ω for
which the sequence is far from the target. If we require that the probability of this
set of points converge to zero for all ε, we obtain the definition of convergence in
probability.

Definition 11.12 (Convergence in probability) The sequence of ran-

dom variables {Xn} is said to converge to X in probability (Xn
P−→ X or Xn → X in

probability) if and only if for all fixed ε > 0 the setsNε(n) = {ω : |Xn(ω) − X (ω)| >
ε} have the property P(Nε(n)) → 0 as n → ∞, or

lim
n→∞ P{ω ∈ � : |Xn(ω) − X (ω)| > ε} = 0.

Please compare the definition of convergence in probability with the con-
vergence a.s.. The only difference is the location of the limit (and accordingly
n). However, that location makes a world of difference—the a.s. convergence is
much more powerful than the convergence in probability (as we shall see next).
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EXAMPLE 11.3

Let X be a Bernoulli(1/3) random variable, that is,

P(X = 0) = 2

3
and P(X = 1) = 1

3
.

For every n ≥ 1, we define

Xn =
(

1 + 1

n

)
X.

Then the sequence (Xn)n≥1 converges in probability to the r.v. X .

Solution: Note that

|Xn − X | =
∣∣∣∣1

n
X

∣∣∣∣ = 1

n
X

because X is non-negative. Let ε > 0 fixed. Then

P (|Xn − X | > ε) = P (|Xn − X | > ε, X = 0)

+P (|Xn − X | > ε, X = 1)

= P

(
1

n
X > ε, X = 0

)

+P

(
1

n
X > ε, X = 1

)
.

Therefore, we get

P (|Xn − X | > ε) = 1

3
1{n< 1

ε },

which clearly converges to zero as n → ∞. �

Definition 11.13 (Bounded in probability, big Op(1) notation) A
sequence of random variables (Xn)n≥1 is called bounded in probability if for every
ε > 0 there exists an M > 0 such that

P (|Xn| < M ) > 1 − ε

for every n ≥ 1. We denote Op(1) a sequence bounded in probability. Similarly, if
there exists a set of constants an > 0 such that for every every ε > 0 there exists an
M > 0, and

P

(∣∣∣∣Xnan
∣∣∣∣ < M

)
> 1 − ε,

then we say that Xn is bounded in probability by an and we denote Op(an).
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Definition 11.14 (Convergent in probability, little op(1) notation)
For a set of random variables (Xn)n≥1 we use the notation Xn = op(1) if for every
positive ε we have

lim
n→∞ P(|Xn| > ε) = 0,

or equivalently Xn → 0 in probability. Similar to the notation in the definition above,
we denote Xn = op(an) a random sequence such that Xn/an → 0 in probability.

Remark 11.15 The notions above are important to express the Central Limit
Theorem (next chapter) in a concise manner. We shall see there that for a sequence
(Xn)n≥1 of i.i.d. random variables with mean � we will have:

√
n(X̄n − �) = op(1),

where X̄n = 1
n

∑n
i=1 Xi is the average of the first n random variables.

Furthermore, if Xn → X in probability, we may write |Xn − X | = op(1). And
of course an op sequence is also Op; that is, a sequence that converges in probability is
bounded in probability (see exercise 11.12).

Remark 11.16 Normally, in order to check the convergence in probability of Xn
to X , we need to know the joint distribution of Xn and X . However, in the case when
X is a constant, this is not needed (obviously). In fact, Xn →n c if for every ε > 0 we
have

P(|Xn − c| < ε) →n→∞ 1.

Note that the probability only contains the law of Xn.

11.4 Relationships Between Types of Convergence

First the deterministic convergence types imply all of the probability types of
convergence with the exception of the Lp convergence. That is natural since the
expectation has first to be defined regardless of the deterministic convergence.
As we saw already, almost uniform convergence and almost sure convergence are
equivalent for finite measure spaces (thus in particular for probability spaces). We
will not mention a.u. convergence from now on.

The relations between various types of convergence are depicted in
Figure 11.1. The solid arrows denote that one type of convergence implies the
other type. The dashed arrows imply the existence of a subsequence that is con-
vergent in the stronger type.

In this section we prove the relations between these types of convergence.
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L  convergence a.s. convergence

Convergence in Probability

Weak convergence

p

FIGURE 11.1 Relations between different types of convergence. Solid arrows mean imme-
diate implication. Dashed arrows mean that there exists a subsequence which is convergent in the
stronger type.

11.4.1 a.s. AND Lp

In general, Lp convergence and almost sure (a.s.) convergence are not related.
The following example shows that a.s. convergence does not necessarily imply Lp

convergence.

EXAMPLE 11.4

Let (�,F,P) = ((0, 1),B((0, 1)), �), where � denotes the Lebesque mea-
sure. On this space, define the variables Xn as

Xn(ω) = n1( 1
n ,

2
n )(ω).

Then the variables constructed in this way have the property that
Xn

a.s.−→ 0 as n → ∞ but E(Xn) = 1 for all n. Therefore, Xn /→ X in L1,
thus it does not converge in any Lp with p ≥ 1.

Solution: To show the a.s. convergence, let us start with some ε > 0 arbitrary.
Then, for any number ω ∈ (0, 1) there exists a nε(ω) so that ω /∈ ( 1

n
, 2
n
), ∀n ≥

nε(ω). For example, take

nε(ω) =
[

2

ω

]
,

where [x] denotes the integer part of the real number x. Since ω /∈ ( 1
n
, 2
n
), ∀n ≥

nε(ω), we have thatXn = 0 and thereforeXn(ω) −→ 0. Note that the convergence
is, in fact, pointwise not only almost sure.

On the other hand,

E[Xn] =
∫ 1

0
n1( 1

n ,
2
n )(ω) d�(ω) = n�

(
1

n
,

2

n

)
= 1, ∀n.
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Thus, the limit of the expectations is also 1, which is different from E[lim Xn] =
E[0] = 0. Therefore, the sequence converges a.s. but not in L1. �

Remark 11.17 The previous example may be read the other way as well to provide
a counterexample toLp does not imply a.s. convergence as well. Specifically, the sequence
converges in L1 to 0, but that does not imply that it converges a.s. to 0.

So, are there conditions which being true would guarantee that a sequence con-
verging almost surely would imply convergence in Lp to the same limit?

The answer is yes, and in fact we already know them. These conditions
are the same conditions in the hypotheses of the Dominated Convergence
Theorem (Theorem 13.7) and the Monotone Convergence Theorem (Theorem
13.4) in Appendix A (Chapter 13).

In fact, we have even more: If the sequence is dominated by an integrable
random variable, then the convergence in probability (which is weaker than con-
vergence a.s.) will imply convergence in Lp.

Theorem 11.18 Suppose that Xn
P−→ X and assume there exists a random

variable Y ∈ Lp(�) such that |Xn| < Y a.s. for all n. Then Xn
Lp−→ X.

Proof: Since Xn converges in probability, by Theorem 11.19—which will be
proven later in this chapter and does not use anything from this theorem—there
exists a subsequence (Xnk )k that converges almost surely to the r.v. X as k → ∞:

Xnk →k→∞ X, a.s. (11.1)

Since Xn is dominated, we also have

sup
n

E|Xn| ≤ E|Y |,

and from here it follows easily that

X ∈ L1(�) and |X | ≤ Y.

Now, for a fixed � > 0

E |Xn − X | =
∫

(|Xn−X |≤ε)
|Xn − X | dP +

∫
(|Xn−X |>ε)

|Xn − X | dP

≤ ε+
∫

(|Xn−X |>ε)
|Xn − X | dP

≤ ε+
∫

(|Xn−X |>ε)
2YdP

in the least inequality we used

sup
n

|Xn − X | ≤ 2Y.
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Now let us pick an arbitrary c > 0. We can write

E |Xn − X | ≤ ε+
∫

(|Xn−X |>ε)∩(|Y |≤c)
2YdP +

∫
(|Xn−X |>ε)∩(|Y |>c)

2YdP

≤ ε+ 2cP(|Xn − X | > �) + 2
∫

{|Y |≥c}
YdP.

Now look at the two final terms above. The sequence

1{|Y |≥c}|Y |
converges to zero as c → ∞ and since

E1{|Y |≥c}|Y | ≤ EY < ∞
we apply the dominated convergence theorem and we obtain∫

{|Y |≥c}
YdP ≤ ε

for a c large enough. The other term can be made as small as possible by the
definition of convergence in probability, and therefore for any c there exists an n
large enough so that

2cP(|Xn − X | > �) ≤ ε.

Therefore the conclusion of the theorem follows. �

The next example shows that a sequence converging in Lp does not necessarily
converge almost surely. In fact, in this example the sequence also converges in
probability beside converging in Lp. However, not even both types of convergence
are enough for almost sure convergence.

EXAMPLE 11.5 A sequence converging in Lp but not a.s.

Let (�,F,P) = ((0, 1),B((0, 1)), �), where � denotes the Lebesque mea-
sure. Define the following sequence:

X1(ω) = ω + 1(0,1)(ω)

X2,1(ω) = ω + 1(0, 1
2 )(ω);X2,2(ω) = ω + 1( 1

2 ,1)(ω)

X3,1(ω) = ω + 1(0, 1
3 )(ω);X3,2(ω) = ω +1( 1

3 ,
2
3 )(ω);X3,3(ω)=ω +1( 2

3 ,1)(ω);

...

and finally we can just re-index the sequence using integers as in Y1 = X1,
Y2 = X2,1, Y3 = X2,2, Y4 = X3,1, and so on. We shall keep the notation
using the X ’s since it is easier to follow.
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To understand what is going on, plot a few of the random variables
Xi,j(ω) for ω ∈ (0, 1).

Next, take X (ω) = ω (the candidate limit variable). Then,

P{ω : |Xn,k(ω) − X (ω)| > ε} = P

{
ω is in some interval of length

1

n

}
= 1

n
.

Therefore,

lim
n→∞ P{ω : |Xn,k(ω) − X (ω)| > ε} = 0,

and thus Xn
P−→ X . Furthermore, for any k we have

E[|Xn,k − X |p] = E
[(

1( kn , k+1
n )

)p]
= E

[
1( kn , k+1

n )

]
= 1/n,

and again taking n → ∞ this shows thatXn
Lp−→ X.Therefore,Xn converge

in both probability and Lp for any p.

However,Xn,k /→ X almost surely. To understand why, just take any
ω and any n. Due to the way we constructed the sequence, there exists an
m > n and a k such that

Xm,k(ω) − X = 1

for that particular pair. The sequence at any ω alternates between many ω
and a ω + 1.

EXAMPLE 11.6

Let (Xn)n≥1 be a sequence of independent random variables, each uniformly
distributed on (− 1

n
, 1
n
), or

Xn ∼ U

(
−1

n
,

1

n

)
.

Find the limit in probability, if it exists, of the sequence Xn.

Solution: Let us write the density of the random variable Xn:

fXn(x) = n

2
if x ∈

(
−1

n
,

1

n

)
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and

fXn (x) = 0 otherwise.

Since this density seems to be concentrating around x = 0 as n → ∞ it seems
reasonable to think that Xn converges to zero in probability. Let us try and prove
this claim using the definition. Let ε > 0. Then

P((|Xn − X | ≥ ε) = P(|Xn| ≥ ε)

= 1 − P(−ε ≤ Xn ≤ ε)

= 1 −
∫ ε

−ε
fXn (x) dx

= 1 −
∫ ε∧ 1

n

−ε∨− 1
n

n

2
dx,

where we used the notation −ε ∨ − 1
n

= max(−ε,− 1
n
), and the similar one for

the minimum. Since for any � for n big we have ε > 1
n
, we can write

lim
n

P((|Xn − X | ≥ ε) = 1 − lim
n

∫ 1
n

− 1
n

n

2
dx

= 1 − 1 = 0,

which shows that the sequence converges in probability to 0. �

11.4.2 PROBABILITY AND a.s./Lp

Recall Example 11.5. Over there we presented a sequence that converged in
probability but not almost surely. The next theorem says that even though the
convergence in probability does not imply convergence a.s., we can always extract
a subsequence that will converge almost surely to the same limit. Note that,
in Example 11.5, if we omit the terms in the sequence with values ω + 1, the
resulting subsequence converges almost surely.

Theorem 11.19 (Relation between a.s. convergence and conver-
gence in probability) We have the following relations:

1. If Xn
a.s.−→ X , then Xn

P−→ X .

2. If Xn
P−→ X , then there exists a subsequence nk such that

Xnk
a.s.−→ X, as k → ∞.

Proof: 1. Let

N c = {ω : lim
n→∞ |Xn(ω) − X (ω)| = 0}.
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From the definition of almost sure convergence, we know that P(N ) = 0. Now
take an ε > 0 arbitrary and consider

Nε(n) = {ω : |Xn(ω) − X (ω)| ≥ ε}.
Now let

Mk =
⎛
⎝⋃
n≥k
Nε(n)

⎞
⎠
c

=
⋂
n≥k
Nε(n)c (11.2)

using De Morgan’s law. We have the following:

• The sets Mk are increasing since

Mk = Nε(k)c ∩Mk+1,

which implies Mk ⊆ Mk+1.
• If we take an ω ∈ Mk and we look at the way it is defined, we have that for

all n ≥ k ω is in Nε(n)c , or in other words:

|Xn(ω) − X (ω)| < ε.

By definition, this means that the sequence is convergent at ω; therefore

Mk ⊆ N c, ∀k,
thus ⋃

k

Mk ⊆ N c.

• We leave it as an easy exercise to take an ω ∈ N c and to show that there must
exist a k0 such that ω ∈ Mk0 . Therefore, we also obtain

N c ⊆
⋃
k

Mk.

Using the double inclusion, we have⋃
k

Mk = N c

and therefore

P

(⋃
k

Mk

)
= 1,

using the hypothesis.
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Since the sets Mk are increasing using the monotone convergence property
of probability, we get that P(Mk) → 1 when k → ∞. Looking at the definition
of Mk in (11.2), this clearly implies that

P

⎛
⎝⋃
n≥k
Nε(n)

⎞
⎠ → 0, as k → ∞;

therefore P (Nε(k)) → 0, as k → ∞, which is just the definition of the conver-
gence in probability.

2. For the second part of the theorem we will use the Borel–Cantelli lemmas
(Lemma 2.34). Let us take ε in the definition of convergence in probability of
the form εk > 0 and make it to go to zero when k → ∞.

By the definition of convergence in probability for every such εk , we can find
an nk such that

P{ω : |Xn(ω) − X (ω)| > εk} < 1

2k
,

for every n ≥ nk . We start with m1 = n1 and an easy iterative process will con-
struct mk = min(mk−1, nk), so that the subsequence becomes increasing while
still maintaining the above, desired property. Denote

Nk = {ω :
∣∣Xmk (ω) − X (ω)

∣∣ > εk}.
Then, from the above we have

P(Nk) <
1

2k
,

which implies

∑
k

P(Nk) <
∑
k

1

2k
< ∞.

Therefore, applying the first Borel–Cantelli lemma to theNk sets, the probability
that Nk occurs infinitely often is zero.

This means that with probability one, N c
k will happen eventually. Or, in

words, the set of ω for which there exists a k0 and
∣∣Xmk (ω) − X (ω)

∣∣ < εk for all
k ≥ k0 has probability 1. Therefore, at each suchω the subsequence is convergent,
and thus the set

{ω : Xmk (ω) → X (ω)}
has probability 1. But this is exactly what we need to prove to show that the
subsequence converges a.s. �

In general convergence in probability does not imply a.s. convergence. A
counterexample was provided already in Example 11.5 but here is another varia-
tion of that example (written as an exercise).
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EXAMPLE 11.7 Counterexample.
p−→ implies

a.s.−→

You may construct your own counterexample. For instance, take� = (0, 1)
with the Borel sets defining the �-algebra and with the Lebesque measure
(which is a probability measure for this�). For every n ∈ N and 1 ≤ m ≤
2n, we now construct

Xn,m(ω) = 1[ m−1
2n ,

m
2n ](ω).

We again form a single subscript sequence by taking Y1 = X0,1,
Y2 = X1,1, Y3 = X1,2, Y4 = X2,1, Y5 = X2,2, Y6 = X2,3, Y7 = X2,4, and so
on. Once again plot the graph of these variables on a piece of paper for a
better understanding of what is going on.

The example asks that you prove that the sequence {Yk}has the property

that Yk
p−→ 0 but Yk /→ Y a.s. In fact, this sequence does not converge at

any ω ∈ �.

Proposition 11.20 If Xn
Lp(�)−→ X for some p then Xn

P−→ X .

Proof: This proposition, which says that convergence in Lp implies convergence
in probability, is an easy application of the Markov inequality (Proposition 14.1).
In that inequality we take g (x) = |x|p, and the random variable as Xn − X , for
the particular p for which we have convergence. We obtain

P
(|Xn − X |p > ε

) ≤ ε−pE|Xn − X |p.
Therefore, if Xn

Lp(�)−→ X , then we necessarily have Xn
P−→ X as well. �

Remark 11.21 The converse of the previous result is not true in general. Consider
the probability ensemble of exercise 11.23.

Specifically, take

Xn(ω) = n1[0, 1
n ](ω).

Show that Xn
P−→ X but Xn /→ X in any Lp with p ≥ 1.

Yet another example of a sequence of random variable that converges in probability
but not in Lp may be found in exercise 11.3.

Finally, here is a criterion for convergence in probability using expectations.

Theorem 11.22 Xn
P→ 0 if and only if E

(
|Xn|

1+|Xn|
)

→ 0.

Proof: Left as an exercise (exercise 11.13). �

Next we look at properties of the convergence in probability. The next propo-
sition says that convergence in probability is stable under summation and multi-
plication.
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Proposition 11.23 If

Xn
P−→ X and Yn

P−→ Y

as n → ∞, then

Xn + Yn
P−→ X + Y

and

XnYn
P−→ XY. (11.3)

Proof: Let us prove the first assertion. The second part is left as an exercise.
For every ε > 0 we can write

P (|(Xn + Yn) − (X + Y )| > ε) = P (|(Xn − X ) + (Yn − Y )| > ε)

≤ P (|Xn − X | + |Yn − Y | ≥ ε)

≤ P
(
|Xn − X | ≥ ε

2

)
+ P

(
|Yn − Y | ≥ ε

2

)
and both terms on the right-hand side converge to zero as n → ∞. �

Another important property of the convergence in probability is that it is
stable when we apply continuous functions.

Proposition 11.24 Let Xn be a sequence of random variables taking values in
a subset V of R, or Xn : � → V , where V is an open subset of R. Let f : V → R
be a continuous function. If Xn

P−→ X as n → ∞, then

f (Xn)
P−→ f (X ).

Proof: We will sketch the proof in the case when V̄ is a compact set. Since f
is continuous, f is uniformly continuous on V . So, for every ε > 0 there exists
˛ > 0 such that for any x, y with the property |x − y| ≤ ˛ we have

|f (x) − f (y)| ≤ ε.

As a consequence

{|f (Xn) − f (X )| ≥ ε} ⊂ {|Xn − X | ≥ ε}
and therefore

P{|f (Xn) − f (X )| ≥ ε} ≤ P{|Xn − X | ≥ ε}.
But, since Xn converges to X in probability, we have

P{|Xn − X | ≥ ε} → 0
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and clearly

P{|f (Xn) − f (X )| ≥ ε} → 0.

�

Remark 11.25 Sometimes, it is possible to prove the convergence of f (Xn) to f (X )
without assuming the continuity of f . Indeed, consider the following function:

f : R \ {0} → R
given by f (x) = 1

x
. Note that the function is not continuous at x = 0. However, if

Xn
P−→ X and P(X /= 0) = 1 (to avoid problems with the random variable f (X )),

we have that

1

Xn

P−→ 1

X
.

Remark 11.26 We further note that the convergence in probability

Xn
P−→ c

when c is a constant does not necessarily imply either

EXn → c

or

Var Xn → 0.

Indeed, to show a counterexample for the remark above, consider the sequence
of random variables

Xn =
{
n, with probability 1

n
,

0, with probability 1 − 1
n
.

Then Xn → 0 in probability (we already showed this in exercise 11.23), but

EXn = 1,

and

Var Xn = n − 1.

11.4.2.1 Back to Almost Sure versus Lp Convergence. Let us return to
the earlier relations for a moment. We have already shown (by providing coun-
terexamples) that neither necessarily implies the other one. In either of these
examples the limit implied did not exist.

If both limits exist, then they necessarily must be the same.
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Proposition 11.27 If Xn
Lp(�)−→ X and Xn

a.s−→ Y , then

X = Y a.s. .

Proof: (Sketch) We have already proven that both types of convergence imply
convergence in probability. The proof then ends by showing a.s. the uniqueness
of a limit in probability. �

11.4.3 UNIFORM INTEGRABILITY

We have seen that convergence a.s. and convergence in Lp are generally not com-
patible. However, we will give an integrability condition that will make all the
convergence types equivalent. In practice, it is a very desirable property that the
moments converge when Xn

a.s.−→ X .

Definition 11.28 (Uniform integrability criterion) A collection of ran-
dom variables {Xn}n∈I is called uniform integrable (U.I.) if

lim
M→∞

sup
n∈I

E
[|Xn|1{|Xn|>M }

] = 0.

In other words, the tails of the expectation converge to 0 uniformly for all the family.

In general, the criterion for uniform integrability is hard to verify. The fol-
lowing theorem contains two necessary and sufficient conditions for uniform
integrability (U.I.).

Theorem 11.29 (Conditions for U.I.) A family of r.v.’s {Xn}n∈I is uni-
formly integrable if and only if one of the following two conditions are true:

1. Bounded and Absolutely Continuous Family. E[|Xn|] is bounded for
every n ∈ I and for any ε > 0, there exists a ı(ε) > 0 such that if A ∈ F is any
set with P(A) < ı(ε), then we must have E [|Xn|1A] < ε.

2. de la Vallée–Poussin Theorem. There exists some increasing function f ,
f ≥ 0, such that limx→∞

f (x)
x

= ∞ with the property that Ef (|Xn|) ≤ C for
some constant C and all n.

The proof of this theorem is tedious, and we skip it here. For the interested
reader, a proof of the first part may be found in Theorem 4.5.3 in Chung (2000),
and a proof for the second part appears in Theorem 7.10.3 in Grimmett and
Stirzaker (2001).

Here is the main result using the U.I. concept.

Theorem 11.30 Suppose that Xn
P−→ X and for a fixed p > 0, Xn ∈ Lp(�).

Then the following three statements are equivalent:
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(i) The family {|Xn|p}n∈N is U.I.

(ii) Xn
Lp−→ X .

(iii) E[X pn ] → E[X p] < ∞.

The theorem shows that for a uniformly integrable family, all types of conver-
gence are equivalent. The proof is once again skipped and we refer the interested
reader to Theorem 4.5.4 in Chung (2000).

EXAMPLE 11.8 Examples of U.I. families

1. Any integrable random variable X ∈ L1 is U.I.

Clearly, E|X | < ∞ implies that E
[|X |1{|X |>M }

] M→∞−→ 0.

2. Suppose the family {Xn} is bounded by an integrable random variable,
|Xn| ≤ Y and Y ∈ L1. Then Xn is a U.I. family.

Indeed, from the boundness we have

E
[|Xn|1{|Xn|>M }

] ≤ E
[
Y 1{|Y |>M }

]
,

which does not depend on n and converges to 0 when M → ∞ as in
the previous example.

3. Any finite collection of random variables in L1 is U.I.
This is just an application of the previous point. Suppose that

{X1, X2, . . . , Xn}
is the finite collection of integrable r.v.’s. Then we can find a random
variable that dominates them, for example

Y = |X1| + |X2| + · · · + |Xn|.
Applying the previous part concludes.

4. The family

{anY }
is U.I., where Y ∈ L1 and the sequence an ∈ [−1, 1] of nonrandom
constants.

5. Any bounded collection of integrable r.v.’s is U.I.

We conclude the chapter with an example of a family which is not U.I.
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EXAMPLE 11.9 A family of r.v.’s which is not uniformly
integrable

Consider the probability space of all infinite sequences of coin tosses. As-
sume that the coin is fair—that is, the � space of all infinite sequences of
any combination of heads and tails. Consider any �-algebra and probability
on this space.

Define a sequence of random variables:

Xn = inf {i : such that i > n and toss i is a H },
in other words, the first toss after the nth toss where we obtain a head. Let
M > 0 an integer. Using the way we defined the random variable, there
exists another integer n greater than M and for this n we have

Xn > n ≥ M.

Therefore, for this n we have

E
[|Xn|1{|Xn|>M }

] = E[Xn] > n,

since the set is always true. This implies by definition that the {Xn} family
is not U.I.

EXERCISES

Problems with Solution

11.1 Let � = [0, 1] and define for every n ≥ 1

Xn(ω) = ω

4n
.

Find the pointwise limit of the sequence Xn.

Solution: For all ω ∈ � = [0, 1], we have

lim
n
Xn(ω) = lim

n

ω

4N
= 0,

so the sequence Xn converges pointwise to 0. �

11.2 Let pn be a sequence of numbers in [0, 1] such that

lim
n→∞ pn = 0.
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Let Xn be a sequence of independent r.v. with Bernoulli law with param-
eter pn. That is,

P(Xn = 1) = pn and P(Xn = 0) = 1 − pn.

(a) Prove that Xn converges to zero in probability.
(b) Under which condition on

∑
n pn does the sequence Xn converge

almost surely to zero?

Solution: (a) We have for every ε > 0

P(Xn ≥ ε) ≤ pn → 0

as n → ∞.
(b) Set

	n = {ω : Xn(ω) = 1}.
Then the set

	 = lim sup
n

	n = ∩n ∪k≥n 	k

contains the points ω ∈ � for which Xn(ω) does not converge to zero.
Using Borel–Cantelli, we obtain

P(	) = 0 if and only if
∑
n

P(	n) < ∞.

Thus, Xn converges to zero almost surely if and only if∑
n

pn < ∞.

�

11.3 Consider X a continuous r.v. with density function

f (x) = log a

x(log x)2
1(x≥a)

with a > 1 a constant. Let

Xn = X

n
, n ≥ 1.

(a) Show that the sequence (Xn)n≥1 converges to zero in probability.
(b) Show that this sequence does not converge to zero in Lp, for any
p > 0.
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Solution: Fix ε > 0. Then

P(|Xn| > ε) = P(X > nε)

=
∫ ∞

nε

log a

x(log x)2
dx

= log a

log(nε)
→n→∞ 0,

so the conclusion of part (a) is obtained.
For part (b), for every p > 0, we obtain

E|X |p = E

(
X

n

)p

= log a

np

∫ ∞

a

1

x1−p(log x)2
dx = ∞,

so Xn does not converge to zero in Lp. �

11.4 Let Xn be a sequence of r.v.s iid with law Exp(�). Set

Y = lim sup
Xn

ln n
.

(a) Show that

P

(
lim sup

n

(
Xn

ln n
≥ 1

�

))
≤ P

(
lim sup

n

Xn

ln n
≥ 1

�

)
.

(b) Show that

P

(
lim sup

(
Xn

ln n
≥ 1

�

))
= 1.

(c) Deduce that P(Y ≥ 1
�
) = 1.

(d) Show that for every ε > 0, we obtain

P

(
lim sup

n

Xn

ln n
>

1 + ε

�

)
≤ P

(
lim sup

n

(
Xn

ln n
>

1 + ε

�

))
.

(e) Deduce that

P

(
Y = 1

�

)
= 1.

(f) Show that Xn
ln n converges to zero in probability. Does the sequence

converge almost surely to zero?



362 CHAPTER 11 Types of Convergence

Solution: (a) This part follows from the following fact: If (xn)n is a se-
quence of real numbers, then

xn ≥ 0 for an infinite number of n ⇒ lim sup
n

xn ≥ 0.

(b) We have

P

(
Xn

ln n
≥ 1

�

)
= P

(
Xn ≥ ln n

�

)
= e− ln n = 1

n
.

Therefore ∑
n

P

(
Xn

ln n
≥ 1

�

)
=

∑
n

1

n
= ∞.

Since the random variables Xn are independent, the Borel–Cantelli
lemma implies that

P

(
lim sup

n

Xn

ln n
≥ 1

�

)
= 1

and from part (a) we have

P

(
Y ≥ 1

�

)
= 1.

(c) Follows from the following fact: If (xn)n is a sequence of real
numbers, then

lim sup
n

xn > 0 ⇒ xn > 0 for an infinite number of n.

(d) Now

P

(
Xn

ln n
>

1 + ε

�

)
= n−(1+ε)

and ∑
n

P

(
Xn

ln n
>

1 + ε

�

)
=

∑
n

n−(1+ε) < ∞.

The Borel–Cantelli lemma says that

P

(
lim sup

n

Xn

ln n
>

1 + ε

�

)
= 0

and from part (c) we have

P

(
Y >

1 + ε

�

)
= 0.
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(e) Letting ε → 0, we obtain

P

(
Y >

1

�

)
= lim

ε→0
P

(
Y >

1 + ε

�

)
= 0.

Hence

P

(
Y = 1

�

)
= P

(
Y ≥ 1

�

)
− P

(
Y >

1

�

)
= 1 − 0 = 1.

(f) We have

P

(
Xn

ln n
≥ a

)
= P (X1 ≥ a ln n) → 0.

�

11.5 Let f : R→ R be such that

|f (x) − f (y)| ≤ C |x − y|, ∀x, y ∈ R
for some C > 0.
(a) If Xn → X almost surely, prove that

Ef (Xn) → Ef (X ) as n → ∞.

(b) Let ε > 0. If Xn → X in probability, show that

P
(|f (Xn) − f (X )| ≥ ε

) → 0.

Solution: (a) We have

|Ef (Xn) − Ef (X )| ≤ E|f (Xn) − f (X )|
≤ CE inf (1, |Xn − X |).

For almost all ω ∈ � we obtain

inf (1, |Xn − X |) → 0

and for every ω we have

inf (1, |Xn − X |) ≤ 1.

The dominated convergence theorem implies that

E inf (1, |Xn − X |) → 0,

so |Ef (Xn) − Ef (X )| → 0.
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(b) By Chebyshev’s inequality we have

P
(|f (Xn) − f (X )| ≥ ε

) ≤ 1

ε
E|f (Xn) − f (X )| → 0.

�

11.6 Suppose that Xn → X in probability and assume that

sup
n

E|Xn|q < K

for some q > 1, where K > 0 is a constant.
(a) Prove that the family (Xn)n≥1 is uniformly integrable.
(b) Show that Xn converges to X in Lp for every 0 < p < q.

Solution: Let a > 0 such that |Xn| > a. Then

|Xn|p−q < ap−q.

This implies

E|Xn|p1(Xn>a) ≤ ap−qE|Xn|q
≤ Bap−q,

where B = supn E|Xn|q. Because p − q < 0 we will have

sup
n

E|Xn|p1(Xn>a) → 0,

as a → ∞. That means that the sequence (Xn)n is uniformly integrable.
Part (b) follows from Theorem 11.30. �

11.7 Let X be a continuous random variable with density f . Suppose that fn,
for n ≥ 1 is a sequence of densities such that

fn(x) → f (x)

for every x ∈ R. Define, for every n ≥ 1,

Xn = fn(X )

f (X )
.

(a) Prove that the sequence Xn, n ≥ 1 converges to 1 almost surely.
(b) Prove that the sequence Xn, n ≥ 1 converges to 1 in L1.

Solution: The first point is obvious because

fn(x)

f (x)
→ 1
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for every x ∈ R as long as f (x) > 0. Hence

P(Xn → 1) ≥ P(f (X ) > 0)

= 1 − P(f (X ) = 0)

and

P(f (X ) = 0) =
∫
f (x)=0

f (x) dx = 0.

The almost sure convergence implies the convergence in probability. On
the other hand, we have

E|Xn| = E
fn(X )

f (X )

=
∫
R

fn(x)

f (x)
f (x) dx

=
∫
R

fn(x) dx

= 1

and we can conclude the L1 convergence using the Theorem 11.30. �

Problems without Solution

11.8 Prove the convergence in (11.3).

11.9 Prove the convergence in Remark 11.25.
Hint: The general result in Proposition 11.24 cannot be applied, so

this convergence should be proven starting from scratch.

11.10 Let U be an uniformly distributed r.v. on [0, 1]. Set

V = U − 1 and W = −U.

(a) Calculate the density of V .
(b) Compare the laws of V and W .
(c) Show that for every p ≥ 1 integer we have

E(|V |p) < +∞
and compute E(V p).

11.11 Let (Vn, n ≥ 1) be a sequence of i.i.d. random variables uniformly dis-
tributed on the interval (−1, 0). For every integer n ≥ 1, define the
following sequences of random variables:

Xn = V 3
1 + V 3

2 + · · · + V 3
n

n
,
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Yn = V 2
1 + V 2

2 + · · · + V 2
n

n
,

and

Zn = V 3
1 + V 3

2 + · · · + V 3
n

V 2
1 + V 2

2 + · · · + V 2
n

.

(a) Show that the sequences (Xn, n ≥ 1) and (Yn, n ≥ 1) converge al-
most surely.
(b) Show that the sequence (Zn, n ≥ 1) converge almost surely. Identify
the limit.
(c) Does the sequence (Zn, n ≥ 1) converge in L1? If the answer is yes,
identify the limit.

11.12 Prove that a sequence that converges in probability is bounded in prob-
ability (see Definition 11.13).

11.13 Prove Theorem 11.22.

11.14 Let (Xn , n ≥ 1) denote a sequence of i.i.d. random variables with mean
0 and variance 1. Let (Zn , n ≥ 1) be given by

Zn =
n∏
k=1

(a + bXk) .

(a) Calculate E (Zn) and Var (Zn).
(b) Show that

Zn
L2−→ 0

if a2 + b2 < 1.

11.15 Maximum and minimum of uniform laws
Let a < b be two constants and let (Xn , n ≥ 1) denote a sequence of

i.i.d. random variables with common distribution U (
[
a, b

]
). For n ≥ 1

we denote

Mn = max
1≤i≤n

Xi,

Let 0 < ε < 1.
(a) Calculate

P (Mn ≤ b − ε) .

(b) Deduce that

Mn
P−→ b.
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(c) Show that ∑
n≥1

P
(|Mn − b| ≥ n−˛) < +∞

for every ˛ ∈ (0, 1).
(d) Deduce that

Mn
a.s.−→ b.

(e) Calculate the density of Mn.
(f) Does the sequence (Mn) converge in L1?

11.16 Using the same notations as in the problem above, let

In = min
1≤i≤n

Xi.

Study the convergence of the sequence (In) in probability, almost surely,
and L1.

11.17 Let U and V two arbitrary random variables. Prove that

{|U + V | > ε} ⊂ {|U | > ε/2} ∪ {|V | > ε/2} .
11.18 Use the previous problem and derive that if (Xn) and (Yn) are two se-

quences such that Xn
P−→ X and Yn

P−→ Y , then

Xn + Yn
P−→ X + Y.

11.19 Moving average sequence
Let (εn , n ≥ 0) a sequence of i.i.d. random variables with mean 0

and variance �2. For every a ∈ R, we consider the sequence (Yn , n ≥ 1)
(called the moving average of Xn) defined by

Yn = εn + aεn−1,

for every n ≥ 1.
(a) Compute

Var(Yn),

Cov(Yn, Yn+1),

and a general formula for

Cov(Yn, Yn+k), where |k| ≥ 2.

(b) Using the previous part derive the value of

Var(Yn),

where Yn = ∑
i Yi/n denotes the average of the first n values.
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(c) Does the sequence Yn converge in L2 ?
(d) Does it converge in probability?

Suppose that the fourth moment of the original random variables
is finite, that is,

�4 = E(ε4
i ) < ∞.

Define the sequence

Cn = 1

n

n∑
i=1

Zi, where Zi = YiYi+1

(e) Calculate the variance of Zi . What is

Cov(Zi, Zj)

if
∣∣i − j

∣∣ > 2 ?
(f) Calculate E(Cn) and Var(Cn).
(g) Prove that the sequence (Cn) converges in L2.

11.20 Estimation of the mean of X when X is observed with probability p.
Let (Xn , n ≥ 1) be a sequence of i.i.d. square integrable random

variables. Denote

m = E(X1)

and assume that

Var(X1) > 0.

Let (Yn , n ≥ 1) be i.i.d. with Bernoulli law with parameter p, for some
0 < p < 1, and assume that the sequence (Yn) is independent of (Xn).
Set

Zn = XnYn,

An = 1

n

n∑
1

XiYi,

and

Bn = 1

n

n∑
1

Yi.

(a) Calculate E(Zn) and Var(Zn).
(b) Show that Var(Zn) > 0.
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(c) Prove that the sequences (An) and (Bn) converge in probability.
(d) Deduce that

Rn =
∑n

1 XiYi∑n
1 Yi

P−→ m.

Interpret the result.

11.21 Assume (Xn , n ≥ 0) are i.i.d. random variables such that

E(X1) = m

and

E(X 2
1 ) = �2 > 0.

Furthermore, assume that the fourth moment of the distribution is finite.
Denote by

�4 = E(X 4
1 ) < +∞.

(a) Prove that

1

n

(
X 2

1 + · · · + X 2
n

) P−→ �2

(b) Prove that

1

n
(X1X2 + · · · + Xn−1Xn)

P−→ m2.

(c) Find the limit in probability of the sequence

Rn = X1X2 + · · · + Xn−1Xn

X 2
1 + · · · + X 2

n

.

11.22 Suppose we know that there exists a constant 
 such that

n∑
k=1

1

k
− ln(n) − 
 → 0

when n → +∞. This constant is called the Euler constant.
Let (Xn , n ≥ 1) be a sequence of independent random variables

such that for every integer n ≥ 1, the distribution of Xn is given by

P

(
Xn = − 1√

n

)
= P

(
Xn = 1√

n

)
= 1

2
.
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Let

Sn =
n∑
k=1

Xk

the sum of the random variables for every n ≥ 1.
(a) Calculate

P(|Xn| ≥ n−˛)

in terms of ˛ > 0.
(b) Does the sequence (Xn , n ≥ 1) converge almost surely?
(c) Does the sequence (Xn , n ≥ 1) converge in L2?
(d) Calculate E(S2

n ). Is the sequence E(S2
n ) convergent?

(e) Does the sequence (Sn , n ≥ 1) converge in L2?
(f) Does the sequence (

Sn
n
, n ≥ 1

)

converge in L2?
(g) Does the sequence (

Sn

n
, n ≥ 1

)

converge almost surely?

11.23 Consider the sequence of random variables

Xn =
{
n, with probability 1

n
,

0, with probability 1 − 1
n
.

Show that Xn → 0 in probability.

11.24 Show that if Xn
Lp−→ X , then E|Xn|p → E|X |p.

Hint: The ‖ · ‖p is a proper norm (recall the properties of a norm).

11.25 Let (Xn)n≥1 such that

P(Xn = −n) = 1

2n2
,

P(Xn = n) = 1

2n2
,

and

P(Xn = 0) = 1 − 1

n2
.
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(a) Calculate � = EXn.
(b) Calculate Var Xn for every n ≥ 1.
(c) Study the convergence in probability of the sequence (Xn)n≥1.
(d) Study the convergence of the sequence (E |Xn − �|)n≥1.

11.26 Show that if f : R→ R is a continuous function and Xn
a.s.−→ X , then

f (Xn)
a.s.−→ f (X ) as well.

11.27 Let U ∼ U [0, 1] and define

Un = U 1[ 1
n ,1](U ).

Show that the sequence (Un)n converges almost surely to U .

11.28 Define

fn(x) = n

�(1 + n2x2)

for x ∈ R.
(a) Show that fn is a density.
(b) Let Xn be an r.v. with density fn. Compute EXn and Var Xn.
(c) Show that the sequence Xn, n ≥ 1 converges in probability to zero.



Chapter Twelve

Limit Theorems

12.1 Introduction/Purpose of the Chapter

The notions in the current chapter could be presented together with the previous
chapter concerning types of convergence. We decided to separate this chapter and
present it on its own for two reasons. First, the convergence in distributions (weak
convergence) presented here is special, and it is characteristic for the probability
theory. Second, the two big theorems related to convergence in distribution (the
law of large numbers and the central limit theorem) are the basis of statistics and
stochastic processes, and we believe they deserve to be presented in their own
chapter.

The present chapter is dedicated to the following problem. Suppose we have
an experiment repeating itself with minor changes in the surrounding conditions.
Can we say something about the underlying parameters of the experiment? Can
we gather quantities such as the average or variance and use them to describe the
conditions of the experiment? The notions in this chapter are some of the most
useful in probability, but they have to be presented in the last chapter since they
use all the other probability concepts presented throughout the book.

12.2 Vignette/Historical Notes

The Law of Large Numbers was first proved by the Swiss mathematician Jacob
(Jacques) Bernoulli. Bernoulli was a Swiss mathematician, the first in the Bernoulli

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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family, a family of famous scientists of the eighteenth century. Jacob Bernoulli’s
most original work was Ars Conjectandi, published in Basel in 1713, eight years
after his death. The work was incomplete at the time of his death, but it still was a
work of the greatest significance in the development of the Theory of Probability.
The fourth part of his work presents the statement and the proof of the law
of large numbers in a simplified form of what we now call Bernoulli trials (or
Bernoulli(p) random variables). In modern notation he has an event that occurs
with probability p but he does not know p. He wants to estimate p by the sample
proportion p̂ of the times the event occurs when the experiment is repeated a
number of times. Bernoulli discusses in detail the problem of estimating, by this
method, the proportion of white balls in an urn that contains an unknown number
of white and black balls. Repeatedly, he draws samples of n balls with replacement
(i.e., each ball drawn is recorded and then replaced in the urn for the next draw). He
estimates p by the sample proportion p̂ obtained at each sequence of n drawn balls.
He shows that, by choosing n large enough, he can obtain any desired accuracy
and reliability of the estimate. He also expands the applicability of his theorem to
estimates of probability of dying from a particular disease, of different kinds of
weather occurring, and more. When writing about the number of trials which are
necessary to make a judgment, Bernoulli observes that the ‘‘man on the street’’
believes the ‘‘law of averages.’’

Further, it is clear that to make proper judgements, it is not enough to use one
or two trials, but rather a great number of trials is required. And sometimes the
stupidest man ‘‘by some instinct of nature per se and by no previous instruction
(this is truly amazing)’’ knows for sure that the more observations of this sort that
are taken, the less the danger will be of straying from the mark (Bernoulli).

But he goes on to say that he must contemplate another possibility. Something
further must be contemplated here which perhaps no one has thought about until
now. It certainly remains to be inquired whether after the number of observations
has been increased, the probability is increased of attaining the true ratio between
the number of cases in which some event can happen and in which it cannot
happen, so that this probability finally exceeds any given degree of certainty; or
whether the problem has, so to speak, its own asymptote—that is, whether some
degree of certainty is given which one can never exceed.1 Of course, here he talks
about the consistency of the estimator—a concept proven by the central limit
theorem.

Bernoulli recognized the importance of this theorem, writing: ‘‘Therefore,
this is the problem which I now set forth and make known after I have already
pondered over it for twenty years. Both its novelty and its very great usefulness,
coupled with its just as great difficulty, can exceed in weight and value all the
remaining chapters of this thesis.’’

The Central Limit Theorem for the Bernoulli trials was first proved by Abra-
ham de Moivre (1667–1754). De Moivre was a French mathematician who lived

1 Source: Grinstead and Snell (1997).
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most of his life in England.2 De Moivre pioneered the modern approach to the
Theory of Probability, in his work The Doctrine of Chance: A Method of Calculating
the Probabilities of Events in Play in the year 1718. A Latin version of the book
had been presented to the Royal Society and published in the Philosophical Trans-
actions in 1711. The definition of statistical independence appears in this book
for the first time. The Doctrine of Chance appeared in new expanded editions in
1718, 1738, and 1756. The birthday problem appeared in the 1738 edition, the
gambler’s ruin problem in the 1756 edition. The 1756 edition of The Doctrine
of Chance contained what is probably de Moivre’s most significant contribution
to probability, namely the approximation of the binomial distribution (Bernoulli
trials) with the normal distribution. This result is now known in most probability
textbooks as ‘‘The First Central Limit Theorem’’ (presented and proven in this
chapter). He understood the notion of standard deviation and is the first to write
the normal integral (and the distribution density). In Miscellanea Analytica (1730)
he derives Stirling’s formula (wrongly attributed to Stirling) which he uses in his
proof of the Central Limit Theorem. In the second edition of the book in 1738
de Moivre gives credit to Stirling for an improvement to the formula. De Moivre
wrote:

I desisted in proceeding farther till my worthy and learned friend Mr
James Stirling, who had applied after me to that inquiry, [discovered that
c = √

2].

De Moivre also investigated mortality statistics and the foundation of the
theory of annuities. In 1724 he published one of the first statistical applications
to finance Annuities on Lives, based on population data for the city of Breslau. In
fact, in A History of the Mathematical Theory of Probability (London, 1865), Isaac
Todhunter says that probability:

. . . owes more to [de Moivre] than any other mathematician, with the
single exception of Laplace.

De Moivre died in poverty. He did not hold a university position despite his
influential friends Leibnitz, Newton, and Halley, and his main income came from
tutoring.

De Moivre, like Cardan (Girolamo Cardano), predicted the day of his own
death. He discovered that he was sleeping 15 minutes longer each night and
summing the arithmetic progression, calculated that he would die on the day
when he slept for 24 hours. He was right!

2 A Protestant, he was incarcerated between 18 and 21 years of age. At age 21 he was pushed to
leave France after Louis XIV revoked the Edict of Nantes in 1685, leading to the expulsion of the
Huguenots.
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12.3 Theory and Applications

12.3.1 WEAK CONVERGENCE

Let us now discuss the weakest form of convergence, the convergence in distribu-
tion, aptly named as such. It is in fact implied by all other types of convergence.

Definition 12.1 (Convergence in distribution (weak conver-
gence)) Consider a sequence of random variables (Xn)n≥1 defined on probability
spaces (�n,Fn,Pn) (which might be all different) and a random variable X , defined
on (�,F,P). Let Fn(x) and F (x) be the corresponding distribution functions of the
random variables.

The sequence (Xn)n≥1 is said to converge to X in distribution (written Xn
D−→ X

or Fn ⇒ F ) if for every point x at which F is continuous, we have

lim
n→∞ Fn(x) = F (x).

Remark 12.2 This type of convergence is different from the types presented in the
previous chapter. Since we only need the convergence of the distribution functions of the
random variables, each of the random variables Xn may live on a different probability
space (�n,Fn,Pn) and yet the convergence is valid. As functions, each distribution
Fn : R→ [0, 1], thus regardless of the underlying probability spaces the distribution
functions all live in the same space.

However, if (�n,Fn,Pn) = (�,F,P) for all n, then the variables are all defined
on the same probability space. Only in this case we may talk about relations with the
rest of convergence types.

Remark 12.3 There are many notations for weak convergence which are used

interchangeably in various books. We mentionXn
L−→ X (convergence in law),Xn ⇒

X , Xn
Distrib.−→ X , Xn

d−→ X .

EXAMPLE 12.1

Why do we require x to be a continuity point of F ? The simple answer is
that if x is a discontinuity point, the convergence may not happen at x even
though we might have convergence everywhere else around it. We present
a simple example that illustrates this fact.

Let Xn be a 1/nBernoulli(1/n) random variable. That is, the random
variable Xn takes value 1/n with probability 1/n and the value 0 with
probability 1 − 1/n. Its distribution function is

Fn(t ) =
{

0, if t < 1
n
,

1, if t ≥ 1
n
.
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Looking at this, it makes sense to say that the limit is X = 0 with
probability 1 which has distribution function

F (t ) =
{

0, if t < 0,

1, if t ≥ 0.

Recall that any distribution function must be right continuous (Proposition
3.9). So according to our definition the convergence is valid.

However, look at the discontinuity point of F . We have F (0) =
1 /= limn→∞ Fn(0) = 0. So if we insisted on convergence holding at all
the points, we would not have it. This is why one excludes these points
from the definition.

There exists a quantity which we know how to calculate and where the isolated
points do not matter. That is the integral of a function. That is why we have an
alternate definition for convergence in distribution given by the next theorem.
We note that the definition above and the next theorem applies to random vectors
as well (Xn, X taking values in Rd ).

Theorem 12.4 (The characterization theorem for weak conver-
gence) Let Xn defined on probability spaces (�n,Fn,Pn) and X , defined on
(�,F,P). Then

Xn
D−→ X

if and only if for any bounded, continuous function � defined on the range of X we
have:

E[�(Xn)] →n→∞ E[�(X )], as n → ∞,

or equivalently:

∫
�(t ) dFn(t ) →n→∞

∫
�(t ) dF (t ).

A function � with the above properties is also called a test function. In the case when
the variables have densities fn(x) and f (x) respectively then convergence in distribution
is equivalent with

∫
�(t )fn(t ) dt →

∫
�(t )f (t ) dt.

Proof: We prove here one implication. The other implication, which is much
simpler, uses the boundness of the c.d.f. or p.d.f. and the bounded convergence
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theorem. Suppose that for any bounded, continuous function � defined on the
range of X we have

E[�(Xn)] → E[�(X )], as n → ∞.

For every ε > 0 consider the function

�t,ε : R→ R
given by

�t,ε(u) =

⎧⎪⎨
⎪⎩

1, u ≤ t,

0, u ≥ t + ε,

1 − u−t
ε
, t < u < t + ε.

Then �t,ε is continuous and bounded and

lim
n

E�t,ε(Xn) = E�t,ε(X ).

On the other hand, since

1(−∞,t ] ≤ �t,ε ≤ 1(−∞,t+ε]

we have for every n

FXn (t ) ≤ E�t,ε(Xn)

and

E�t,ε(X ) ≤ FX (t ).

Therefore,

lim sup
n

FXn(t ) ≤ FX (t )

for every t ∈ R. Next, using the function

gt,ε(u) =

⎧⎪⎨
⎪⎩

0, u ≤ t − ε,

1, u ≥ t,

1 − u−t+ε
ε
, t − ε < u < t,

one can similarly prove that

lim inf
n

FXn(t ) > FX (t − ε).

�
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Letting ε → 0, we obtain

lim
n
FXn (t ) = FX (t )

for every t such that FX is continuous in t .

Corollary 12.5 As an immediate consequence of the previous theorem and the
fact that composition of continuous functions is continuous, we have the following: If

Xn
D→ X and g is a continuous function, then g (Xn)

D→ g (X ).

Remark 12.6 The continuity theorem below (Theorem 12.7) gives a criterion
for weak convergence using characteristic functions. The result of the theorem is very
useful and explains the main reason why we use characteristic function.

Theorem 12.7 (Levy’s continuity theorem) Let Xn, n ≥ 1 and X be
random variables with characteristic functions ϕn, n ≥ 1, and ϕ, respectively. Thus:

1. If Xn → X in distribution as n → ∞, then

ϕn(t ) −→ ϕ(t )

for every t ∈ R as n → ∞.

2. If ϕn(t ) −→ ϕ(t ) for every t ∈ R and ϕ is continuous at zero, then Xn
D→ X in

distribution as n → ∞.

Proof: Part 1 follows directly from the de definition of convergence in distribution
since the function eitx is a bounded continuous function of x for every t . The proof of
the second part utilizes the Levy inversion formula (Proposition 8.16). We omit the
details. �

The following proposition formally states that the convergence in probability
(and thus all the others) will imply convergence in distribution. That is perhaps,
the reason for the name ‘‘weak convergence.’’

Proposition 12.8 Suppose that the sequence of random variables Xn and the
random variable X are defined on the same probability space (�,F,P).

If Xn
P−→ X , then Xn

D−→ X .

Proof: Suppose that for every ε > 0 we have

P[|Xn − X | > ε] = P{ω : |Xn(ω) − X (ω)| > ε} −→ 0, as n → ∞.

following the definition of convergence in probability.
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Let Fn(x) and F (x) the distribution functions of Xn and X . Then we may
write

Fn(x) = P[Xn ≤ x] = P[Xn ≤ x, X ≤ x + ε]

+P[Xn ≤ x, X > x + ε]

≤ P[X ≤ x + ε] + P[Xn − X ≤ x − X, X − x > ε]

= F (x + ε) + P[Xn − X ≤ x − X, x − X < −ε]
≤ F (x + ε) + P[Xn − X < −ε]
≤ F (x + ε) + P[Xn − X < −ε] + P[Xn − X > ε]

= F (x + ε) + P[|Xn − X | > ε].

We may repeat the line of reasoning above by starting with F and replacing x
above with x − ε, that is,

F (x − ε) = P[X ≤ x − ε]

= P[X ≤ x − ε, Xn ≤ x] + P[X ≤ x − ε, Xn > x]

≤ P[Xn ≤ x] + P[X − Xn ≤ x − ε− Xn, x − ε− Xn < −ε]
≤ Fn(x) + P[X − Xn < −ε]
≤ Fn(x) + P[|Xn − X | > ε].

Combining the two inequalities, we obtain

F (x − ε) − P[|Xn − X | > ε] ≤ Fn(x) ≤ F (x + ε) + P[|Xn − X | > ε].

Now let n → ∞ and apply lim inf and lim sup separately to it. We use
the lim inf and lim sup since we don’t know whether the limit exists. From the
hypothesis we get

F (x − ε) ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F (x + ε).

Recall that we are only interested in x the points of continuity of F . Since x
is a point at which F is continuous, by taking ε ↓ 0 we obtain F (x) in both ends
of inequality and we are done. �

In general, convergence in distribution does not imply convergence in prob-
ability. We cannot even talk about the implication in most cases since the random
variables Xn may be defined on totally different spaces. For example, Xn may be
counting the total of ones in an experiment where at every n even we record 1 if
a head shows up when tossing a coin, and for n odd we record 10 if we win at a
game of baccarat.
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However, there is one exception. The constant random variable exists in any
probability space. Suppose that X (ω) ≡ c a constant. In this case the convergence
in probability reads

lim
n→∞ P[|Xn − c| > ε] = 0,

and this statement makes sense even if each Xn is defined in a different probability
space.

Theorem 12.9 If Xn
D−→ c where c is a constant, then Xn

P−→ c.

Proof: If X (ω) ≡ c—in other words, the constant c is regarded as a random
variable—its distribution is the distribution of the delta function at c, that is,

P[X ≤ x] = 1(c,∞)(x) =
{

0, x ≤ c,

1, x > c.

We may write

P[|Xn − c| > ε] = P[Xn > c + ε] + P[Xn < c − ε]

= 1 − P[Xn < c + ε] + P[Xn < c − ε]

≤ 1 − Fn(c + ε) + Fn(c − ε).

By hypothesis the distribution functions of Xn (Fn) converges to this function at
all x /= c (the only discontinuity point is c). So, taking n → ∞, we obtain that the
limit above is zero for all ε > 0. Done, since this is the definition of convergence
in probability. �

Finally, here is a fundamental result that explains why even though the weak-
est, paradoxically convergence in distribution (or law) is also the most remarkable
convergence type.

Theorem 12.10 (Skorohod’s representation theorem) Suppose

Xn
D−→ X . Then, there exist a probability space (�′,F′,P′) and a sequence of random

variables Y, Yn on this new probability space, such that Xn has the same distribution
as Yn, X has the same distribution as Y , and Yn → Y a.s. In other words, there is a
representation of Xn and X on a single probability space, where the convergence occurs
almost surely.

Thus we can represent the random variables with the same distributions on
a particular space, and in that space the convergence is almost sure.

In general, if Xn
D−→ X and Yn

D−→ Y , it does not necessarily mean that

(Xn, Yn)
D−→ (X, Y ). Recall that the convergence in law is characterized by the

distribution and so what we see above directly relates to the fact that knowing
the marginals does not tell me anything about the joint distribution unless the
variables are independent.
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However, for the convergence in probability, this is in fact true. Specifically, if

Xn
P−→ X and Yn

P−→ Y , then we have to have (Xn, Yn)
P−→ (X, Y ). This result

is easy to prove since we may write

P(|(Xn, Yn) − (X, Y )| > ε) = P
(
(Xn − X )2 + (Yn − Y )2 > ε2)

≤ P(|Xn − X | > ε) + P(|Yn − Y | > ε) ,

and both terms on the right go to zero because of the individual convergence.
However, just as in the case of convergence to a constant presented above,

we have an exception and this is quite a notable exception too. The following
theorem is one of the most widely used and useful in all of probability theory.

Theorem 12.11 (Slutsky’s Theorem) Suppose that {Xn}n and {Yn}n are

two sequences of random variables such that Xn
D→ X and Yn

D→ c, where c is a
constant and X is a random variable.

Suppose that f : R2 → R is a continuous functional. Then

f (Xn, Yn)
D→ f (X, c).

Proof: We shall use the Characterization Theorem for convergence in distribution
(Theorem 12.4) throughout this proof. We will also use the Proposition 12.12
stated below. That proposition shows that the limit in distribution is the same for
any two sequences that have the same limit in probability:

We start by showing the weak convergence of the vector (Xn, c) to (X, c).
Specifically, let � : R2 → R be a bounded continuous function. It we take
g (x) = �(x, c), then g is itself continuous and bounded and using the Theorem
12.4 we have

E[�(Xn, c)] = E[g (Xn)] → E[g (X )] = E[�(X, c)],

where we use the bounded convergence theorem for the convergence of the
expectations.

By the representation theorem, we obtain that (Xn, c)
D−→ (X, c). Next we

have

|(Xn, Yn) − (Xn, c)| = |Yn − c| D−→ 0

because Yn
D→ c. However, from Theorem 12.9 we also have

|(Xn, Yn) − (Xn, c)| P−→ 0.

Finally, using the Proposition 12.12 we immediately obtain that

(Xn, Yn)
D−→ (X, c).
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Thus, according to Theorem 12.4 we have

E[�(Xn, Yn)] → E[�(X, c)],

for every continuous bounded function�. Now let : R→ R be any continuous
bounded function. Since f in the hypothesis of the theorem is a continuous
functional, then  ◦ f is continuous. It is also bounded since � is bounded.
Applying the derivation above to  ◦ f , we obtain

E[ ◦ f (Xn, Yn)] → E[ ◦ f (X, c)],

which, once again using Theorem 12.4, proves that f (Xn, Yn)
D→ f (X, c). �

Proposition 12.12 LetXn and Yn be two random sequences such thatXn
D−→ X

and |Xn − Yn| P−→ 0. Then, we must have Yn
D−→ X . The conclusion holds even if

the two sequences are random vectors.

Proof: Note that if |Xn − Yn| P−→ 0, then it also converges in distribution, and
therefore by the weak convergence characterization theorem (Theorem 12.4) we
have for any continuously bounded function g :∫

Rd

g (x) dFYn−Xn (x) →
∫
Rd

g (x)ı{0}(dx) = g (0),

where ı{0} is the delta measure at 0 and we used the definition of this particular
measure to obtain g (0) at the end. In fact, owing to this particular measure, the
same conclusion applies if Rd is replaced with any interval in Rd containing 0.

To recall the Dirac delta measure, this is a measure denoted ı{a} defined on
R
d and the attached Borel �-algebra for any constant a ∈ Rd . The measure of

any set A in the Borel sets (A ∈ B(Rd )) is defined as

ı{a}(A) =
{

1 if a ∈ A,
0 if a /∈ A.

This is a proper probability measure. If a variable (the constant a) has this distri-
bution, we have

E[a] =
∫
Rd

xı{a}(dx) = a,

which confirms the obvious property of the expectation of a constant. However,
since now it is a properly defined random variable, for any measurable function
g we can define the random variable g (a). This will have the expectation

g (a) = E[g (a)] =
∫
Rd

g (x)ı{a}(dx),

which is just the property stated above. Now let us return to the proof.
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Let x a continuity point of FX (x). We may write

Yn = Xn + (Yn − Xn)

and therefore we can calculate the distribution of Yn as a convolution:

FYn (x) = P(Yn ≤ x) = P(Xn + (Yn − Xn) ≤ x)

=
∫
Rd

FXn (x − s)dFYn−Xn (s).

The function FX (x − s) is bounded but not necessarily continuous at x − s. How-
ever, since FX is continuous at x we may find a neighborhood of 0, say denoted by
U , such that FX (x − s) is continuous for any s ∈ U . If s /∈ U , then FYn−Xn (s) may
be made arbitrarily close to a constant (either 1 or 0) and thus the integral may be
made negligible. Finally, using the characterization of convergence in distribution
and picking the particular function FXn as g , we may write

FYn (x) =
∫
U

FXn (x − s) dFYn−Xn (s) −→
∫
U

FX (x − s)ı{0}(ds) = FX (x).

Since x was an arbitrary continuity point of FX , using the definition we conclude

Yn
D−→ X . �

EXAMPLE 12.2

With the hypothesis stated in Slutsky’s theorem (Theorem 12.11), let

Xn
D→ X and Yn

D→ c where c is a constant and X is a random variable.
Now take

f (Xn, Yn) = Xn + Yn

and

g (Xn, Yn) = XnYn.

Applying the theorem, we immediately obtain

Xn + Yn
D→ X + c

and

XnYn
D→ Xc.
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12.3.2 THE LAW OF LARGE NUMBERS

In this part we will give several variants of the law of large numbers.
Let us start with the following, so-called weak law of large numbers (WLLN).

The law says that the empirical mean of a sequence of independent r.v. with
common expectation converges in probability to the common expectation. It is
called weak since the convergence is only in probability.

Theorem 12.13 (WLLN) Let X1, . . . , Xn, . . . be a sequence of independent
random variables with common expectation EX = 	. For every n ≥ 1 denote Sn by

Sn := X1 + · · · + Xn.

Then

P

(∣∣∣∣Snn − 	

∣∣∣∣ ≥ ε

)
→n→∞ 0

for every ε > 0.

Proof: The proof follows from the Markov inequality (Proposition 14.1 in
Appendix B) since

P

(
1

n

(
n∑
i=1

(Xi − EX )

)
≥ ε

)
≤ 1

n2ε2
E

∣∣∣∣∣
n∑
i=1

(Xi − EX ))

∣∣∣∣∣
2

= 1

nε2
E(X1 − EX )2

= 1

nε2
E(X1 − 	)2 ,

and this clearly converges to zero when n → ∞. Note that we do not need the
variables to have the same distribution, only be independent and have common
mean and variance (which needs to be finite). �

The next result uses a stronger hypothesis (identically distributed random
variables), but it has a stronger conclusion. The result is called the strong law of
large numbers (SLLN).

Theorem 12.14 (SLLN) LetX1, X2, . . . be independent identically distributed
random variables. Suppose that Xi are integrable and denote by 	 the common expec-
tation. Then, with Sn = ∑n

i=1 Xi we have

1

n
Sn → 	 almost surely and in L1

We will actually write the proof of the theorem in several steps. The first step
is to prove the SLLN in the stronger hypothesis when the random variables Xi
have a fourth moment which is finite. We will relax this assumption in the later
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results. Please note that the mean 	 being substituted by 0 is no restriction; in
fact, replacing the original random variables Xi with Yi = Xi − 	 and proving
the results for Yi with mean 0 will automatically give all the results for Xi with a
general 	.

Proposition 12.15 Let X1, X2, . . . be independent identically distributed ran-
dom variables such that there exists a constant K > 0 with

EXi = 0 and EX 4
i ≤ K for every i ≥ 1.

Then,

P

(
1

n
Sn → 0

)
= 1

and

lim
n→∞

Sn

n
= 0 in L4.

Proof: We note that since the fourth moment is finite, we must also have

EX 2 < ∞ and EX 3 < ∞.

Then, by using the independence of Xi , we have

EXiX
3
j = EXiXjX

2
k = EXiXjXkXl = 0

for all distinct indices i, j, k, l .
Therefore, after expanding the sum, we obtain

ES4
n = E

⎛
⎝ n∑
i=1

Xi

n∑
j=1

Xj

n∑
k=1

Xk

n∑
l=1

Xl

⎞
⎠

= E

⎛
⎝ n∑
k=1

X 4
k + 6

n∑
i<j;i,j=1

X 2
i X

2
j

⎞
⎠

=
n∑
k=1

E
[
X 4
k

] + 6
n∑

i<j;i,j=1

E
[
X 2
i X

2
j

]
. (12.1)

Next, we bound the expectation of the second sum above (clearly the expectation
of the first sum is less thanKn). Using the independence and the Cauchy–Schwarz
inequality, we can write for every i < j

EX 2
i X

2
j = EX 2

i EX 2
j

≤ (
EX 4

i

)1
2

(
EX 4

j

)1
2

≤ K. (12.2)
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Relations (12.1) and (12.2) imply the following bound:

ES4
n ≤ nK + 3n(n − 1)K ≤ 3Kn2 (12.3)

(we used the fact that there are n(n−1)
2 terms in the second sum over i, j). Relation

(12.3) immediately implies the L4 convergence of Sn
n

to zero since

E

(
Sn
n

)4

= 1

n4
ES4

n = K

n3
+ 3(n − 1)K

n3
≤ 3K

n2
→ 0.

as n → ∞. In order to obtain the almost sure convergence, we use again (12.3)
and we form the series

E

(∑
n≥1

(
Sn
n

)4
)

=
∑
n≥1

E

(
Sn
n

)4

≤ 3K
∑
n≥1

1

n2
< ∞.

Since the expectation of the random variable is finite, we must have the random
variable finite with the exception of a set of measure 0 (otherwise the expectation
will be infinite), hence

∑
n≥1

(
Sn

n

)4

< ∞ a.s.

But a sum can only be convergent if the term under the sum converges to zero.
and thus

Sn

n

4

−→ 0 a.s.,

and immediately Sn/n → 0 almost surely. �

There exists a useful variant for uncorrelated random variables—that is, ran-
dom variables such that Corr(Xi, Xj) = 0 for all i /= j, but which are not neces-
sarily independent.

Proposition 12.16 Let X1, X2, . . . be random variables with the same distri-
bution. Assume that they are square integrable and denote by

	 = EX1

and

�2 = Var(X1).

Suppose that for all indices i /= j, we have

Cov(Xi, Xj) = 0.
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Then

P

(
1

n
Sn → 0

)
= 1,

(
or
Sn

n

a.s.−→ 0

)
.

Proof: Again, we can assume without loss of generality that 	 = 0. Recall that
once we prove the result for 	 = 0, we can obtain the same result for a general 	
by considering the random variables Yi = Xi − 	.

Set

Zm = sup
1≤k≤2m+1

|Xm2+1 + · · · + Xm2+k|.

We claim that it suffices to show that

lim
m→∞

Sm2

m2
= 0 a.s. (12.4)

and

lim
m→∞

Zm

m2
= 0 (12.5)

to prove the theorem. Indeed, this holds because of the inequality∣∣∣∣Snn
∣∣∣∣ ≤

∣∣∣∣ Sm(n)2

m(n)2

∣∣∣∣ +
∣∣∣∣ Zm(n)

m(n)2

∣∣∣∣ ,
where m(n) is the integer such that

m(n)2 ≤ n ≤ (m(n) + 1)2.

We next prove that relation (12.4) is true. Using Markov’s inequality, we
obtain

P

(
Sm2

m2
≥ ε

)
≤ �2

m2ε2

and therefore ∑
m

P

(
Sm2

m2

)
< ∞.

Since the sum of probabilities is finite, the relation (12.4) is obtained by applying
the first Borel–Cantelli lemma.

Next we show that (12.5) holds. We set

amk = Xm2+1 + · · · + Xm2+k.

We have

P

(
Zm

m2
≥ ε

)
≤

2m+1∑
k=1

P
(|amk | ≥ m2ε

)
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and

P
(|amk | ≥ m2ε

) ≤ (2m+ 1)�2

m4ε2
,

again using the Markov’s inequality. Therefore

∑
m

P

(
Zm

m2
≥ ε

)
< ∞,

and finally the relation (12.5) follows from the same application of the first Borel–
Cantelli lemma. �

The following inequality is sometimes referred to as the Kolmogorov
inequality.

Lemma 12.17 Let X1, . . . , Xn be centered (mean 0) independent r.v.’s. Set

Sn = X1 + · · · + Xn

and denote by sn the variance of Sn. Then

P(∃k ∈ {1, . . . , n}, |Sk| > t ) ≤ snt
−2.

Proof: Left as an exercise. �

The next result is the so-called Kronecker’s lemma.

Lemma 12.18 (Kronecker’s lemma) Let (bn) be an increasing sequence of
strictly positive real numbers diverging to infinity, that is,

lim
n→∞ bn = ∞.

Let (xn) be another sequence of real numbers, and denote

sn = x1 + · · · + xn,

the partial sums formed with the sequence (xn). Then, if∑
n

xn

bn
< ∞,

we have that

lim
n

sn

bn
= 0.

Proof: The first step is to prove the following result about real numbers, known
as the Césaro’s lemma. If bn is a sequence as in the theorem with b0 = 0 and vn
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is a sequence converging to a finite limit denoted v∞, then

1

bn

n∑
k=1

(bk − bk−1)vk → v∞ (12.6)

To prove (12.6), we take ε > 0 and we find an N such that

vk ≥ v∞ − ε

for all k ≥ N . Such an N exists from the convergence of vn to v∞. Then, for any
n > N , we obtain

lim inf
n

1

bn

n∑
k=1

(bk − bk−1)vk = lim inf
n

(
1

bn

N∑
k=1

(bk − bk−1)vk

+ 1

bn

∑
k>N

(bk − bk−1)vk

)

≥ lim inf
n

(
1

bn
CN + (v∞ − ε)

bn

∑
k>N

(bk − bk−1)

)

= 0 + v∞ − ε

Similarly, by picking an M such that vk ≤ v∞ + ε, we obtain

lim sup
n

1

bn

n∑
k=1

(bk − bk−1)vk ≤ v∞ + ε

and (12.6) follows. Next, define

un =
n∑
k=1

xk

bk
.

By hypothesis, we know that

u∞ := lim
n
un

exists and we have

un − un−1 = xn

bn
, or xn = bn(un − un−1).

Since

sn =
n∑
k=1

xk =
n∑
k=1

bk(uk − uk−1)

= unbn − u0b1 −
n∑
k=1

(bk − bk−1)uk,
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we deduce from (12.6) that
sn

bn
→ 0.

�

In the next step we prove the strong law of large numbers under a certain
hypothesis on the variance.

Proposition 12.19 Let (Wn)n≥1 be a sequence of centered independent random
variables and denote

�2
n = Var(Wn) < ∞.

Assume that ∑
n≥1

�2
n

n2
< ∞.

Then

lim
n

1

n

N∑
k=1

Wk = 0 a.s.

Proof: For every n ≥ 1, let us denote Xn by

Xn = Wn

n
.

These Xn are also centered (mean zero); and using the property of the �n’s, we
obtain ∑

n

Var Xn < ∞.

Set

Sn = X1 + · · · + Xn.

The proof of the theorem is done in the following steps. The form of the proof
is done this way on purpose. Rarely, one proves a theorem the way it is presented
in books or journal articles. Typically, one reduces the problem to prove to a
(hopefully) simpler problem. The structure below presents this idea in a sequence
of steps.

Step 1. In order to get the result about Wi ’s, it suffices to show that Sn
converges almost surely.

Indeed, if Sn converges a.s., then we apply Kronecker’s lemma
with bn = n and Xn = xn and the result about Wn will follow.
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Step 2. To show that Sn converges almost surely it is enough to prove that
for every ε > 0

lim
n0→∞ P(∃m, n ≥ n0, |Sn − Sm| > ε) = 0.

Indeed, suppose that we showed that the above limit is zero. We have

P(∃ε > 0,∀n0, ∃m, n ≥ n0, |Sn − Sm| > ε)

≤
∑
ε∈Q+

P(∀n0, ∃m, n ≥ n0, |Sn − Sm| > ε)

and using the Cauchy criterium of convergence for sequences, it is
enough to show that

P(∀n0, ∃m, n ≥ n0, |Sn − Sm| > ε) = 0.

However, the probability above may be written as

P(∀n0, ∃m, n ≥ n0, |Sn − Sm| > ε) = P
(∩An0

)
,

where the set is

An0 = (∃n,m ≥ n0, |Sn − Sm| > ε)

Note that these sets form a decreasing family of events (Am ⊇ An if
m < n). Therefore, since the intersection is empty,

P(∀n0, ∃m, n ≥ n0, |Sn − Sm| > ε) = lim
n0→∞ P(An0 ) = 0.

Step 3. We prove that

P
(
∃k ∈ {n0, . . . , m}, |Sn0 − Sk | > ε

2

)
≥ P(∃m, n ≥ n0, |Sn − Sm| > ε) ,

and therefore if we show that the probability on the left converges
to zero, so will the probability on the right.

Using the triangle inequality, we can write

An0 ⊂
⋃
m≥n0

(
|Sm − Sn0 | >

ε

2

)
.

But⋃
m≥n0

(
|Sm − Sn0 | >

ε

2

)
=

⋃
m≥n0

⋃
m≥k≥n0

(
|Sk − Sn0 | >

ε

2

)
.
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Step 3 is now obtained since the sequence of events

Bm =
⋃

m≥k≥n0

(
|Sk − Sn0 | >

ε

2

)

is increasing.

Step 4. We conclude the proof. By the Kolmogorov’s inequality
(Lemma 12.17), we have

P
(
∃k ∈ {n0, . . . , m}, |Sn0 − Sk| > ε

2

)
≤ 4Var(Xn0+1 + · · · + Xm)

ε2

= 4

ε2

m∑
k=n0+1

Var(Xk).

To conclude the proof, we take the limit when m → ∞ and then
when n0 → ∞. �

The proof presented above can in fact be extended to a more general context.
Specifically, the sequence n can be replaced by any an sequence increasing and
diverging to infinity.

Proposition 12.20 Let (Wn)n≥1 be a sequence of centered independent random
variables and denote

�2
n = Var(Wn) < ∞.

assume that

∑
n≥1

�2
n

a2
n

< ∞,

where an is a sequence of positive real numbers that increases to infinity. Then

lim
n

1

an

N∑
k=1

Wk − EW1 = 0 a.s.

Proof: The proof follows the lines of the proof of Proposition (12.19). �
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In the case when the variables are i.i.d., we obtain an interesting consequence.

Corollary 12.21 If Xn, n ≥ 1 are centered i.i.d. square integrable r.v.’s, then

Sn√
n(ln n)ˇ

→ 0

almost surely for every ˇ > 1
2 .

Proof: It suffices to apply Proposition (12.20) to the sequence

ak := k
1
2 (ln n)ˇ.

�

To prove the general version of the strong law of large numbers, we need
another auxiliary results (Kolmogorov truncation lemma).

Lemma 12.22 (Truncation) Let X1, X2, . . . be independent identically dis-
tributed random variables. Assume that X1 is integrable and let 	 = EX1. Define the
truncation of Xn up to n as

Yn = Xn1{|Xn|≤n}.

Then

1.

EYn → 	.

2.

P
(
Xn = Yn except a finite number of n

) = 1.

3.

∑
n

(
VarYn

n2

)
< ∞.

Proof: Let us consider the variables

Zn := X11{|X1|≤n}.

Since the variables have the same distribution, the law of Zn is the same as the law
of Yn and therefore E[Yn] = E[Zn]. However, the Zn sequence defined above all
in terms of X1 converges almost surely to X1 when n → ∞. We also note that

E|Zn| ≤ |X1|, ∀n ≥ 1.
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The dominated convergence theorem imply that .

EZn → E[X1] = 	.

But since Yn and Zn have the same distribution, part 1 follows.
Next, ∑

n

P(Xn /= Yn) =
∑
n

P(|Xn| > n)

=
∑
n

P(|X1| > n)

=
∑
n

E
(
1{|X1|>n}

)

= E

(∑
n

1{|X1|>n}

)

= E

⎛
⎝ ∑

{|X1|>n}
1

⎞
⎠

≤ E|X1| < ∞.

Thus ∑
n

P(Xn /= Yn) < ∞

and the Borel–Cantelli lemma gives the conclusion of part 2.
For part 3, set

f (z) =
∑

n≥sup(1,z)

1

n2
.

It is not difficult to show that

f (z) ≤ 2

sup(1, z)
for every z. (12.7)

Moreover,

∑
n

VarYn

n2
≤

∑
n

|X1|21{|X1|<n}
n2

= E
(
X 2

1 f (|X1|)
)

and using (12.7), we get

∑
n

VarYn

n2
≤ 2E|X1| < ∞.

�
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Let us finally give the general version of the strong law of large numbers.

Theorem 12.23 Let X1, X2, . . . be independent identically distributed random
variables. Assume that X1 is integrable and let 	 = EX1. Then

1

n
Sn

a.s.−→ 	.

Proof: To prove this result we will use the above Kolmogorov truncation lemma
and a version of the strong law of large numbers with a condition on the variance
(Proposition 12.20). Set

Yn = Xn1{|Xn|≤n}.

Then, by the part 2 of the previous truncation lemma, Xn = Yn except for a finite
number of n’s. Therefore,

lim
n→∞

1

n

n∑
k=1

Yk − 1

n

n∑
k=1

Xk = 0 a.s. .

By the above relation, it is enough to show that

lim
n→∞

1

n

n∑
k=1

Yk = 	.

We have the following decomposition of this sum

lim
n→∞

1

n

n∑
k=1

Yk = lim
n→∞

1

n

n∑
k=1

EYk + 1

n

n∑
k=1

(Yk − EYk).

The first point in the Kolmogorov truncation lemma implies that

EYk → 	

and then by Césaro’s lemma we have

lim
n→∞

1

n

n∑
k=1

EYk = 	.

It is sufficient to show that the term

1

n

n∑
k=1

(Yk − EYk)

converges to zero almost surely when n goes to infinity.
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To show that this term goes to zero, we apply Proposition 12.19 and once
again the Kolmogorov truncation lemma. To apply these results, we note that the
random variables Wk = Yk − EYk are centered i.i.d. and

Var(Wk) = Var(Yk).

�

Finally, we conclude this section by showing that the convergence of Sn/n
also holds in L1 sense. To prove this claim, we need the Sheffé’s theorem stated
next.

Theorem 12.24 (Sheffé’s theorem) If (Xn)n≥1 is a sequence of random
variables such that Xn ∈ L1 for every n, Xn ≥ 0 for every n and Xn →n→∞ X almost
surely where X ∈ L1. Also assume that EXn →n→∞ EX , then

Xn →n X in L1.

We are now in position to give a proof that the Law of Large numbers hold
in L1 as well. The proof is due to Etemadi.

Theorem 12.25 Let X1, X2, . . . be independent identically distributed random
variables. Assume that X1 is integrable and let 	 = EX1. Then

1

n
Sn −→ 	 in L1.

Proof: For an r.v. Z , we denote for an outcome ω

Z+(ω) = max(Z (ω), 0)

and similarly

Z−(ω) = max(−Z (ω), 0).

Then, we clearly have

Z = Z+ − Z−.

Apply this notation to our sequence of i.i.d. random variables and consider
the sequence of i.i.d. integrable r.v.’s (X +

n )n. Then form its partial sum Sn =
1
n
(X +

1 + · · · + X +
n ). We know that

S+
n −→ EX +

1 a.s.

since the variables are integrable (being positive) and using Theorem 12.23. Also,
ES+

n = EX +
1 < ∞ for all n. Therefore, Sheffé’s theorem (Theorem 12.24) says

that the convergence of S+
n to EX +

1 also holds in L1. Repeating the argument for
the sequence X −

n and combining the two results provides the proof. �
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The next theorem provides the strongest form of the Law of Large Numbers
(under the weakest hypotheses).

Theorem 12.26 Let {Xn}n, n ≥ 1 be a sequence of pairwise independent, iden-
tically distributed and integrable random variables. Then

1

n
Sn −→ EX1 a.s.

Proof: Without loss of generality, we can assume Xi ≥ 0 for every i (otherwise,
we can prove the result for X +

i and X −
i and the general case will follow). Let

Yi = Xi1{|Xi |≤i}

and let

S∗
n :=

n∑
i=1

Yi.

Fix an ε > 0 and an ˛ > 1, and let kn = [˛n] denote the integer part of ˛n (the
biggest integer smaller that ˛n). Throughout the proof, C will denote a generic
positive constant that may change from line to line. Since we are interested in
convergence, the constants will not influence the conclusion. Let

	 = PXi the distribution of Xi.

Recall that all random variables have the same distribution so the subscript i is
not needed. Then

∑
n≥1

P

⎛
⎝

∣∣∣S∗
kn

− ES∗
kn

∣∣∣
kn

⎞
⎠ ≤ C

∑
n≥1

VarS∗
kn

k2
n

= C
∑
n≥1

1

k2
n

kn∑
i=1

VarYi

≤ C
∑
i≥1

EY 2
i

i2
= C

∑
i≥1

1

i2

∫ i

0
x2	(dx)

= C
∑
i≥1

1

i2

i−1∑
k=0

∫ k+1

k

x2	(dx)

≤ C

∞∑
k=0

1

k + 1

∫ k+1

k

x2	(dx)

≤ C

∞∑
k=0

∫ k+1

k

x	(dx) = CEX1 < ∞.

On the other hand,

lim
n

ES∗
kn

kn
= lim

n
Yn = lim

n

∫ n

0
x	(dx) = EX1
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and therefore Borel–Cantelli lemma allows us to conclude that

lim
n

S∗
kn

kn
= EX1 a.s. (12.8)

Now, since P(Xn /= Yn) = P(Xn > n), we can write∑
n≥1

P(Xn /= Yn) =
∑
n≥1

P(Xn > n)

=
∑
n≥1

∫ ∞

n

	(dx) =
∞∑
n=1

∞∑
i=n

∫ i+1

i

	(dx)

and by changing the order of summation, we obtain

∑
n≥1

P(Xn /= Yn) =
∞∑
i=1

i

∫ i+1

i

	(dx)

≤ EX1 < ∞.

Again, we apply Borel–Cantelli and we obtain

P(Xn = Yn except a finite number of n’s ) = 1.

This relationship together with (12.8) gives

lim
n

Skn
kn

= EX1 a.s.

For every n ≥ 1, consider m(n) ≥ 0 such that

km(n) ≤ n ≤ km(n)+1.

Obviously such m(n) exists for given n. Since the function n → Sn is increasing
(because the Xi are positive), we can write, with probability one,

lim inf
n

Sn

n
≥ lim inf

n

Skm(n)

km(n)

km(n)

km(n)+1

≥ 1

˛
lim
n

Skm(n)

km(n)
= 1

˛
EX1 < ∞.

In the same way, we obatin

lim sup
n

Sn

n
≤ ˛EX1.

Thus, with probability one, we have

1

˛
EX1 ≤ lim inf

n

Sn

n
≤ lim sup

n

Sn

n
≤ ˛EX1.
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Taking into account that ˛ > 1 is arbitrary, we get the conclusion by taking the
limit ˛ → 1. �

The strong law of large numbers gives immediately the almost sure conver-
gence of the characteristic functions.

Proposition 12.27 Let Yk , k ≥ 1 be a sequence of random vectors inRd , i.i.d.,
with characteristic function

ϕ(u) = Eei〈u,Y1〉, u ∈ Rd .

Then the empirical characteristic function

ϕn(u) := 1

n

n∑
k=1

Eei〈u,Yk 〉, u ∈ Rd

converges for every u almost surely to ϕ(u).

Proof: To obtain the result, we apply the Law of Large Numbers (LLN) to the
random variables

X ′
k = cos(〈u, Yk〉)

and

X ′′
k = sin(〈u, Yk〉).

�

Remark 12.28 In fact, since the characteristic function is bounded, the proposition
above is a consequence of the LLN for bounded variables.

Applying the strong LLN in the case of Bernoulli random variables, we obtain
the so-called strong law of large numbers for frequencies.

Corollary 12.29 Let Xn, n ≥ 1, be a sequence of i.i.d. Bernoulli distributed r.v.’s
with parameter p ∈ (0, 1). Then

1

n

n∑
i=1

Xi −→ p a.s.

Proof: We apply the LLN and we note that EX1 = p. �
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EXAMPLE 12.3 Coin tossing

Let us consider the special case of tossing a fair coin n times and let Sn
denote the number of heads that turn up. Then the random variable Sn/n
represents the fraction of times heads show up and will have values between
0 and 1. The LLN predicts that the outcomes for this random variable will,
for large n, be near 1/2.

EXAMPLE 12.4

Consider n rolls of a die. Let Xj be the outcome of the jth roll. Then
construct

Sn = X1 + · · · + Xn.

Since each roll is independent of any other one, we obtain

EXj = EX1 = 7

2
for every j.

By the LLN,

Sn

n
−→ 7

2
= 3.5 a.s.

EXAMPLE 12.5

Suppose that we choose at random n numbers in the interval [0, 1]. Let us
denote by Xi the ith choice. Then Xi, i = 1, . . . , n, are independent r.v’s,
each uniformly distributed on [0, 1]. Thus

EXi = 1

2
and VarXi = 1

12
.

As usual, let Sn = X1 + · · · + Xn. Then

E

(
Sn

n

)
= 1

2
and Var

(
Sn

n

)
= 1

12n
.

The LLN says that Sn/n converges to 1/2 almost surely.



12.4 Central Limit Theorem 401

12.4 Central Limit Theorem

The second fundamental theorem of probability is the Central Limit Theorem
(CLT). This theorem says that if Sn is the sum of n independent random vari-
ables, then the distribution function of Sn is well-approximated by the Gaussian
distribution.

The theorem was first stated in the context of the Bernoulli random variables.
It was soon proven for general random variables. We will discuss the theorem in the
case when the individual random variables are identically distributed. However,
the theorem remains true, under certain conditions, even if the individual random
variables have different distributions.

Theorem 12.30 (Central Limit Theorem) Let X1, X2, . . . be a sequence
of i.i.d. random variables with finite mean 	 and finite nonzero variance �2. Let
Sn = X1 + · · · + Xn. Then

Sn − n	√
n�2

D−→ N (0, 1).

Equivalently, if we denote X̄ = Sn
n

, we may rewrite

X̄ − 	

�/
√
n

D−→ N (0, 1).

Proof: We first reduce the proof to the case when the random variables in the
i.i.d. sequence have mean 0 and variance 1. To this end, let Yi = Xi−	

�
. Also, let

Tn = ∑n
i=1 Yi . This gives in terms of the original Sn and Xi :

Tn =
n∑
i=1

Xi − 	

�
=

∑
Xi − n	

�
= Sn − n	

�
.

Note that, as promised, the new variablesYi in the sequence are i.i.d. mean zero and

variance one. Due to this reduction, if we prove that that Tn/
√
n

D−→ N (0, 1),
then the CLT would be demonstrated.

With this idea in mind, let Yi be i.i.d. random variables such that E(Yi) = 0
and Var(Yi) = 1. We need to show that

Tn√
n

= 1√
n

n∑
i=1

Yi
D−→ N (0, 1).

The next idea is to use the Continuity Theorem (Theorem 12.7) and show
that the characteristic function of Tn/

√
n converges to the characteristic function

of the N (0, 1).
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Let us calculate the characteristic function of Tn√
n
. We denote by ϕ(t ) the

characteristic function of any of the Y variables.

ϕTn/
√
n(t ) = ϕY1+...+Yn

(
1√
n
t

)
=

(
ϕ

(
1√
n
t

))n

=
(
ϕ(0) + t√

n
ϕ′(0) + 1

2!

(
t√
n

)2

ϕ′′(0) + o

((
t√
n

)2
))n

,

where we used the Taylor expansion of the function ϕ(t ) around 0. We can do
this since the characteristic function is well-behaved around zero, and for an n
large enough the term t/

√
n becomes sufficiently small.

Furthermore, the terms within parentheses are

ϕ(0) = 1,

and

ϕ′(t ) = d

dt
E[eitY1 ] = iE(Y1e

itY1 ),

which gives ϕ′(0) = iE[Y1] = 0. For the second derivative, we have

ϕ′′(t ) = i2E[Y 2
1 e

itY1 ].

Therefore,

ϕ′′(0) = i2E[Y 2
1 ] = −1.

Thus, substituting these terms, we obtain

ϕ Tn√
n
(t ) =

(
1 − t2

2n
+ o

(
t2

n

))n

The above sequence converges to e−
t2

2 as n goes to infinity, which is the charac-
teristic function of a N (0, 1).

As a result, we obtain ϕTn/
√
n(t ) → ϕN (0,1)(t ) and therefore applying the

Continuity Theorem (Theorem 12.7), we obtain

Tn/
√
n

D→ N (0, 1),

This concludes the proof of the CLT. �

There is one weak point in the proof above. Note that to calculate derivatives
of the characteristic function we had to switch the order of the derivative and the
expectation. Is this even possible? The next theorem shows that exchanging the
order is a valid operation under very general conditions. In particular, the exchange
of derivative and integral is permitted in any finite measure space, provided that
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the result after the exchange results in finite integrals. In our case, this is perfect
since both conditions apply.

Lemma 12.31 (Derivation under the Lebesgue integral) Let f : R×
E → R, where (E,K , P) is a finite measure space such that:

(i) For all t ∈ R fixed, x �→ f (t, x) : E → R is measurable and integrable.

(ii) For all x ∈ E fixed; t �→ f (t, x) : R→ R is derivable with respect to t and
the derivative is f1,0(t, x), a continuous function. Furthermore, there exists a g
integrable on (E,K , P) such that

|f1,0(t, x)| ≤ g (x), ∀t

Then the function

K (t ) =
∫
f (t, x) dP(x) = E[f (t, X )]

is derivable and its derivative is

K
′(t ) =

∫
f1,0(t, x) dP(x).

Proof: We have

K (t + h) − K (t )

h
= 1

h

∫
[f (t + h, x) − f (t, x)] dP(x)

By the Lagrange theorem (mean value theorem) we continue:

=
∫
f1,0(t + 
h, x) dP(x)

for some 
 ∈ (0, 1).
Now if we let h ↓ 0 and we use the continuity of f1,0, we obtain that

f1,0(t + 
h, x) → f1,0(t, x).

Further use of the dominated convergence theorem provides the result we
need. �

We state a ‘‘local’’ variant of the CLT.

Theorem 12.32 Let Xn, n ≥ 1 be centered (mean zero) i.i.d. random variables
with variance equal to one. Suppose that the common density g1 is integrable. Denote by
ϕ the common characteristic function. We assume that this function is also integrable.

Then, the density function gn of

Un = 1√
n

(X1 + · · · + Xn)
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exists and satisfies

gn(x) −→ 1√
2�
e−

1
2 x

2

uniformly with respect to x ∈ R.

Proof: Note that this theorem is identical with the one above except is in the
specific context when the variables have densities (g1). We will only give the main
line of the proof. We do this theorem since the proof is different than the previous
one. We leave the details to the reader.

Step 1. One can prove that gn exists and satisfies

gn(x) = √
n(g1 ∗ · · · ∗ g1)

(
x√
n

)
.

The symbol ∗ means the convolution of the functions.

Step 2. Let ϕn be the characteristic function of Un. The next step is to show
that

ϕn(t ) = ϕ

(
t√
n

)n

and then that

gn(x) = 1

2�

∫
R

ϕn(t ) dt.

Step 3. It follows that

|ϕ(t )| < 1 if t /= 0.

The inequality above may be proven by reduction to absurd. Assume
that there exists a t such that the above is not true, put ϕ(t ) = ei˛,
and regard the real part of the Fourier integral that defines ϕ(0) −
ei˛ − ϕt .

Step 4. Show that there exists a ı such that

|ϕ(t )| ≤ e−
1
4 t

2

for |t | ≤ ı. To show this, one can use the inequality 1 − t ≤ e−t ,
which is true for every t ∈ R.



12.4 Central Limit Theorem 405

Step 5. The next step shows that for every a > 0 we have

ϕ

(
t√
n

)n
→ e−

1
2 t

2

uniformly on t ∈ [−a, a].
Step 6. Show that∣∣∣∣gn(x) − 1

2�
e−

1
2 x

2

∣∣∣∣ ≤ 1

2�

∫
R

∣∣∣∣ϕ(
t√
n

)n − e−
1
2 t

2

∣∣∣∣ dt = In.

Step 7. Show that∫
a≤|t |≤ı√n

∣∣∣∣ϕ(
t√
n

)n − e−
1
2 t

2

∣∣∣∣ dt ≤ 2
∫ ∞

a

2e−
1
4 t

2
dt → 0

when a → ∞.

Step 8. We study the integral In over the region |t | ≥ ı
√
n. Set

� = sup
|t |≥ı

|ϕ(t )| < 1.

Show that∫
|t |≥ı√n

∣∣∣∣ϕ(
t√
n

)n − e−
1
2 t

2

∣∣∣∣ dt ≤ �n−1
∫
R

∣∣∣∣ϕ(
t√
n

)

∣∣∣∣ dt + 2
∫
ı
√
n

e−
1
2 t

2
dt −→ 0.

Step 9. Conclude. �

Remark 12.33 By adapting the previous proof, we can show that the conclusion
holds for d -dimensional random variables as well.

EXAMPLE 12.6 Estimate the value of an integral

Suppose we want to estimate the integral

I =
∫

[0,1]d
f (x) dx,

where f : [0, 1]d → R.
To this end, we take {U1, U2, . . . , Un . . . }, a sequence of i.i.d.U [0, 1]d

d -dimensional random vectors, with all components uniform on [0, 1]. We
form the sequence

In = 1

n

n∑
i=1

f (Ui).



406 CHAPTER 12 Limit Theorems

By the LLN, if f is integrable, then we have

In → I = Ef (U )

and by the CLT, if f 2 is integrable, then we obtain

√
n(In − I )

D−→ N (0, �2),

where

�2 =
∫

[0,1]d
f (x)2 dx −

(∫
[0,1]d

f (x) dx

)2

.

Remark 12.34 Since the result is about convergence, an obvious question is: How
large n should be to get a good approximation? In practice, spanned from medical
application the n is typically chosen greater than or equal to 30, but this is too simple
an answer. A fuller answer is that it depends on the shape of the population, that is, the
distribution of Xi , and in particular how much it deviates from the normal density.
If the distribution of Xi ’s is fairly symmetric even though non-normal, then n = 10
may be large enough. If the distribution is heavily skewed (i.e., one long tail), n = 50
or more may be necessary.

EXAMPLE 12.7 Normal approximation of the binomial
distribution

Let Xi be i.i.d. Bernoulli random variables distributed with parameter p. In
other words, Xi is the outcome of a single Bernoulli trial, that is,

P(Xi = 1) = p and P(Xi = 0) = 1 − p.

Then, the sum

X = X1 + · · · + Xn

is a binomial random variable with parameters n and p, X ∼ Binom(n, p).
Denote

X̄ = X

n
.

As an immediate consequence of the CLT, for large n we have

X̄ ∼ N

(
p,
p(1 − p)

n

)
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or

X ∼ N
(
np, np(1 − p)

)
;

this is called the normal approximation to the binomial distribution.
This approximation is heavily dependent on the value of p. When p

is close to 0 or close to 1, this simple distribution is heavily skewed (the
probability of one outcome is much larger than the probability of the other).
The normal approximation does badly in this case unless n is very large. To
summarize this succinctly, we look at the quantities np and n(1 − p).

A commonly quoted rule of thumb is that the approximation can be
used only when both np and n(1 − p) are greater than 5.

Note that when p = 0.5 the Bernoulli distribution is symmetric. In
this case both np and n(1 − p) equal 5 when n = 10, and so the rule of
thumb suggests that n = 10 is large enough.

As p is far away from 0.5 toward either 0 or 1 and the Bernoulli
distribution becomes severely skewed, the n needed increase tremendously.
For example, when p = 0.05 or 0.95 the rule of thumb gives n = 100, and
if p = 0.001, then n ≥ 5000.

This poses a problem if p is very small as is the case, for example, with
genetic markers. In the coin tossing scenario it only costs a bit of time to
toss a coin several times more but for instance in the case of clinical trials
when the patient gets better or not as a result of medication getting more
observations can be very prohibitive. In these cases one should perform
an approximation using the Poisson distribution. This is applicable when
p is very small (or 1 − p) and n is large (but not large enough to apply
the normal approximation). The distribution of the sum X of n trials (the
binomial) is approximated with a Poisson with rate 
n = np.

EXAMPLE 12.8 Normal approximation for the Poisson
distribution

Let Xi be i.i.d. Poisson(
) random variables. Then

	 = EXi = 


and

�2 = VarXi = 
.

Therefore, the CLT implies that for n large enough we have

n∑
i=1

Xi ∼ N (n
, n
)



408 CHAPTER 12 Limit Theorems

But the sum of independent Poisson r.v. is a Poisson r.v. Actually

n∑
i=1

Xi ∼ Poisson(n
) for every n,

so for n large the law Poisson(n
) is close to the law N (n
, n
) or equiva-
lently the law Poisson(
) is close to N (
, 
) for 
 large.

A rule of thumb for this one is that the approximation is good if 
 > 5.
Normally, those are the values we are interested anyway (lambda large).

Remark 12.35 (Continuity correction when CLT is used for dis-
crete random variables) When using the normal distribution to approximate
the binomial and the Poisson distributions, which are both discrete, a continuity cor-
rection must be employed. To understand why, suppose we need to approximate the
probability that the binomial random variable takes the value 2. If we use the normal
directly, then this probability will always be zero since for any continuous random
variable X and any number a we have P(X = a) = 0. For a continuous variable,
only the probability that X lies in some interval are positive.

To allow for this issue a continuity correction is used in these situations. Essentially,
the correction corresponds to treating the integer values as being rounded to the nearest
integer.

To exemplify, to calculate the probability P(X = 2) of a binomial or Poisson
(or indeed any other discrete distribution) using any continuous density Y , we would
calculate instead P(1.5 < X < 2.5).

We also note that if we use a discrete distribution to approximate another discrete
(for example using Poisson to approximate the binomial), such continuity correction
is not needed.

EXAMPLE 12.9 Continuity correction in practice

When X ∼ Poisson(20) the above approximation using the CLT tells us
that X is approximately N (20, 20). Therefore,

X − 20√
20

∼ N (0, 1).

To exemplify the correction, let us denote with Y anN (20, 20). Then
we write

P(X ≤ 15) ∼ P(Y < 15.5) = P

(
Y − 20√

20
<

15.5 − 20√
20

)

= P

(
Z <

15.5 − 20√
20

)
= P(Z < −1.006).
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where we standardized to Z ∼ N (0, 1). This probability is equal to 1 −
0.84279 = 0.1572078 using a normal distribution table or any software
(in R the command is pnorm(−1.006)).

To check the performance of the approximation, we also calculate the
Poisson distribution directly using software (or a c.d.f. table).

P(X ≤ 15) = 0.1565131

(the R command is ppois(15, 20)).
Therefore, the error is under 0.0006946504 (about 0.45 percent of

the relative error).

The examples above presenting the normal approximations for the binomial
and the Poisson distributions are the most commonly used in practice. They are
needed as the direct calculation of probabilities is computationally hard without
them. However, CLT can be applied to any distribution.

EXAMPLE 12.10 Normal approximation of the Gamma
distribution

Let Xi be i.i.d. exponentially distributed with parameter 
 > 0. Let

Yn =
n∑
i=1

Xi.

The law Exp(
) has mean 1



and variance 1

2 . On the other hand, the

sum of n exponentials Y is a gamma-distributed random variable with
parameters n, 
). Using the CLT, for large n, it can be approximated by the
normal law N ( n



, n

2 ).

Since the chi square distribution �2(k) is exactly a Gamma(k/2, 1/2)
random variable, an immediate consequence is that the law �2(k) can be
approximated using a normal distribution for large values of k.

EXERCISES

Problems with Solution

12.1 Let (Xn)n≥1 be a sequence of independent random variables with common
distribution Exp(
), 
 > 0.
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(a) Show that

1

ln n
max

1≤k≤n
Xk −→ 1



in probability.

(b) Show that

Zn := max
1≤k≤n

Xk − ln n




converges in distribution and determine its limit.

Solution: Let ε > 0. We have

P

(
1

ln n
max

1≤k≤n
Xk − 1



> ε

)
= P

(
max

1≤k≤n
Xk >

(
ε+ 1




)
ln n

)

=
n∏
k=1

P

(
Xk >

(
ε+ 1




)
ln n

)

=
(

P

(
X1 >

(
ε+ 1




)
ln n

))n
= e−n(1+
ε) ln n

−→ 0.

We also need to estimate the probability

P

(
1

ln n
max

1≤k≤n
Xk − 1



< −ε

)

(for the absolute value) and we need to show that it converges to zero
when n → ∞. Note that this probability is zero if ε ≥ 1



.

When ε < 1


, we obtain

P

(
1

ln n
max

1≤k≤n
Xk − 1



< −ε

)
=

(
1 − e( 1


−ε) ln n
)n

−→ 0.

This finishes the convergence in probability.
Let us study the converges in distribution of the sequence (Zn)n≥1.

We compute the c.d.f. of Zn. For every t ≤ 0, clearly

P(Zn ≤ t ) = 0
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while for t > 0 we obtain

P(Zn ≤ t ) = P

(
X1 ≤ ln n



+ t

)n

=
(

1 − e−
t

n

)n
−→ e−
t .

Consequently, Zn converges in distribution to a random variable with
c.d.f.

F (t ) = ee
−
t

1[0,∞)(t ).

As a side note, this distribution is called the Gumbel law. The density
(p.d.f.) of this law is

f (t ) = 
e−
t ee
−
t

1[0,∞)(t ).

�

12.2 Give an example of a sequence (Xn)n≥1 that converges in distribution but
not in probability.

Solution: Let X ∼ N (0, 1). Then, we obviously have −X ∼ N (0, 1).
Define

Xn = (−1)nX

for every n ≥ 1. Then clearly Xn converges in law to X since all the
random variables in the sequence have the same distribution. However,

Xn − X = 0 if n is odd

and

Xn − X = −2X if n is even.

Consequently,

P(|Xn − X | > 1)

does not converge to zero as n → ∞ (the probability is strictly positive
and constant for n even). �

12.3 Show that if the sequence Xn converges in distribution to a constant c,
then Xn also convergence in probability to c.

Solution: If Xn converges to c in law, then

P(|Xn − c| > ε) = 1 − P(c − ε < Xn < c + ε) −→ 0.



412 CHAPTER 12 Limit Theorems

To get the final limit, we use the convergence of the c.d.f. at the points
where the limit function is continuous. �

12.4 LetXn be a sequence of random variables with an exponential distribution
Exp(
n) for every n ≥ 1. Study the convergence in distribution of the
sequence Xn, n ≥ 1 in each of the following cases:
(a) limn 
n = 
 > 0.
(b) limn 
n = ∞.
(c) limn 
n = 0.

Solution: Case a. Let g be a continuous bounded function. We have

E[g (Xn)] =
∫ ∞

0

ne

−
nxg (x) dx.

Since 
n is convergent, it is bounded. Therefore, there exist 
+, 
− finite
real numbers such that

0 < 
− < 
 < 
+.

Then


ne
−
nxg (x) ≤ ‖g‖∞
+e−
−x

for every x > 0. Applying the dominated converge theorem, we obtain

Eg (Xn) =
∫ ∞

0

ne

−
nxg (x) dx −→n

∫ ∞

0

e−
xg (x) dx.

We therefore conclude that Xn convergence in distribution to a expo-
nential r.v. with parameter 
.

Case b. Since 
n → ∞ we cannot bound 
n from above as we did
in the previous case. We will use a different argument. We first perform
the change of variables y = 
nx, which implies

Eg (Xn) =
∫ ∞

0
e−yg

(
y


n

)
du.

Since for any y we have∣∣∣∣e−yg
(
y


n

)∣∣∣∣ ≤ ‖g‖∞,

we can apply the dominated convergence theorem and we get

Eg (Xn) −→n

∫ ∞

0
g (0)e−xdx = g (0) = Eg (0).

Therefore, Xn converges in law to 0.
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Case c. In this case, 
n → 0 so we cannot bound 
n from below by a
strictly positive constant. We will use a characteristic function argument.
Note that

ϕXn (u) = 
n


n − iu
−→ 1(u=0).

This limit is not continuous, so it cannot be the characteristic func-
tion of a random variable. Consequently, Xn does not converge in
distribution. �

12.5 Let Xn, n ≥ 1 be i.i.d. random variables with common law Exp(
) where

 > 0. Denote by

X̄n = 1

n
(X1 + · · · + Xn)

and

Zn = 1

X̄n
.

(a) Show that the sequence Zn converges almost surely to 
 when
n → ∞.
(b) For n large enough, which Gaussian distribution could approximate
the law of X̄n?

Solution: By the strong law of large numbers, we have

X̄n → EX1 = 1



.

So

Zn → 


almost surely.
By the CLT, if Sn = nX̄n,

Sn − nEX1√
n

D−→ N

(
1



,

1√
n


)
.

Thus

X̄n ∼ N

(
1



,

1√
n


)
.

�
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12.6 Let Xn, n ≥ 1 be i.i.d. random variables with law N (0, 1). Define

Yn = 1

n

√
kXk.

Prove that (Yn)n convergence in distribution to N
(
0, 1

2

)
.

Solution: Using the characteristic function of the standard normal
distribution and denoting by ϕk the characteristic function of

√
kXk ,

we get

ϕk(t ) = e−
kt2

2n2 .

By the independence of the terms in the sequence, we obtain

ϕYn (t ) =
n∏
k=1

ϕk(t )

= exp

(
1 + 2 + · · · + n

2n2
t2

)

= exp

(
−n + 1

2n
t2

)

and as n → ∞ this converges to

e−
t2

4 ,

which is the characteristic function of the law N (0, 1/2). The Levy’s
continuity theorem (Theorem 12.7) gives the conclusion. �

12.7 Let X1, . . . , Xn, . . . be i.i.d. with law Exp(1). Define

Zn = max(X1, .., Xn).

(a) Compute the characteristic function of Zn.
(b) Find the law of

Xn+1

n + 1
.

(c) Find the law of

Yn = Zn + Xn+1

n + 1
.

(d) Compare the distributions of Yn and Zn+1.
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Solution: (a) For every x ≥ 0 (otherwise the probability is zero) we have

P(Zn ≤ x) = P(X1 ≤ x)n

= (1 − e−x )n.

Taking the derivative, we obtain

fZn (x) = ne−x (1 − e−x )n−11{x≥0},

which is the desired density.

(b) One can prove that

Xn+1

n+ 1
∼ Exp(n + 1).

(c) Using convolutions, we obtain the density of Yn as

fYn(x) = (n + 1)e−x (1 − e−x )n.

(d) It follows from above that Yn and Zn+1 have the same
distributions. �

Problems without Solution

12.8 Let (Xn)n≥1 be i.i.d. random variable with law N (1, 3).
(a) Show that the sequence

Yn := 1

n

n∑
i=1

Xie
Xi

converges almost surely and in distribution and find the limiting distri-
bution.
(b) Answer the same question for the sequence

Zn := X1 + · · · + Xn

X 2
1 + · · · + X 2

n

.

12.9 Let (Xn)n be a sequence of random variables such that

P(Xn = 1) = P(Xn = −1) = 1

2
.

Define

Yn =
n∑
k=1

Xk

2k
.

Prove that the sequence (Yn)n converges in distribution to Y ∼
U [−1, 1].
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12.10 Consider (Yn, n ≥ 1) a sequence of independent identically distributed
random variables with common lawU ([a, b]) (uniform on the interval).
For every n ≥ 1 we define

In = inf (Y1, . . . , Yn)

and

Mn = sup(Y1, . . . , Yn).

Recall the expression of the c.d.f. of Mn (denoted Fn) and In (denoted
Gn) from problem 5.13.
(a) Show that for every t the sequence Fn(t ) converges, and derive that
the sequence of random variables Mn converges in distribution to b.
(b) Show that the sequence of functionsGn(t ) converges, and derive that
the sequence of random variables In converges in distribution to a.

12.11 Let Xn, n ≥ 1 be a sequence of i.i.d. square-integrable random variables.
(a) Show that the sample variance converges to the theoretical variance,
that is,

lim
n

1

n

n∑
i=1

(Xi − EXi)
2 = VarX1,

and the limit holds almost surely.

Consider the least squares estimate of the variance. Specifically, de-
note for n ≥ 1

Vn := 1

n− 1

n∑
i=1

(Xi − X̄n)
2,

where

X̄n = X1 + · · · + Xn

n
.

is the sample mean.
(b) Compute the variance of Vn
(c) Find the almost sure limit of the sequence (Vn)n≥1.

12.12 Let the notation in problem 10.18 prevail. Express the c.d.f. of Sn in
terms of F . Derive the expression of the c.d.f. Fn of Tn in terms of F
and show that for every t ∈ R, the sequence (Fn(t ), n ≥ 1) converges to
F (t

√
3). What can we deduce from this?

12.13 Suppose Xn is independent of Yn, and X is independent of Y . Use an
argument based on characteristic functions to show that, if Xn converges
to X in distribution and Yn converges to Y in distribution, then Xn + Yn
converges in distribution to X + Y .
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12.14 Let Xn, n ≥ 1 be i.i.d. r.v. For every n ≥ 1 we denote

Zn :=
(

n∏
i=1

eXi

)1
n

.

Find the almost sure limit of the sequence (Zn)n≥1.

12.15 Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables with common
distribution N (	, �2), where 	 ∈ R and � > 0.

For every n ≥ 1, denote Sn := ∑n
k=1 Xk .

(a) Give the distribution of Sn.
(b) Compute

E
(
(Sn − n	)4).

(c) Show that for every ε > 0,

P
(∣∣∣Sn
n

− 	
∣∣∣ ≥ ε

)
≤ 3�4

n2 ε4
.

(d) Derive that the sequence
(
Sn
n
, n ≥ 1

)
converges almost surely and

identify the limit.
(e) Do you recognize this result?

12.16 Consider the sequence Xn defined in exercise 11.10.
(a) Show that the sequence

Tn = √
n

(
Xn + 1

4

)

converges in distribution.
(b) Identify the limiting distribution.

12.17 Let X1, . . . , Xn be independent random variables with the same distri-
bution given by

P(Xi = 0) = P(Xi = 2) = 1

4

and

P(Xi = 1) = 1

2
.

Let

Sn = X1 + · · · + Xn.
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(a) Find E(Sn) and Var(Sn).
(b) Give a necessary and sufficient condition on n ∈ N to have

P

(
1

2
≤ Sn

n
≤ 3

2

)
≥ 0.999.

Hint: For the first part, see exercise 4.6.

12.18 Prove Lemma 12.17.

12.19 Let Xn, n ≥ 0 be i.i.d. Bernoulli-distributed random variables with pa-
rameter p ∈ (0, 1). Define

Yn = XnXn−1

and

Zn = 1

n

n∑
k=1

Yk

for every n ≥ 1.
(a) Give the distribution of Yk .
(b) Calculate EYk and VarYk .
(c) Show that Yk and Yk+1 are not independent.
(d) Prove that Yk and Ym+k are independent for any m > 1.
(e) Calculate EZn and VarZn.
(f) Study the convergence in distribution of the sequence (Zn)n≥1.

12.20 Consider a sequence of iid r.v.’s with Bernoulli distribution on {−1, 1}.
That is

P(X1 = 1) = p and P(X1 = −1) = 1 − p.

Denote

Sn = X1 + · · · + Xn.

(a) Show that if p /= 1
2 , then the sequence (|Sn|)n≥1 converges almost

surely.
For the rest of the problem we take p = 1

2 . Let ˛ > 0.
(b) Compute

Ee˛X1, then Ee˛Sn .

Deduce that for every n ≥ 1 we have

E
[
(cosh ˛)−ne˛Sn

] = 1.

(c) Show that

lim
n→∞

[
(cosh ˛)−ne˛Sn

] = 0 a.s.
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12.21 Let (Xn)n≥1 be i.i.d. random variables. Suppose that

P(X1 = 0) < 1.

(a) Show that there exists ˛ > 0 such that

P(|X1| ≥ ˛) > 0.

(b) Show that

P(lim sup
n

{|Xn| ≥ ˛} = 1.

Derive that

P(lim sup
n

Xn = 0) = 0.

(c) Show that

E|X1| =
∫ ∞

0
P(|X1| > t ) dt.

(d) Deduce that X1 is integrable if and only if∑
k

P(|X1| > k) < ∞.

(e) Show that X1 is integrable if and only if

P(lim sup
n

{Xn > n}) = 0.

(f) Deduce that if X1 is integrable, then almost surely

lim sup
n

1

n
Xn ≤ 1.

12.22 Let Xn be i.i.d. random variables with EX1 = 0 and assume that Xn are
bounded. That is, there exists a C > 0 such that

|X1| ≤ C a.s.

Show that for every ε > 0, we obtain

P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε

)
≤ 2 exp

(
(−n ε

2

2c2
)

)
.

Deduce that Sn/n converges in probability to zero.

12.23 Let X, X1, . . . , Xn, . . . be i.i.d. with

P(X = 2k) = 1

2k
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for k = 1, 2, . . ..
(a) Show that EX = ∞.
(b) Prove that

Sn

n
−→ 1

log 2

in probability as n → ∞.

12.24 Let X ∼ N (100, 15). Find four numbers x1, x2, x3, x4 such that

P(X < x1) = 0.125, P(X < x2) = 0.25

and

P(X < x3) = 0.75, P(X < x4) = 0.875.

12.25 A fair coin is flipped 400 times. Determine the number x such that the
probability that the number of heads is between 200 − x and 200 + x
is approximately 0.80.

12.26 In an opinion poll it is assumed that an unknown proportion p of people
are in favor of a proposed new law and a proportion 1 − p are against
it. A sample of n people is taken to estimate p. The sample proportion
p̂ of people in favor of the law is taken as an estimate of p. Using the
Central Limit Theorem, determine how large a sample will ensure that
the estimate p̂ will, with probability 0.95, be within 0.01 of the true p.

12.27 Write a statement explaining why Skorohod’s theorem (Theorem 12.10)
does not contradict our earlier statement that convergence in distribution
does not imply convergence a.s.



Chapter Thirteen

Appendix A: Integration
Theory. General Expectations

In this appendix we formalize the theory of calculating expectations. We learned
about random variables and their distribution. This distribution completely char-
acterizes a random variable. But in general, distributions are very complex func-
tions. The human brain cannot comprehend such things easily. So the human
brain wants to talk about one typical value. For example, one can give a distri-
bution for the random variable representing player salaries in the NBA. Here the
variability (probability space) is represented by the specific player chosen. How-
ever, suppose we simply want to know the typical salary in the NBA. We probably
contemplate a career in sports and want to find out if as an athlete we should go for
basketball or baseball. Thus, a single number corresponding to each of these dis-
tributions would be much easier to compare. In general, if the distribution is dis-
crete or continuous, then calculating expectations by means we have seen already
(summation or integration using probability mass function ir probability density
function) will suffice. However, suppose the distribution is more complex so that
its c.d.f. is not continuous. For example, suppose that the salary of said athlete de-
pends on whether or not he/she gets injured, whether or not is a male or female, the
severity of the injury, and so on. To be able to calculate expectations in this more re-
alistic case, we need to introduce a more complex theory to deal with this situation.

In this appendix we present the theory which allows us the calculation of any
number we want from a given distribution. Paradoxically, to calculate a simple
number, we need to understand a very complex theory.

Handbook of Probability, First Edition. Ionuţ Florescu and Ciprian Tudor.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

421



422 CHAPTER 13 Appendix A: Integration Theory. General Expectations

13.1 Integral of Measurable Functions

Not all random variables have p.d.f.’s. However, all random variables have c.d.f.’s.
The integration theory is centered on learning how to integrate this function.
Recall that any random variable is a measurable function from � into R. The
integration theory is constructed for any measurable function.

To this end, let (�,F , P) be a probability space. We want to define, for any
measurable function f on this space, a notion of integral of f with respect to the
measure P .

Notation. We shall use the following notations for this integral:∫
�

f (ω)P(dω) =
∫
fdP,

for A ∈ F we have
∫
A

f (ω)P(dω) =
∫
A

fdP =
∫
f 1AdP,

where 1A denotes the indicator function of the set A in �.
Recall the Dirac delta we have defined previously? With its help summation is

another kind of integral. To exemplify, let {an} be a sequence of real numbers. Let
� = R,F = B (R) and let the measure on this space for any set A be defined
using

ı(A) =
∞∑
i=1

ıi(A).

Then the function i �→ ai is integrable if and only if
∑
ai < ∞, and in this

case we have
∞∑
n=1

an =
∞∑
n=1

∫ ∞

−∞
axdın(x) =

∫ ∞

−∞
ax

∞∑
n=1

dın(x) =
∫ ∞

−∞
axdı(x)

What is the point of this?
This simple argument above shows that any ‘‘discrete’’ random variable may

be treated as a ‘‘continuous’’ random variable. Thus the unifying theory presented
here will apply to any random variable regardless of the form of its distribution.

13.1.1 INTEGRAL OF SIMPLE (ELEMENTARY) FUNCTIONS

If A ∈ F , we know that we can define a measurable function by its indicator 1A.
We define the integral of this measurable function∫

1A dP = P(A).

We note that this variable has the same distribution as that of the Bernoulli
random variable. The variable takes values 0 and 1 and we can easily calculate the
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probability that the variable is 1 as

P ◦ 1−1
A ({1}) = P{ω : 1A(ω) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli random variable with parameter
p = P(A).

Definition 13.1 (Simple function) f is called a simple (elementary) func-
tion if and only if f can be written as a finite linear combination of indicators. More
specifically, f is a simple function if and only if there exist sets A1, A2, . . . , An all in
F and constants a1, a2, . . . , an in R such that

f (ω) =
n∑
k=1

ak1Ak (ω).

If the constants ak are all positive, then f is a positive simple function.

Note that the sets Ai do not have to be disjoint, though we can show that
any simple function f can be rewritten in terms of disjoint sets.

For any simple function f we define its integral using∫
fdP =

n∑
k=1

akP(Ak) < ∞.

We adopt the conventions 0 ∗ ∞ = 0 and ∞ ∗ 0 = 0 in the above summation.
We will need to check that the above definition is proper. Specifically, since

there exist many representations of a simple function, we need to make sure that
any and all such representations produce the same integral value.

Furthermore, using the definition above we can prove that the integral is
linear and monotone. We leave the proof of these results to the reader; however,
we state them in a lemma.

Lemma 13.2 The integral of a simple function has the following properties.

1. The integral is linear; that is, if f1 and f2 are two simple functions and a1, a2 ∈ R,
then ∫

�

(a1f1 + a2f2) dP = a1

∫
�

f1 dP + a2

∫
�

f2 dP.

2. The integral is monotone; that is, if a sequence of simple functions {fn}n converges
increasingly (or decreasingly) to f for all points ω ∈ �, then the integral does as
well: ∫

�

fn dP −→
∫
�

f dP

also increasingly or decreasingly.
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13.1.2 INTEGRAL OF POSITIVE MEASURABLE FUNCTIONS

For every f positive measurable function f : � −→ [0,∞), we define

∫
f dP = sup

{∫
h dP : h is a simple function, h ≤ f

}

In this definition we formalize the construction of the integral for any positive
measurable function. However, we still need to show that the definition is proper.
To this end, can we show that for any given positive measurable function f there
exists a sequence of simple functions that converge to it? The answer is yes and is
provided by the next exercise:

EXAMPLE 13.1 A simple construction

Let f : � → [0,∞] be a positive, measurable function. For all n ≥ 1, we
define

fn(ω) :=
n2n−1∑
k=0

k

2n
1{ k

2n ≤f (ω)< k+1
2n }(ω) + n1{f (ω)≥n}. (13.1)

1. Show that fn is a simple function on (�,F ), for all n ≥ 1.

2. Show that the sets present in the indicators in equation (13.1) form a
partition of �, for all n ≥ 1.

3. Show that the sequence of simple functions is increasing gn ≤ gn+1 ≤
f , for all n ≥ 1.

4. Show that gn ↑ f as n → ∞. Note that this is not an a.s. statement, it
is true for all ω ∈ �.

The solution to this example is not complicated and in fact may be assigned as
a problem. Using this construction, the integral of positive measurable functions
is a well-defined number. Suppose that f is a positive measurable function. The
example provides us with a sequence of simple functions fn which increase to f at
any point ω. Since we know that the integral of simple functions is monotone by
Lemma 13.2, then the sequence of integrals will converge to a number. However,
since the integral of f is defined as the supremum of such integrals and since the
limit exists, there is no other way than the limit being the integral of f . This will
in fact be the proof of the Monotone Convergence Theorem (below).

The next lemma is a very useful tool going forward.

Lemma 13.3 If f is a positive measurable function and
∫
f dP = 0, then

P{f > 0} = 0 (or equivalently f = 0 a.s.).
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Proof: We can write

{f > 0} =
⋃
n≥0

{
f >

1

n

}
.

Since the sequence of events on the right is increasing, by the monotone conver-
gence property of measure we must have

P{f > 0} = lim
n→∞ P

{
f >

1

n

}
.

Now, assume by absurd that P{f > 0} > 0. Then, there must exist an n such
that P{f > 1

n
} > 0. However, in this case by the definition of the integral of

positive measurable functions, we obtain∫
f dP ≥

∫
1

n
1{f> 1

n } dP > 0,

which is a contradiction and our absurd assumption is false. �

The next theorem is one of the most useful in probability theory. In our immediate
context, it tells us that the integral for positive measurable functions is well-
defined.

Theorem 13.4 (Monotone Convergence Theorem) If f is a sequence
of positive measurable functions such that fn(ω) ↑ f (ω) for all ω ∈ �, then∫

�

fn(ω)P(dω) ↑
∫
�

f (ω)P(dω)

where the symbol ↑ denotes convergence from below (increasing sequences).

Note: As mentioned before, this theorem concludes the construction of the
integral for positive measurable function. As we shall see, this result is the key for
all the integration theory.

Proof: First let us show that f is positive measurable. First off, f is clearly positive
since f (ω) is a limit of positive numbers fn(ω), and this happens for all ω. Since
f is positive, we need to look at the domain space ([0,∞),B ([0,∞)).

LetB = (−∞, b] an interval inR (recall that the Borel sets inR are generated
by these intervals). We need to show that f −1(B) ∈ F . Since fn(ω) ≤ f (ω) for
all ω and n, we see that if ω ∈ f −1(B), then f (ω) ≤ b, which implies fn(ω) ≤ b;
therefore ω ∈ f −1

n (B). This immediately implies that

f −1(B) ⊆ f −1
n (B), for all n;

therefore

f −1(B) ⊆
⋂
n

f −1
n (B).
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Similarly, if ω ∈ f −1
n (B) for all n, then fn(ω) ≤ b for all n; therefore the limit

f (ω) = lim fn(ω) ≤ b thus we get the other inclusion. Therefore we have

f −1(B) =
⋂
n

f −1
n (B);

and since each set in the right side is measurable and F is a �-algebra, we imme-
diately have that f is measurable. Since we showed that f is positive measurable,
then the integral is defined using∫

f dP = sup

{∫
h dP : h is a simple function, h ≤ f

}
.

Next we will show that
∫
f dP ≥ limn→∞

∫
fn dP. Since fn(ω) ≤ f (ω) at all ω,

we have {∫
h dP : h is a simple function, h ≤ fn

}

⊆
{∫

h dP : h is a simple function, h ≤ f

}

since the set on the right simply has more simple functions. Since the supremum
cannot go over the bound, we have

sup

{∫
h dP : h is a simple function, h ≤ fn

}

≤ sup

{∫
h dP : h is a simple function, h ≤ f

}
;

and since this is true for any n using the definition, we obtain

lim
n→∞

∫
fn dP ≤

∫
f dP.

To end the theorem (i.e., prove that the two quantities are equal), we need
to show the reverse inequality. To this end, using Example 13.1, we know there
exists an increasing sequence of simple functions—let us denote it gn such that
gn(ω) ≤ f (ω) and

lim
n→∞

∫
gn dP =

∫
f dP.

It is enough to show that∫
gndP ≤ lim

k→∞

∫
fkdP, ∀n.

Indeed, if we show this, then by going to the limit over n we will conclude the
inequality needed.
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So, let us consider a simple function g such that g (ω) ≤ f (ω). We want to
show that ∫

g dP ≤ lim
k→∞

∫
fk dP.

To this end, construct the sets for all k:

Ak = {ω ∈ � | g (ω) ≤ fk(ω)}.
The plan is to use the monotone convergence property of probability measures.
Note: ∫

Ak

g dP ≤
∫
Ak

fk dP ≤
∫
�

fk dP

since the functions fk are positive. Furthermore, since fk(ω) ≤ fk+1(ω), we have
Ak ⊆ Ak+1, an increasing sequence of sets. The sequence will increase to �. To
see this, let us take an ω ∈ �.

Suppose that the ω is such g (ω) = 0. Then clearly ω ∈ Ak for all k since fk
is positive.

Suppose that ω is such g (ω) > 0. Since

g (ω) ≤ f (ω) = lim
k
fk(ω),

there must exist a k such that g (ω) ≤ fk(ω); thereforeω ∈ Ak for a k large enough.
Therefore, all omega points belong to anAk for a k large enough; thus

⋃
k Ak = �.

Next we use the fact that g is a positive simple function. We can find a
representation with positive constants ai and disjoint sets Bj such that

g (ω) =
∑
j

aj1Bj .

We have ∫
�

fk dP ≥
∫
Ak

g dP =
∫
Ak

∑
j

aj1Bj dP =
∑
j

∫
Ak

1Bj dP

=
∑
j

∫
�

1Bj∩Ak dP =
∑
j

ajP(Ak ∩ Bj).

Since Ak ↑ � we have Ak ∩ Bj ↑ Bj for all j, and thus taking the limit in the
inequality gives:

lim
k→∞

∫
�

fk dP ≥
∑
j

aj lim
k→∞

P(Ak ∩ Bj) =
∑
j

ajP(Bj) =
∫
g dP

where we used the monotone convergence property of measure.
This finally concludes the proof of the Monotone Convergence Theorem. �
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13.1.3 INTEGRAL OF MEASURABLE FUNCTIONS

Let f be any measurable function. Then, we can write f (ω) = f +(ω) − f −(ω)
for any point ω, where

f +(ω) = max{f (ω), 0},
f −(ω) = max{−f (ω), 0}.

These f + and f − are positive measurable functions and |f (ω)| = f +(ω) +
f −(ω). Since they are positive measurable, their integrals are well-defined by the
previous part.

Definition 13.5 We define L1(�,F , P) as being the space of all functions f
such that ∫

|f | dP =
∫
f +dP +

∫
f −dP < ∞

For any f in this space which we will shorten to L1(�) or even simpler to L1, we
define ∫

f dP =
∫
f +dP −

∫
f −dP.

13.1.3.1 Note. With the above, it is trivial to show that | ∫fdP| ≤ ∫|f |dP.

13.1.3.2 Linearity. If f, g ∈ L1(�) with a, b ∈ R , then

af + bg ∈ L1(�)∫
(af + bg ) dP = a

∫
f dP + b

∫
g dP.

Next we present two results for general measurable functions. These results
are extremely important for probability theory; but since a random variable is just
a measurable function, these results will apply immediately.

Lemma 13.6 (Fatou’s lemma for measurable functions) If one of the
following is true:

(a) {fn}n is a sequence of positive measurable functions or

(b) {fn} ⊂ L1(�)

then ∫
lim inf

n
fn dP ≤ lim inf

n

∫
fn dP

Proof: Note that lim inf n fn = limm→∞ inf n≥m fn, where limm→∞ inf n≥m fn is an
increasing sequence.
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Let gm = inf n≥m fn and n ≥ m:

fn ≥ inf
n≥m fm = gm ⇒

∫
fn dP ≥

∫
g dP ⇒

∫
gm dP ≤ inf

n≥m

∫
fn dP.

Now gm increases, so we may use the Monotone Convergence Theorem, and we
get ∫

lim
m→∞ gm dP= lim

m→∞

∫
gm dP ≤ lim

m→∞ inf
n≥m

∫
fn dP = lim inf

n

∫
fn dP.

�

Theorem 13.7 (Dominated Convergence Theorem) If fn, f are mea-
surable, fn(ω) → f (ω) for allω ∈ � and the sequence fn is dominated by g ∈ L1(�):

|fn(ω)| ≤ g (ω), ∀ω ∈ �, ∀n ∈ N,

then

fn → f in L1(�)

(
i.e.,

∫
|fn − f | dP → 0

)

Thus
∫
fndP → ∫

fdP and f ∈ L1(�).

13.1.3.3 The Standard Argument. This argument is the most important
argument in the probability theory. Suppose that we want to prove that some
property holds for all functions h in some space such as L1(�) or the space of
measurable functions.

1. Show that the result is true for all indicator functions.

2. Use linearity to show the result holds true for all f simple functions.

3. Use the Monotone Convergence Theorem to obtain the result for measurable
positive functions.

4. Finally from the previous step and writing f = f + − f −, we show that the
result is true for all measurable functions.

13.2 General Expectations and Moments
of a Random Variable

Since a random variable is just a measurable function, we just need to use the
results of the previous section in the specific context of a space with probability
one. Any integral with respect to a probability measure is called an expectation.
Let (�,F , P) be a probability space.



430 CHAPTER 13 Appendix A: Integration Theory. General Expectations

Definition 13.8 For X an r.v. in L1(�) define

E(X ) =
∫
�

X dP =
∫
�

X (ω) dP(ω) =
∫
�

X (ω)P(dω).

This expectation has the same properties of the integral defined before and
some extra ones since the space has finite measure.

For any other measurable function f : R→ R, we may construct the variable
Y = f (X ) and therefore define the expectation:

E[Y ] = E[f (X )] =
∫
�

f (X ) dP =
∫
�

f (X )(ω) dP(ω).

In particular when f (x) = xp we obtain the p-moment of the random vari-
able. Specifically:

E[X p] =
∫
�

X pdP =
∫
�

X p(ω) dP(ω).

However, the expectation needs to exist. We define the space of the variables for
which these types of expectation exist in the next section.

13.2.1 MOMENTS AND CENTRAL MOMENTS. Lp SPACE

We generalize the L1 notion presented earlier in the following way.

Definition 13.9 We define Lp(�,F , P) For 1 ≤ p ≤ ∞ as being the space of
all random variables X such that:

E[|X |p] =
∫

|X |pdP =
∫

(X p)+dP +
∫

(X p)−dP < ∞,

where (X p)+ and (X p)− denote the positive respectively negative parts of the variable
X p. For any X in this space which we will shorten to Lp(�) or even simpler to Lp, we
define

E[X p] =
∫
X pdP =

∫
(X p)+dP −

∫
(X p)−dP

Mathematically,

Lp(�,F , P) = Lp(�) =
{
X : � −→ R : E

[|X |p] =
∫

|X |pdP < ∞
}
.

Definition 13.10 (Moments) For a random variable X ∈ Lp we define the
p-moment of the random variable as

E[X p].
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If we denote with � = E[X ], then the central p-moment of the random variable is

E[(X − �)p].

On the Lp space we define a norm called the p-norm as

||X ||p = E
[|X |p]1/p

Lemma 13.11 (Properties of Lp spaces) We have the following:

(i) Lp is a vector space. (i.e., if X, Y ∈ Lp and a, b ∈ R, then aX + bY ∈ Lp).
(ii) Lp is complete (every Cauchy sequence in Lp is convergent).

(iii) If p ≤ q, then Lq ⊂ Lp and for every X ∈ Lq we have

‖X ‖p ≤ ‖X ‖q.

The last property means that if a moment p exists, then all moments for
all q < p exist as well. This will imply that the central p-moment exists for any
variables in Lp.

13.2.2 VARIANCE AND THE CORRELATION COEFFICIENT

In the special case when p = 2, we obtain several particular cases of special interest.

Definition 13.12 The variance or the Dispersion of a random variable X ∈
L2(�) is

V (X ) = E[(X − �)2] = E(X 2) − �2,

where � = E(X ).

Definition 13.13 Given two random variables X, Y we obtain the covariance
between X and Y the quantity:

Cov(X, Y ) = E[(X − �X )(Y − �Y )],

where �X = E(X ) and �Y = E(Y ).

Definition 13.14 Given random variables X, Y , we obtain the correlation coef-
ficient:

� = Corr(X, Y ) = Cov(X, Y )√
V (X )V (Y )

= E[(X − �X )(Y − �Y )]√
E[(X − �X )2]E[(Y − �Y )2]

.

If we apply the Cauchy–Schwartz inequality (Lemma 14.7) to X − �X and
Y − �Y , we get

|�| < 1 or � ∈ [−1, 1].
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The variable X and Y are called uncorrelated if the covariance (or equiva-
lently the correlation) between them is zero.

Proposition 13.15 (Properties of expectation) The following are true:

(i) IfX andY are integrable r.v.’s, then for any constants˛ andˇ the r.v.˛X + ˇY
is integrable and E[˛X + ˇY ] = ˛EX + ˇEY .

(ii) V (aX + bY ) = a2V (X ) + b2V (Y ) + 2abCov(X, Y ).

(iii) If X, Y are independent, then E(XY ) = E(X )E(Y ) and Cov(X, Y ) = 0.

(iv) If X (ω) = c with probability 1 and c ∈ R a constant, then EX = c.

(v) If X ≥ Y a.s., then EX ≥ EY . Furthermore, if X ≥ Y a.s. and EX = EY ,
then X = Y a.s.

Proof (Exercise): Please note that the reverse of part (iii) above is not true; if the
two variables are uncorrelated, this does not mean that they are independent. �

EXAMPLE 13.2 Due to Erdós

Suppose there are 17 fence posts around the perimeter of a field and exactly
5 of them are rotten. Show that irrespective of which of these 5 are rotten,
there should exist a row of 7 consecutive posts of which at least 3 are rotten.

Proof (Solution): First we label the posts 1, 2, . . . , 17. Now define

Ik =
{

1 if post k is rotten,

0 otherwise .

For any fixed k, let Rk denote the number of rotten posts among k + 1, . . . , k + 7
(starting with the next one). Note that when any of k + 1, . . . , k + 7 are larger
than 17, we start again from 1 (i.e., modulo 17 +1).

Now pick a post at random; this obviously can be done in 17 ways with
equal probability. Then after we pick this post, we calculate the number of rotten
boards. We have

E(Rk) =
17∑
k=1

(Ik+1 + · · · + Ik+7)
1

17

= 1

17

17∑
k=1

7∑
j=1

Ik+j = 1

17

7∑
j=1

17∑
k=1

Ij+k
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= 1

17

7∑
j=1

5 (the sum is 5 since we count all
the rotten posts in the fence)

= 35

17
.

Now, 35/17 > 2, which implies E(Rk) > 2. Therefore, P(Rk > 2) > 0 (other-
wise the expectation is necessarily bounded by 2) and since Rk is integer-valued,
P(Rk ≥ 3) > 0. So there exists some k such that Rk ≥ 3.

Of course, now that we see the proof, we can play around with numbers and
see that there exists a row of 4 consecutive posts in which at least two are rotten, or
that there must exist a row of 11 consecutive posts in which at least 4 are rotten,
and so on (row of 14 containing all 5 rotten ones). �

13.2.3 CONVERGENCE THEOREMS

Rewriting the convergence theorems in terms of expectations, we have

(i) Monotone Convergence Theorem: If Xn ≥ 0, Xn ∈ L1 and Xn ↑ X , then
E(Xn) ↑ E(X ) ≤ ∞.

(ii) Fatou: E(lim inf n→∞ Xn) ≤ lim inf n→∞ E(Xn).

(iii) Dominated Convergence Theorem: If |Xn(ω)| ≤ Y (ω) on�with Y ∈ L1(�)
and Xn(ω) → X (ω) for all ω ∈ �, then E(|Xn − X |) → 0.



Chapter Fourteen

Appendix B: Inequalities
Involving Random Variables
and Their Expectations

In this appendix we present specific properties of the expectation (additional to
just the integral of measurable functions on possibly infinite measure spaces). It is
to be expected that on probability spaces we may obtain more specific properties
since the probability space has measure 1.

Proposition 14.1 (Markov inequality) Let Z be a r.v. and let g : R −→
[0,∞] be an increasing, positive measurable function. Then

E
[
g (Z )

] ≥ E
[
g (Z )1{Z≥c}

] ≥ g (c)P(Z ≥ c).

Thus

P(Z ≥ c) ≤ E[g (Z )]

g (c)

for all g increasing functions and c > 0.

Proof: Take � > 0 arbitrary and define the random variable

Y = 1{|X |≥�}.
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Then clearly

�Y ≤ X

and taking the expectation, we get

�EY = �P(|X | ≥ �) ≤ E |X |.
�

EXAMPLE 14.1 Special cases of the Markov inequality

If we take g (x) = x an increasing function andX a positive random variable,
then we obtain

P(Z ≥ c) ≤ E(Z )

c
.

To get rid of the condition X ≥ 0, we take the random variable Z = |X |.
Then we obtain the classical form of the Markov inequality:

P(|X | ≥ c) ≤ E(|X |)
c

.

If we take g (x) = x2, Z = |X − E(X )| and we use the definition of
variance, we obtain the Chebyshev inequality:

P(|X − E(X )| ≥ c) ≤ Var(X )

c2
.

If we denote E(X ) = � andVar(X ) = � and we take c = k� in the previous
inequality, we will obtain the classical Chebyshev inequality presented in
undergraduate courses:

Proposition 14.2 For every � ≥ 0 and for any random variable X such that
EX 2 < ∞ we have

P(|X − �| ≥ k�) ≤ 1

k2
.

If we take g (x) = e�x , with � > 0, then

P(Z ≥ c) ≤ e−�cE(e�z ).

This last inequality states that the tail of the distribution decays exponentially in c
if Z has finite exponential moments. With simple manipulations, one can obtain
Chernoff’s inequality using it.
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Remark 14.3 In fact the Chebyshev inequality is far from being sharp. Consider,
for example, a random variable X with standard normal distribution N (0, 1).

If we calculate the probability of the normal using a table of the normal law or
using the computer, we obtain

P(X ≥ 2) = 1 − 0.9772 = 0.0228.

However, if we bound the probability using Chebyshev inequality, we obtain

P(X ≥ 2) = 1

2
P(|X | ≥ 2) ≤ 1

2

1

4
= 1

8
= 0.125,

which is very far from the actual probability.

The following definition is just a reminder.

Definition 14.4 A function g : I −→ R is called a convex function on I (where
I is any open interval in R, if its graph lies below any of its chords). Mathematically:
For any x, y ∈ I and for any ˛ ∈ (0, 1), we have

g (˛x + (1 − ˛)y) ≤ ˛g (x) + (1 − ˛)g (y).

A function g is called concave if the opposite is happening:

g (˛x + (1 − ˛)y) ≥ ˛g (x) + (1 − ˛)g (y).

Some examples of convex functions on the whole R: |x|, x2, and e�x , with
� > 0.

Lemma 14.5 (Jensen’s inequality) Let f be a convex function and let X be
an r.v. in L1(�). Assume that E(f (X )) ≤ ∞, then

f (E(X )) ≤ E(f (X )).

Proof: Skipped. The classic approach indicators → simple functions → positive
measurable → measurable is a standard way to prove Jensen. �

Remark 14.6 The discrete form of Jensen’s inequality is as follows: Letϕ : R→ R
be a convex function and let x1, ..., xn ∈ R and ai > 0 for i = 1, ..., n. Then

ϕ

(∑n
i=1 aixi∑n
i=1 ai

)
≤

∑n
i=1 aiϕ(xi)∑n
i=1 ai

.

If the function ϕ is concave, we have

ϕ

(∑n
i=1 aixi∑n
i=1 ai

)
≥

∑n
i=1 aiϕ(xi)∑n
i=1 ai

.

The remark is a particular case of the Jensen inequality. Indeed, consider
a discrete random variable X with outcomes xi and corresponding probabilities
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ai/
∑
ai . Apply the classic Jensen approach above to the convex function ϕ using

the expression of expectation of discrete random variables.

A Historical Remark. The next inequality, one of the most famous and useful
in any area of analysis (not only probability), is usually credited to Cauchy for
sums and Schwartz for integrals and is usually known as the Cauchy–Schwartz
inequality. However,the Russian mathematician Victor Yakovlevich Bunyakovsky
(1804–1889) discovered and first published the inequality for integrals in 1859
(when Schwartz was 16). Unfortunately, he was born in eastern Europe. However,
all who are born in eastern Europe (including myself ) learn the inequality by its
proper name.

Lemma 14.7 (Cauchy–Bunyakovsky–Schwarz inequality) If X, Y ∈
L2(�), then XY ∈ L1(�) and

|E[XY ]| ≤ E[|XY |] ≤ ||X ||2||Y ||2,
where we used the notation of the norm in Lp:

‖X ‖p = (
E[|X |p]) 1

p .

Proof: The first inequality is clear applying Jensen inequality to the function |x|.
We need to show

E[|XY |] ≤ (E[X 2])1/2(E[Y 2])1/2.

Let

W = |X | and Z = |Y |.
Clearly, W,Z ≥ 0.

Truncation. Let Wn = W
∧
n and Zn = Z

∧
n that is

Wn(ω) =
{
W (ω), if W (ω) < n,

n, if W (ω) ≥ n.

Clearly, defined in this way, Wn, Zn are bounded. Let a, b ∈ R two constants.
Then

0 ≤ E[(aWn + bZn)
2] = a2E(W 2

n ) + 2abE(WnZn) + b2E(Z 2
n )

If we let a/b = c, we get

c2E(W 2
n ) + 2cE(WnZn) + E(Z 2

n ) ≥ 0, ∀c ∈ R.
This means that the quadratic function in c has to be positive. But this is only
possible if the determinant of the equation is negative and the leading coefficient
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E(W 2
n ) is strictly positive; the later condition is obviously true. Thus we must

have

4(E(WnZn))
2 − 4E(W 2

n )E(Z 2
n ) ≤ 0

⇒ (E(WnZn))
2 ≤ E(W 2

n )E(Z 2
n ) ≤ E(W 2)E(Z 2) ∀n,

which is in fact the inequality for the truncated variables.
If we let n ↑ ∞ and we use the monotone convergence theorem, we get

(E(WZ ))2 ≤ E(W 2)E(Z 2).

�

A generalization of the Cauchy–Buniakovski–Schwartz is:

Lemma 14.8 (Hölder inequality) If 1/p + 1/q = 1, X ∈ Lp(�), and
Y ∈ Lq(�), then XY ∈ L1(�) and

E|XY | ≤ ‖X ‖p‖Y ‖q = (
E|X |p) 1

p (E|Y |q) 1
q .

Proof: The proof is simple and uses the following inequality (Young inequality):
If a and b are positive real numbers and p, q are as in the theorem, then

ab ≤ ap

p
+ bq

q
,

with equality if and only if ap = bq .
Taking this inequality as given (not hard to prove), define

f = |X |
‖X ‖p , g = |Y |

‖Y ‖p .

Note that the Holder inequality is equivalent to E[f g ] ≤ 1. (Note that ‖X ‖p
and ‖Y ‖q are just numbers which can be taken in and out of integral using the
linearity property of the integral.) To finish the proof, apply the Young inequality
to f ≥ 0 and g ≥ 0 and then integrate to obtain

E[f g ] ≤ 1

p
E[f p] + 1

q
E[g q] = 1

p
+ 1

q
= 1,

since E[f p] = 1 and similarly for g .
Finally, the extreme cases (p = 1, q = ∞, etc.) may be treated separately, but

they will yield the same inequality. �

This inequality and Riesz representation theorem creates the notion of con-
jugate space. This notion is only provided to create links with real analysis. For
further details we recommend Royden (1988).
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Definition 14.9 (Conjugate space of Lp) For p > 0 let Lp(�) define the
space on (�,F ,P). The number q > 0 with the property 1/p + 1/q = 1 is called
the conjugate index of p. The corresponding space Lq(�) is called the conjugate space
of Lp(�).

Any of these spaces are metric spaces with the distance induced by the norm,
that is,

d (X, Y ) = ‖X − Y ‖p = (
E

[|X − Y |p]) 1
p .

The fact that this is a properly defined linear space is implied by the triangle
inequality in Lp—the next theorem.

Lemma 14.10 (Minkowski inequality) If X, Y ∈ Lp then X + Y ∈ Lp
and

‖X + Y ‖p ≤ ‖X ‖p + ‖Y ‖p.

Proof: We clearly have

|X + Y |p ≤ 2p−1(|X |p + |Y |p).
For example, to show this inequality in terms of real numbers, just use the defi-
nition of convexity for the function xp with x = |X | and y = |Y | and ˛ = 1/2.

Integrating the inequality will impliy that X + Y ∈ Lp.
Now we can write

‖X + Y ‖pp = E[|X + Y |p] ≤ E
[
(|X | + |Y |)|X + Y |p−1]

= E
[|X ||X + Y |p−1] + E

[|Y ||X + Y |p−1]
Holder≤ (

E
[|X |p])1/p (

E
[|X + Y |(p−1)q])1/q

+ (
E

[|Y |p])1/p (
E

[|X + Y |(p−1)q])1/q

(
q= p

p−1

)
= (‖X ‖p + ‖Y ‖p

) (
E

[|X + Y |p])1− 1
p

= (‖X ‖p + ‖Y ‖p
) E [|X + Y |p]

‖X + Y ‖p .

Finally, identifying the left and right hand after simplifications, we obtain the
result. �

The Case of L2. The case when p = 2 is quite special. This is because 2 is its
own conjugate index (1/2 + 1/2 = 1). Because of this, the space is quite similar
to the Euclidian space. If X, Y ∈ L2, we may define the inner product:

< X, Y >= E[XY ] =
∫
XY dP,
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which is a well-defined quantity using the Cauchy–Bunyakovsky–Schwartz
inequality.

The existence of the inner product and the completeness of the norm makes
L2 a Hilbert space with all the benefits that follow. In particular, the notion of
orthogonality is well-defined. Two variables X and Y in L2 are orthogonal if and
only if

< X, Y >= 0.

In turn the orthogonality definition allows a Fourier representation and, in
general, representations in terms of an orthonormal basis of functions in L2.
Again, we do not wish to enter into more details than necessary; please consult,
(Billingsley, 1995, Section 19) for further reference.

A consequence of the Markov inequality is the Berstein inequality.

Proposition 14.11 (Berstein inequality) Let X1, X2, . . . , Xn be inde-
pendent random variable square integrable with zero expectation. Assume that there
exists a constant M > 0 such that for every i = 1, . . . , n we have

|Xi| ≤ M almost surely,

that is, the variables are bounded byM almost surely. Then, for every t ≥ 0, we have

P

(
n∑
i=1

Xi > t

)
≤ e

− t2

2
∑n
i=1 EX

2
i + 2Mt

3 .

EXAMPLE 14.2

A random variable X has finite variance �2. Show that for any number c,

P(X ≥ t ) ≤ E [(X + c)2]

(t + c)2
if t > −c.

Show that if E (X ) = 0, then

P(X ≥ t ) ≤ �2

�2 + t2
, ∀t > 0.

Solution: Let us use a technique similar to the Markov inequality to prove the
first inequality. Let F (x) be the distribution function of X . For any c ∈ Rwe may
write

E
[
(X + c)2] =

∫ t

−∞
(x + c)2 dF (x) +

∫ ∞

t

(x + c)2 dF (x).
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The first integral is always positive and if t > −c, then t + c > 0 and on the in-
terval x ∈ (t,∞) the function (x + c)2 is increasing. Therefore we may continue:

E
[
(X + c)2] ≥

∫ ∞

t

(t + c)2 dF (x) = (t + c)2P(X > t ).

Rewriting the final expression gives the first assertion. To show the second as-
sertion, note that if E[x] = 0, then V (X ) = E[X 2] and thus E

[
(X + c)2

] =
�2 + c2. Thus the inequality we just proved reads in this case:

P(X ≥ t ) ≤ �2 + c2

(t + c)2
, if t > −c.

Now take c = �2

t
. This is a negative value for any positive t , so the condition is

satisfied for any t positive. Substituting after simplifications, we obtain exactly
what we need. You may wonder (and should wonder) how we came up with
the value �2

t
. The explanation is simple—that is, the value of c which minimizes

the expression �2+c2

(t+c)2 ; in other words, the value of c which produces the best
bound. �

14.1 Functions of Random Variables. The
Transport Formula

In the previous chapters dedicated to discrete and continuous random variables,
we learned how to calculate distributions—in particular, p.d.f.’s—for continuous
random variables. In this appendix we present a more general result. This general
result allows us to construct random variables and, in particular, distributions on
any abstract space. This is the result that allows us to claim that studying random
variables on ([0, 1],B ([0, 1]), �) is enough. We had to postpone presenting the
result until this point since we had to learn first how to integrate.

Theorem 14.12 (General Transport Formula) Let (�,R, P) be a prob-
ability space. Let f be a measurable function such that

(�,F )
f−→ (S,G )

ϕ−→ (R,B (R)),

where (S,G ) is a measurable space. Assuming that at least one of the integrals exists,
we then have ∫

�

ϕ ◦ f dP =
∫
S

ϕ dP ◦ f −1,

for all ϕ measurable functions.

Proof: We will use the standard argument technique discussed above.
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1. Let ϕ be the indicator function ϕ = 1A for A ∈ G :

1A(ω) =
{

1 if ω ∈ A,
0 otherwise .

Then we get∫
�

1A ◦ f dP =
∫
�

1A(f (ω)) dP(ω) =
∫
�

1f −1(A)(ω) dP(ω)

= P(f −1(A)) = P ◦ f −1(A) =
∫
S

1A d (P ◦ f −1),

recalling the definition of the integral of an indicator.

2. Let ϕ be a simple function ϕ = ∑n
i=1 ai1Ai , where ai ’s are constant and

Ai ∈ G .

∫
�

ϕ ◦ f dP =
∫
�

(
n∑
i=1

ai1Ai

)
◦ f dP

=
∫
�

n∑
i=1

ai(1Ai ◦ f ) dP =
n∑
i=1

ai

∫
�

1Ai ◦ f dP

(part 1)=
n∑
i=1

ai

∫
S

1Ai dP ◦ f −1

=
∫
S

n∑
i=1

ai1Ai dP ◦ f −1 =
∫
S

ϕdP ◦ f −1.

3. Let ϕ be a positive measurable function and let ϕn be a sequence of simple
functions such that ϕn ↗ ϕ, then∫
�

ϕ ◦ f dP =
∫
�

( lim
n→∞ϕn) ◦ f dP

=
∫
�

lim
n→∞(ϕn ◦ f ) dP

monotone convergence= lim
n→∞

∫
ϕn ◦ f dP

(part 2)= lim
n→∞

∫
ϕn dP ◦ f −1 monotone convergence=

∫
lim
n→∞ϕn dP ◦ f −1

=
∫
S

ϕ d (P ◦ f −1).

4. Let ϕ be a measurable function then ϕ+ = max(ϕ, 0), ϕ− = max(−ϕ, 0).
This then gives us ϕ = ϕ+ − ϕ−. Since at least one integral is assumed to
exist, we get that

∫
ϕ+ and

∫
ϕ− exist. Also note that

ϕ+ ◦ f (ω) = ϕ+(f −1(ω)) = max(ϕ(f (ω)), 0),

max(ϕ ◦ f (ω), 0) = (ϕ ◦ f )+(ω).
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Then

∫
ϕ+dP ◦ f −1 =

∫
ϕ+ ◦ fdP =

∫
(ϕ ◦ f )+dP,∫

ϕ−dP ◦ f −1 =
∫
ϕ− ◦ fdP =

∫
(ϕ ◦ f )−dP.

These equalities follow from part 3 of the proof. After subtracting both, we
obtain

∫
ϕ dP ◦ f −1 =

∫
ϕ ◦ f dP.

�

EXAMPLE 14.3

If X and Y are independent random variables defined on (�,R, P) with
X, Y ∈ L1(�), then XY ∈ L1(�):∫

�

XY dP =
∫
�

X dP
∫
�

Y dP (E(XY ) = E(X )E(Y )) .

Solution: Let us solve this example using the transport formula. Let us take f :
� → R2, f (ω) = (X (ω), Y (ω)); and ϕ : R2 → R, ϕ(x, y) = xy. Then we have
from the transport formula the following:

∫
�

X (ω)Y (ω) dP(ω)
(T )=

∫
R2
xy dP ◦ (X, Y )−1.

The integral on the left is E(XY ), while the integral on the right can be calculated
as

∫
R2
xy d (P ◦ X −1, P ◦ Y −1) =

∫
R

x dP ◦ X −1
∫
R

y dP ◦ Y −1

(T )=
∫
�

X (ω) dP(ω)
∫
�

Y (ω) dP(ω) = E(X )E(Y ).

�
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EXAMPLE 14.4

Finally we conclude with an application of the transport formula which will
produce one of the most useful formulas. Let X be an r.v. defined on the
probability space (�,F ,P) with distribution function F (x). Show that

E(X ) =
∫
R

x dF (x),

where the integral is understood in the Riemann–Stieltjes sense.
Proving the formula is immediate. Take f : � → R, f (ω) = X (ω)

and ϕ : R→ R, ϕ(x) = x. Then from the transport formula, we have

E(X ) =
∫
�

X (ω) dP(ω) =
∫
�

x ◦ X (ω) dP(ω)
(T)=

∫
R

x dP ◦ X −1(x)

=
∫
R

x dF (x).

Clearly if the distribution function F (x) is derivable with dF
dx

(x) = f (x)
or dF (x) = f (x) dx, we obtain the lower-level classes formula for calculating
expectation of a ‘‘continuous’’ random variable:

E(X ) =
∫
R

x f (x) dx.
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