

Année Universitaire : 2019/2020

Filière: MIP, Section 2

Module: C121

Département de chimie Pr Ahmed AIT HOU

TD - Série 2 : Thermodynamique chimique

Exercice 1:

On donne dans les conditions standards les réactions de combustion suivantes :

 $C_2H_4(g) + 3O_2(g) \rightarrow 2 CO_2(g) + 2H_2O(l) \Delta Hr,^{\circ} 298(1) = -332 \text{ kcal}$

 $H_2(g) + 1/2O_2(g) \rightarrow H_2O(l) \Delta Hr,^{\circ} 298(2) = -68.3 \text{ kcal}$

 $C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3H_2O(1) \Delta Hr$, 298 (3) = -72,8 kcal

1. Déterminer la chaleur standard Δ H°r,298 (4) de la réaction suivante :

 $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

2. Calculer la chaleur de la formation de C₂H₆ (g).

On donne : $\Delta \text{ Hf}^{\circ},298 (C_2H_4, g) = 8,04 \text{ kcal mol}^{-1}$

3. En utilisant le cycle de Hess, déterminer la chaleur de formation de la liaison C-C On donne :

 ΔH° sublimation(C,s) = 171,7 kcal mol⁻¹

 $\Delta \text{ H}^{\circ}298 \text{ (H-H)} = -104 \text{ kcal mol}^{-1}$

 $\Delta \text{ H}^{\circ}298 \text{ (C-H)} = -99,5 \text{ kcal mol}^{-1}$

Exercice 2:

On trouve dans les tables de constantes, les chaleurs de combustion <u>exothermiques</u> des composés gazeux ci-dessous :

pour C₂H₄: 331,6 Kcal/mole et pour C₂H₄Cl₂: 367,1 Kcal/mole.

Les chaleurs de formation de CO₂ et de H₂O sont respectivement de -94 Kcal/mole et de -68,4 Kcal/mole.

- 1-Ecrire les réactions de combustion de C_2H_4 et de $C_2H_4Cl_2$.
- 2-En déduire les chaleurs de formation de C₂H₄ et de C₂H₄Cl₂.
- 3-Calculer la chaleur mise en jeu dans la réaction : C₂H₄ + Cl₂ -----> C₂H₄Cl₂.

On donne les enthalpies de liaison des liaisons suivantes :

	Sublimation C	C=C	С-Н
Enthalpie (Kcal/mole)	171,7	83	98,2

Ecrire l'équation de formation de C₂H₄. En déduire l'enthalpie de liaison de la liaison H-H.

Exercice 3:

On mélange dans une enceinte adiabatique 360 g d'eau à 25°C avec 36 g de glace à 0°C.

- 1. Calculer la température d'équilibre thermique.
- 2. Calculer la variation d'entropie accompagnant cette transformation.

On donne:

Chaleur spécifique molaire de l'eau liquide : $Cp(H_2O, 1) = 75,25 \text{ J.mol}^{-1} \text{ K}^{-1}$

Variation d'enthalpie de fusion de la glace : $\Delta H^{\circ}_{\text{fusion},273}$ (H₂O, s) = 5,94 kJ.mol⁻¹

Exercice 4:

1. Quelle est l'entropie absolue molaire standard de l'eau à 25°C, sachant que :

 S°_{273} (H₂O, s) = 10,26 cal.mol⁻¹.K⁻¹

 $\Delta H^{\circ}_{\text{fusion,273}}$ (H₂O, s \rightarrow H₂O, l) =1440 cal.mol⁻¹

 $Cp(H_2O, 1) = 11.2 + 7.17.10^{-3} \text{ T cal.mol}^{-1}.\text{K}^{-1}.$

2. Quelle est l'entropie molaire standard de formation de l'eau à 25°C, sachant que :

 $S^{\circ}298 (H_2,g) = 31,21 \text{ cal.mol}^{-1}.K^{-1}$

 $S^{\circ}298 (O_2,g) = 49,00 \text{ cal.mol}^{-1}.K^{-1}$

3. Calculer la variation d'entropie standard accompagnant la réaction suivante à 25°C :

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

- a) En utilisant les entropies molaires standards de formation $\Delta S^{\circ}_{f,298}$.
- b) En utilisant les entropies molaires standards absolues $S^{\circ}298$.

Exercice 5:

Soit la réaction suivante : $C_2H_4(g) + H_2O(g) ===> C_2H_6O(g)$

On dispose des données suivantes à 298K:

	$C_2H_4(g)$	$H_2O(g)$	$C_2H_6O(g)$
Δ Hf (kJ/mol)	52,3	-241,8	-235,1
S° (J/K/mol)	220	189	283
Cp(J/mol/K)	44	34	65

- 1- Calculer les grandeurs thermochimiques suivantes relatives à cette réaction à 298K
 - a. La variation Δ H de réaction
 - b. La variation d'énergie interne ΔU de réaction
 - c. La variation d'entropie
 - d. LA variation d'enthalpie libre ΔG
- 2- Calculer les grandeurs suivantes relatives à cette réaction à 450K
 - a- La variation Δ H de réaction
 - b- LA variation d'enthalpie libre $\Delta\,G$, sachant que la variation d'entropie à 450K est égale à -131,4J/K/mol
- 3- Que peut on conclure à partir des deux valeurs de Δ G à 298K et à 450K?