

Département de mathématiques Errachidia Année Universitaire: 2020/2021 MIP S3, Module: M 135

Responsables: S.M. DOUIRI & M. TAOUS

Série de TD n°2

Exercice 1. Étudier l'existence d'une limite en (0,0) pour les fonctions suivantes :

1)
$$f(x,y) = \frac{x}{y}$$
 2) $f(x,y) = \frac{1 - \cos(xy)}{y^2}$ **3)** $f(x,y) = \frac{(x^2 + y^2)^2}{x^2 - y^2}$

4)
$$f(x,y) = \frac{\sin(xy)}{|x| + |y|}$$
 5) $f(x,y) = \frac{2x^2 + xy}{\sqrt{x^2 + y^2}}$.

Exercice 2. 1. Soit f la fonction définie par $f(x,y) = \frac{1+x^2+y^2}{y} \sin y$.

- a) f est-elle continue sur son domaine de définition?
- b) Peut-on prolonger f par continuité sur \mathbb{R}^2 ?
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit $F: \mathbb{R}^2 \to \mathbb{R}$ par

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{sinon.} \end{cases}$$

Démontrer que F est continue sur \mathbb{R}^2 .

Exercice 3. Soient $m \in \mathbb{N}$ et f la fonction définie sur \mathbb{R}^2 par:

$$f(x,y) = \begin{cases} \frac{x^m y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0); \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Montrer que f est continue sur $\mathcal{D} = \mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N}$.
- 2. Calculer les dérivées partielles de f en chaque point de \mathcal{D} et pour tout $m \in \mathbb{N}$.
- 3. Justifier pourquoi f est de classe \mathcal{C}^1 sur \mathcal{D} et pour tout $m \in \mathbb{N}$.
- 4. La fonction f est-elle différentiable sur \mathcal{D} ?
- 5. Dans cette question, nous étudions f en (0,0).
 - (a) Étudier suivant m la continuité de f en (0,0).
 - (b) Étudier l'existence des dérivées partielles de f en (0,0) pour tout $m \in \mathbb{N}$.
 - (c) Pour quelles valeurs de $m,\,f$ est-elle différentiable en (0,0) ?
 - (d) Selon les valeurs de m, déterminer le plus grand ouvert de \mathbb{R}^2 sur lequel f est de classe \mathcal{C}^1 .
- 6. Pour m=0, on considère la fonction $g:\mathbb{R}\longrightarrow\mathbb{R}^2$ définie par g(t)=(t,-t). Montrer que $g\circ f$ est différentiable sur \mathcal{D} et calculer la matrice jacobienne de $g\circ f$.

Département de mathématiques Errachidia Année Universitaire: 2020/2021

MIP S3, Module: M 135

Responsables: S.M. DOUIRI & M. TAOUS

Exercice 4. Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} x^2y^2 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0; \\ 0 & \text{sinon.} \end{cases}$

- 1. Calculer les dérivées partielles de f sur \mathbb{R}^2 .
- 2. Montrer que f n'est pas de classe C^1 sur \mathbb{R}^2 .
- 3. La fonction f est-elle différentiable sur \mathbb{R}^2 ?

<u>Exercice</u> 5. Déterminer les extrema locaux et globaux des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes:

1.
$$f(x,y) = 2x^3 + 6xy - 3y^2 + 2$$

2.
$$f(x,y) = y(x^2 + (\ln y)^2)$$

3.
$$f(x,y) = x^4 + y^4 - 4xy$$

<u>Exercice</u> 6. Afin de traiter une infection bactérienne, l'utilisation conjointe de deux composés chimiques est proposée. Des études ont montré que la durée de l'infection pouvait être modélisée par

$$f(x,y) = x^2 + 2y^2 - 18x - 24y + 2xy + 120,$$

où x est le dosage en mg du premier composé et y est le dosage en mg du second. Comment minimiser la durée de l'infection?

- Exercice 7. 1. Montrer que la condition $e^{xy} + y^2 = xy 2x + 3y 1$ définit y comme fonction de x au voisinage de (0,1).
 - 2. Montrer que cette fonction admet un développement limité à tout ordre au voisinage de 0 et donner ce développement limité à l'ordre 2.