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Introduction

Ce cours constitue une introduction au Calcul Scientifique. Son objectif est de présenter des
méthodes numériques permettant de résoudre avec un ordinateur des problemes
mathématiques qui ne peuvent pas étre traités simplement avec une feuille et un stylo.

Apres la présentation de quelques éléments de base de Matlab, on introduira les principales
opérations usuelles sur les scalaires, les vecteurs et les matrices. On verra ensuite comment
utiliser des fichiers script (M-file) et function avec Matlab avant de présenter certaines
operations graphiques offertes par ce logiciel.

Dans le chapitre 4 on apprendra la syntaxe des tests et des différentes boucles de
programmation en Matlab, et dans le chapitre 5 on verra quelques fonctions plus avancées
existant dans Matlab.

Dans le chapitre 5, 6 et 7 on apprendra comment résoudre les équations non-linéaires, les
équations linéaires par les méthodes directes et des équations linéaires par les méthodes
itératives.

11 faut rappeler ici qu’un langage scientifique comme Matlab exige rigueur et maitrise parfaite.
Sa simplicité apparente ne doit pas cacher I’effort qu’il faut fournir pour apprendre
correctement la syntaxe qu’il utilise et savoir ensuite comment traduire dans ce langage les
algorithmes mathématiques. Un langage de programmation ne peut se substituer au travail
amont qui consiste a traduire sous forme d’algorithme et ensuite d’organigramme ce que 1’on

veut programmer.



Chapitrel: Introduction a I'environnement Matlab

1. Présentation de Matlab

Matlab est un langage de programmation, mais il est beaucoup plus que ¢a. Il s’agit en fait de
ce qu’on appelle une console d’exécution (shell) qui partage certaines des caractéristiques
des consoles DOS ou UNIX.

Comme toutes les consoles, Matlab permet d’exécuter des fonctions, d’attribuer des valeurs a
des variables, d’effectuer des opérations mathématiques, de manipuler des matrices, de tracer
facilement des graphiques, etc.

La figure 1 présente 1’écran Matlab de base: la fenétre de commandes.

Le symbole >> s’appelle prompt ou bien invite de Matlab. Il invite 1’utilisateur a taper une

commande.
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Figure 1 : Fenétre de commandes de Matlab

La commande quit permet de quitter MATLAB :
>>quit

La commande help permet de donner I’aide sur un probléme donné.



Il est utile de noter que le langage Matlab n’est pas un langage compilé (contrairement au
langage C++, par exemple). Le logiciel lit et exécute les programmes instruction par
instruction et ligne par ligne.

Lorsque Matlab détecte une erreur, le logiciel s’arréte et un message d’erreur ainsi que la
ligne ou D’erreur est détectée s’affichent a 1’écran. Apprendre a lire les messages d’erreur

est donc important pour ’déboguer” les programmes rapidement et efficacement.

2. L'environnement de Matlab

Matlab affiche au demarrage plusieurs fenétres. Selon la version on peut trouver les fenétres
suivantes:

Current Folder : indigue le répertoire courant ainsi que les fichiers existants.

Work space: indique toutes les variables existantes avec leurs types et valeurs.

Command History: utilisée pour formuler nos expressions et interagir avec Matlab.

C'est la fenétre que nous utilisons tout au long de ce chapitre.
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Figure 2 : L'environnement de Matlab

Dans la fenétre de commande, I’utilisateur peut affecter des valeurs a des variables et
effectuer des opérations sur celles-ci.

Par exemple :



>> x=4

SN

>> y:2

>>X+y

ans =

>>X*y

ans =

8

>>

Ici, il faut noter que lorsque I’utilisateur ne fixe pas de variable de sortie, Matlab place par
défaut le résultat d’une opération dans la variable ans. 1l est toujours possible de
connaitre les variables utilisées et leur type a 1’aide de la commande who ou bien whos. Par

exemple, pour les manipulations précédentes:

>>whos

Name Size Bytes Class
ans 1x18 double array
X 1x18 double array
y 1x18 double array

Grand total is 3 elements using 24 bytes

>>

La solution de x+y a donc été perdue. Il est donc préférable de toujours donner des noms aux
variables de sortie :

>> x=4,

>> y=2;

>> a=x+y

a =



>>Wwhos

Name Size Bytes Class
a 1x18 double array
b 1x18 double array
X 1x18 double array
y 1x1 8 double array

Grand total is 4 elements using 32 bytes

>>
Notons au passage que le point-virgule permet de ne pas afficher la valeur a 1’écran, ce qui

permettra éventuellement des programmes plus rapides.
Le signe de pourcentage (%) permet de mettre ce qui suit sur une ligne en commentaire
(Matlab n’en tiendra pas compte a I’exécution).

La fonction clear permet d’effacer des variables. Par exemple :

>>clear x % on efface x de la mémoire

>>whos

Name Size Bytes Class
a 1x18 double array
b 1x18 double array
y 1x18 double array

Grand total is 3 elements using 24 bytes

>>

La sortie de la fonction whos donne, entre autre, la classe de la variable. Plusieurs classes de
variables sont disponibles a I’utilisateur de Matlab.

Le signe de pourcentage % permet de mettre ce qui suit sur une ligne en commentaire
( Matlab n'en tiendra pas compte a I'exécution).

Les classes les plus utiles pour ’utilisateur débutant sont I’entier, le réel simple, le réel double
et les variables caractére ‘char’.

Pour les variables char, la déclaration se fait entre apostrophes:

>> motl = ’bonjour’

motl = bonjour

Il est possible de concaténer des mots a 1’aide des parenthéses carrees (crochets)(la fonction
strcat de Matlab permet d’effectuer sensiblement la méme tache) :

>> motl = ’bonjour’;



>> mot2 = ’tout le monde’;

>> motl 2 = [motl > * mot2] % I’emploi de ’ ° permet d’introduire un espace

motl 2 = bonjour tout le monde.

3. Les principales constantes, fonctions et commandes

Matlab définit les constantes suivantes:

La constante Sa valeur
pi n=3.1415.....
exp(1) e=2.7183
i V1
j V1
Inf o0
NaN Not a Number (Pas un nombre)
eps e~2x107"°

Parmi les fonctions fréquemment utilisées, on peut noter les suivantes:

La fonction Sa signification

sin(x) Le sinus de x (en radian)

cos(x) Le cosinus de x (en radian)

tan(x) Le tangent de x (en radian)

asin(x) L'arc sinus de x (en radian)

acos(x) L'arc cosinus de x (en radian)

atan(x) L'arc tangent de X (en radian)

sqrt(x) La racine carrée de x : v/x

abs(x) La valeur absolue de x : ||

exp(x) =e*

log(x) Logarithme naturel de x : In(x)=log, (x)
log10(x) Logarithme & base 10 de x : log,, (X)
imag(x) La partie imaginaire du nombre complexe x

real(x)

La partie réelle du nombre complexe x




round(x) Arrondi un nombre vers l'entier le plus
proche

floor(x) Arrondi un nombre vers I'entier le plus petit:
max{n[n<x,nentier|

ceil(x) Arrondi un nombre vers l'entier le plus
grand: max{n|n>x, nentier}

conj(X) conjugué du nombre complexe X

angle(X) argument (en radians)

Matlab offre beaucoup de commandes pour linteraction avec [I'utilisateur. Nous nous

contentons pour l'instant d'un petit ensemble, et nous exposons les autres au fur et a mesure de

I'avancement du cours.

La commande

Sa signification

who Affiche le nom des variables utilisées

whos Affiche des informations sur les variables utilisées

clear x y Supprime les variables x et y

clear, clear all Supprime toutes les variables

clc Efface I'écran

exit,quit Fermer I'environnement Matlab

format: Définit le format de sortie pour les valeurs numeriques.
format long a 15 chiffres.

format long format court a 5 chiffres avec notation en virgule flottante.

format short e

format long e

format long a 15 chiffres avec notation en virgule flottante.

disp permet d'afficher un tableau de valeurs numériques ou de
caracteres.

Num2str pour convertir une valeur numérique en une chaine de
caractéres

Input permet de demander a l'utilisateur d'un programme de fournir

des données (La syntaxe est var = input(' une phrase ‘).
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Chapitre 2: Opérations mathématiques de base avec Matlab:

Scalaires, vecteurs et matrices

Plusieurs types de données sont disponibles dans Matlab. Les types traditionnels que I’on
retrouve dans tous les langages de programmation: les types numériques (single, double, int8,
etc...), caractéres char, les tableaux de réels, et les tableaux creux sparse, et les types
composées cell, structure ainsi que les types définis par I’utilisateur, comme les fonctions
inline. Le type de donnée privilégiée sous Matlab est les tableaux a une ou deux dimensions,
qui correspondent aux vecteurs et matrices utilisés en mathématiques et qui sont aussi utilisés
pour la représentation graphique. Nous allons donc nous attarder sur leur définition et leur
maniement dans les paragraphes qui suivent.

L’élément de base de Matlab est la matrice. C’est-a-dire qu’un scalaire est une matrice de
dimension 1x1, un vecteur colonne de dimension n est une matrice nx1, un vecteur ligne de
dimension n, une matrice 1xn. Contrairement aux langages de programmation usuels (i.e.
C++), il n’est pas obligatoire de déclarer les variables avant de les utiliser et, de ce fait, il faut
prendre toutes les précautions dans la manipulation de ces objets.

Les scalaires se déclarent directement, par exemple :

>> x=0;

>>a = X;

1. Vecteurs

Les vecteurs lignes se déclarent de la maniére suivante :
>>V _ligne=[0 1 2]
V _ligne =
0 1 2
Ou bien
>>V_ligne = [0, 1, 2]
V_ligne =
0 1 2
Pour les vecteurs colonnes, on sépare les éléments par des points-virgules ( ;) :
>>V_colonne = [0;1;2]

V_colonne =

11



0

1

2

Il est possible de transposer un vecteur a I’aide de la fonction transpose ou avec le point
apostrophe (."). Ainsi,

>>V/_colonne=transpose(V_ligne)

V_colonne =

0

1

2

>>V_colonne=V_ligne.'

V_colonne =

0

1

2

Le double point (:) est I’opérateur d’incrémentation dans Matlab. Ainsi, pour créer un vecteur
ligne des valeurs de 0 a 1 par incrément de 0.2, il suffit d’utiliser:

>> V=1[0:0.2:1]

V =

Columns 1 through 6

0O 0.2000 0.4000 0.6000 0.8000  1.0000

Par défaut, I’incrément est de 1. Ainsi, pour créer un vecteur ligne des valeurs de 0 a 5 par
incrément de 1, il suffit d’utiliser :

>> V=[0:5]

V =

0 1 2 3 4 5

On peut acceder a un élément d’un vecteur et méme modifier celui-ci directement (Notez que
contrairement au C++, il n’y a pas d’indice 0 dans les vecteurs et matrices en Matlab) :
>>a=V(2);

>> V(3)=3*a

V =

0 1 3 3 4 5

12



La création d'un vecteur dont les composants sont ordonnés par intervalles régulier et avec un
nombre d'éléments bien déterminé peut se reéaliser avec la fonction linspace (début, fin,
nombre d'éléments).

Le pas d'incrémentation est calculé automatiquement par Matlab selon la formule suivante:

B fin—debut

" nombre d'éléments—1

le pas

>> X=linspace(1,10,4) % un vecteur de quatre élément de 1 a 10
X =
1 4 7 10
La taille d'un vecteur (le nombre de ses composants)peut étre obtenue avec la fonction length
comme suit:
>>length(X) % la taille du vecteur X
ans =
4
Les opérations usuelles d’addition, de soustraction et de multiplication par scalaire sur les
vecteurs sont définies dans MATLAB :
>> V1=[1 2];
>> V2=[3 4];

>> V=V1+V2 % addition de vecteurs

V =
4 6

>> V=V2-V1 % soustraction de vecteurs

V =

2 2

>> V=2*V1 % multiplication par un scalaire
V =

2 4

Dans le cas de la multiplication et de la division, il faut faire attention aux dimensions des
vecteurs en cause.

Pour la multiplication et la division élément par élément, on ajoute un point devant I’opérateur
(.* et ./). Par exemple :

>> V=V1.*V2 % multiplication élément par élément

13



V =

3 8
>> V=V1./V2 % division élément par élément
V =

0.3333  0.5000

Cependant, Matlab lance une erreur lorsque les dimensions ne concordent pas. Les messages
d’erreur sont utiles pour corriger les programmes (parenthése oublié par exemple). Il faut
cependant procéder a la vérification systématique de 1’instruction ou du programme avant de
lancer I’exécution (reflexe de base d’un programmeur):

>> V3=[1 2 3]

V3 =

1 2 3

>> V=V1.*V3

??? Error using ==> .* Matrix dimensions must agree.

La multiplication de deux vecteurs est donnée par (*). Ici, I’ordre a de I’importance :

>> V1=[1 2]; % vecteur 1x2

>> V2=V1.; % vecteur 2x1

>> V=V1*V2

V =

5

>> V=V2*V1

V =

1 2

2 4

Il est aussi possible de concaténer des vecteurs.

Par exemple :

>> V1=[1 2];

>> V2=[3 4];

>> V=[V1 V2]

V =

1 2 3 4

De méme, pour les vecteurs colonnes :

>> V1=[1;2];

>> V2=[3;4];

14



>> V=[V1;V2]
V =
1

2
3
4
2. Matrices

On peut aussi créer des matrices a partir de vecteurs, par exemple,
>> V1=[1 2];

>> V2=[3 4];

>> V=[V1;V2]

V =

1 2

3 4

qui n’est pas équivalent a :

>> V1=[1;2];

>> V2=[3;4];

>> V=[V1 V2]

V =

1 3

2 4

Il faut donc étre tres prudent dans la manipulation des vecteurs. Par exemple, une mauvaise
concaténation :

>> V1=[1 2];

>> V2=[3;4];

>> V=[V1;V2]

??? Error using ==>vertcat All rows in the bracketed expression must have the same
number of columns.

Les matrices peuvent aussi étre construites directement :

>> M=[1 2; 3 4]

M =

15



3 4

On peut évidemment avoir accés aux éléments de la matrice par :

>> m21=M(2,1) % Z2e ligne, lere colonne

m21 =

3

On peut aussi “compter” les ¢léments. Matlab compte alors tous les éléments d’une colonne
(de haut en bas) avant d’accéder a la colonne suivante. Ainsi, dans la matrice 3x3 suivantes:
>> A=[1 2 3; 8 5 6;7 8 9]

A =

1 2 3
8 5 6
7 8 9

les valeurs des éléments ai,j sont données par leur rang affecté par Matlab. Lede élément est
2:

>> ad=A(4)

a4 =

2

Il est aussi possible de stocker dans un vecteur une ou plusieurs lignes (ou colonnes).
Ainsi, si I’on veut stocker la deuxiéme colonne de la matrice A :

>> V=A(;,2) % ici, (:) signifie toutes les lignes

V =

2

5

8

De la méme maniére, si I’on veut stocker les lignes 2 et 3 :

>> M2=A(2:3,:)) % (2:3) signifie ligne 2 a 3

% et (:) signifie toutes les colonnes

M2 =
8 5 6
7 8 9

I1 est possible d’inverser inv(), de transposer transpose() ou avec 1’apostrophe (.”)les matrices :
>>invM=inv(M)

invM =

-2.0000  1.0000

16



1.5000 -0.5000
>>transpM=M.”

transpM =
1 3
2 4

Un des intéréts de Matlab est la possibilité d’utiliser directement les opérations
mathématiques prédéfinies pour les matrices. L’addition et la soustraction sont directes

(attention aux dimensions) ainsi que la multiplication par un scalaire :

>> A=[1 2,3 4]

>> B=[4 3;2 1];

>> C=A+B % addition
C=

5 5

5) 3)

>> D=A-B % soustraction
D=

-3 -1

1 3

>> C=3*A % multiplication par un scalaire
C=

3 6

9 12

Pour la multiplication et la division, les opérateurs usuels (* et /) sont définis pour la
multiplication et division matricielles :

>> C=A*B % multiplication de matrices

C=
8 5

20 13

>> D=A/B % division de matrices
D=

1.5000 -2.5000
2.5000 -3.5000
Afin de réaliser la multiplication et la division élément par élément, on précéde les opérateurs

par un point ((* et ./) :

17



>> C=A*B % multiplication élément par élément

C=
4 6

6 4

>> D=A./B % division élément par élément
D=

0.2500  0.6667

1.5000  4.0000

D’autres opérations sur les matrices seront présentées dans les sections subséquentes.

Il faut noter certaines matrices spéciales qui peuvent étre utilisées, par exemple la matrice
identité :

>> |=eye(3) % matrice identité

I=

1 0 0
0 1 0
0 0 1

On peut aussi déclarer des vecteurs (et des matrices) ne contenant que des zéros ou des 1.

>>V_nul=zeros(1,2) % un vecteur de 1 ligne, 2 colonnes de 0
V_nul=

0 0

>>V_un=ones(1,2) % un vecteur de 1 ligne, 2 colonnes de 1
V_un=

1 1

>>M_un=ones(2,2) % une matrice 2x2 de 1

M_un=

1 1

1 1

Dans certaines applications, il est parfois utile de connaitre les dimensions d’une matrice, et la
longueur d’un vecteur (retournés, par exemple, par une fonction).
Dans ce cas, on utilise les fonctions length et size.

>> V=[0:0.1:10]; % utilisation de length - vecteur 1x101

>> n=length(V)

n=

18



101
>> M=[1 2 3; 4 5 6]; % utilisation de size - matrice 2x3

>> [n,m]=size(M)

>>dim=length(M) % utilisation de length sur une matrice

dim=

3

Dans ce cas length donne la plus grande dimension, ici le nombre de colonnes.

A=[123;245;678],
det(A) % calcule le déterminant de A
>>det(A)
ans =
-5.0000

>>B=[-5-2; 2 1];
>>abs(B) % la valeur absolue
ans =

5 2

2 1

Il existe aussi des commandes qui sont propres aux vecteurs. Ces commandes s’appliquent

aussi aux matrices. Dans ce cas la commande porte sur chaque vecteur colonne de la matrice.

La commande Sa signification

sum(x) Somme des éléments du vecteur x

prod(x) produit des éléments du vecteur x

max(X) plus grand élément du vecteur x

min(x) plus petit élément du vecteur x

mean(x) moyenne des éléments du vecteur X

sort(x) ordonne les eéléments du vecteur x par ordre
croissant
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3. Les polynémes dans Matlab

Dans Matlab, les polynémes sont représentés sous forme de vecteurs lignes dont les
composantes sont données par ordre des puissances déecroissantes. Un polyndme de degré n
est représenté par un vecteur de taille (n+1).
a) Représentation d'un polynéme
Le polyndme: p(x)=3x?-5x + 2
On commence par définir un " vecteur " qui contient les coefficients du polynéme :
p=[3-52]
p=
3 5 2
b) Les racines d'un polynéme:
La fonction roots permet de trouver les racines d'un polynéme. L'exemple suivant montre
I'utilisation de cette fonction.
roots(p) % trouver les racines d'un polynéme
ans =
1.0000
0.6667
C) Détermination des coefficients d’'un polynéme a partir de ses racines
La fonction poly permet de trouver le polyndme a partir de ses racines.
On cherche, par exemple, le polynéme qui a pour racines: 2 et 1
Celle-ci peuvent étre définies comme les éléments d'un vecteur a.
a=[2 1]
a=
2 1
>>poly(a) %trouve le polynéme a partir de ses racines
ans =
1 -3 2
Quicorresponda  f(x)=x2-3x +2
d) Evaluer le polynébme
Pour évaluer un polyndme en un point, on utilise la fonction polyval

Essayons de trouver la valeur du polyndme p en 1 et celle du polynéme a en 0.

>>p=[3 5 2]
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p=
3 5 2
>>polyval(p,1) % évalue le polynéme
ans =
0
>>a=[21]
a=
2 1
>>polyval(a,0)
ans =
1
e) Les opérations de polynéme
La multiplication et la division de polyndme peuvent étre réalisées facilement avec MATLAB.
Soit deux polynémes P1 et P2 définis par :
P1(X)=x+2
P2(x)=x"—2x+1
>>P1=[12]
Pl1=
1 2
>>P2=[1-21]
P2 =
1 -2 1
Le résultat de la multiplication de P1 par P2 est le polyn6me P3 qui s’obtient avec la fonction

conv.
>> P3=conv(P1,P2)
P3 =

1 0 -3 2

La division de deux polynémes se fait par la fonction deconv. Le quotient Q et le reste R de la

division peuvent étre obtenus sous forme d’élément d’un tableau.
>> [Q, R] = deconv (P2, P1)
Q =
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4. Extraction d’une sous-matrice

On peut utiliser les deux points pour extraire une sous-matrice d’une matrice A.

A(:,)) :extrait la jeme colonne de A. On considére successivement toutes les lignes de

A et on choisit le jeme élément de chaque ligne.

A(i,:) :extrait la ieme ligne de A.

A(:) :reforme le matrice A en un seul vecteur colonne en concaténant toutes les colonnes de A.
A(j:k) :extrait les éléments j a k de A et les stocke dans un vecteur ligne

A(:,j:K) :extrait la sous-matrice de A formée des colonnes j a k.

A(j:k,:) : extrait la sous-matrice de A formée des lignes j a k.

A(j:k,q:r) :extrait la sous-matrice de A formée des éléments situés dans les lignes j a ket dans
les colonnesqar.

Ces définitions peuvent s’étendre a des pas d’incrémentation des lignes et des colonnes

différents de 1.

Par exemple:
>>A=[1234;5678;9101112] % création de la matrice A
A=
1 2 3 4
5 6 7 8
9 10 11 12
>> A(2,3) % I'élément dur la 2éme ligne a la 3¢me colonne
ans =
-,
>>A(1,:)) % tous les éléments de la 1ére ligne
ans =
1 2 3 4
>>A(:;,2) % tous les éléments de la 2éme colonne
ans =
2
6
10
>>A(2:3,:) % tous les éléments de la 2éme et la 3éme ligne

ans =

22



5 6 7 8

9 10 11 12
>>A(1:2,3:4) % la sous matrice supérieure droite de taille 2x2
ans =

3 4

7 8
>>A([1,3],[2,4]) % la sous matrice: ligne(1,3) et colonnes (2,4)
ans =

2 4

10 12
>>A(:,3)=[] % supprimer la 3¢éme colonne
A=

1 2 4

5 6 8

9 10 12
>>A(2,)=[] % supprimer la 2éme ligne
A=

1 2 4

9 10 12
>> A=[A, [0;0]] % Ajouter une nouvelle colonne ou A(:,4)=[0;0]
A=

1 2 4 0

9 10 12 0
>> A=[A;[1, 1, 1, 1]] % Ajouter une nouvelle ligne ou A(3,:)=[1 11 1]
A=

1 2 4 0

9 10 12 O

1 1 1 1
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5. Génération automatique des matrices:

Dans Matlab, il existe des fonctions qui permettent de générer automatiquement des matrices

particuliéres. Dans le tableau suivant nous présentons les plus utilisées:

La fonction Signification

zeros(n) Géneére une matrice nxn avec tous les éléments=0
zeros(m,n) Géneére une matrice mxn avec tous les éléments=0
ones(n) Géneére une matrice nxn avec tous les éléments=1
ones(m,n) Géneére une matrice mxn avec tous les éléments=1
eye(n) Géneére une matrice identité de dimension nxn

magic(n) Génere une matrice magique de dimension nxn
rand(m,n) Géneére une matrice dimension mxn de valeur aléatoire
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Chapitre 3: Fichiers script et function

Jusqu’a présent, I’utilisation que nous avons faite de Matlab s’apparente beaucoup a
celle d’une calculatrice. Pour des taches répétitives, il s’avére beaucoup plus pratique et
judicieux d’écrire des programmes pour effectuer les calculs désirés.

Il existe deux types de fichiers qui peuvent étre programmé savec Matlab: les fichiers
script(M-file) et function. Dans les deux cas, il faut lancer 1’éditeur de fichier et sauvegarder

le fichier avec I’extension .m.

1. Fichiers script

Comme tout langage, Matlab posséde aussi un certain nombre d’instructions syntaxiques
(boucles simples, conditionnelles, etc...) et de commandes élémentaires (lecture, écriture,
etc...). Ces instructions syntaxiques seront vues dans la partie suivante du cours.

Deés que le calcul a effectuer implique un enchainement de commandes un peu compliqué, il
vaut mieux écrire ces dernieres dans un fichier. Par convention un fichier contenant des
commandes Matlab porte un nom avec le suffixe. m et s’appelle pour cette raison un M-file
ou encore script. On utilisera toujours I’éditeur intégré au logiciel qui se lance a partir de la
fenétre de commande en cliquant sur les icones New ou open dans la barre de menu.

Une fenétre d'édition comme celle-ci va apparaitre:

" Editor - Untitled =RNE X
[ R, ~ o
, [ Find Files nsert 51 fx - D 6) L@ :
?j - L L%| Run Section
1| Compare ¥  Comment 95 ‘s 4l o GoTo +
New Open Save — — Breakpoints Run  Runand Runand I%Mvanoe
- - - = Print = Indent B \{ Find - - Time  Advance
FILE EDIT NAVIGATE | BREAKPOINTS RUN
Untitled  x
1 ]
script Ln 1 Col 1

Figure 3 : La fenétre d'édition de Matlab
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Une fois le fichier enregistré sous un nom valide, on peut exécuter les commandes qu’il
contient en tapant son nom - sans le suffixe .m - dans la fenétre de commande. Si vous avez
ouvert 1’éditeur comme indiqué, a partir de la fenétre de commande, les M-file seront créés
dans le répertoire courant, accessible depuis cette fenétre, et vous n’aurez pas de probléme
d’acces. Si vous voulez exécuter des scripts qui se trouvent ailleurs dans I’arborescence des
fichiers, vous aurez éventuellement & modifier le Path en cliquant sur le menu file— >SetPath
ou bien en changeant de répertoire de travail(cliquer sur I’onglet current directory).

Le fichier script permet de lancer les mémes opérations que celles écrites directement a la
fenétre de commandes de Matlab apres le symbole prompt (>>). Toutes les variables
utilisées dans un script sont disponibles & I’invite Matlab (fenétres de commandes) une
fois le script exécute.

Un script Matlab est composé d’une suite d’instructions, toutes séparées par une virgule (ou

de maniere équivalente, un passage a la ligne) ou un point virgule. La différence entre ces

deux types de séparation est liée a 1’affichage ou non du résultat a 1’écran (seulement effectué
dans le premier cas).

Par exemple, créons a 1’aide de I’éditeur intégré de Matlab dans le répertoire de travail choisi,
déja déclaré par SetPath, le fichier test. m. Supposons qu’il contient les instructions suivantes :
clear all

close all

X=4;

y=2;

a=x +y

b=x*y

Ecrivons dans la fenétre de commandes le nom du fichier

>>test

a=
6
b =
8

En tapant whos ensuite, on produit la sortie suivante:
Name Size Bytes Class
a 1x18 double array
b 1x18 double array
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X 1x18 double array

y 1x1 8 double array
Grand total is 4 elements using 32 bytes

>>

Habituellement, on utilise les fichiers script afin de :
— Déclarer des variables ;

— Effectuer des opérations mathématiques ;

— Appeler des fonctions ;

— Tracer des figures ;

— Programmer des algorithmes.

2. Fichiers function (M-file function)

L’idée de base d’une fonction est d’effectuer des opérations sur une ou plusieurs entrées ou
arguments pour obtenir un résultat qui sera appelé sortie. 1l estime portant de noter que 1’appel
de la fonction se fait en précisant ses variables entrées si ces derniéres ne sont pas disponibles
a ’invite Matlab.

Il est possible de créer nos propres fonctions en écrivant leurs codes " source" dans des
fichiers M-files (portant le méme nom de fonction) en respectant la syntaxe suivant:

function [1,, 1, ,...,I. ] = nom_fonction (arg,,arg,,...,arg, )

% le corps de la fonction

=... % lavaleur retournée pourr,
r,=... % lavaleur retournée pourfr,
r=... % lavaleur retournée pourr,

% le end est facultatif

end

ou: r,r,,...,r sont les valeurs retournées ,etarg, ,arg,,...,arg, sont les arguments.

le r6le d'une fonction est d'effectuer des opeérations sur une ou plusieurs entrées pour obtenir
un résultat qui sera appelé sortie.

Par exemple, la fonction suivante admet une seule sortie a qui constitue le résultat de
I’addition des deux arguments d’entrée X et y:

function a = ma_fonction(x,y)
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a=x+y;
end
Lorsqu’on tape dans la fenétre de commandes:

>> a = ma_fonction(4,2)

on obtient

a==6

Ensuite, on vérifieque

>>whos

Name Size Bytes Class
a 1x1 8 double array

Grand total is 1 element using 8 bytes

>>

Modifions la fonction pour lui demander de calculer aussi le produit de x et y de la fagon
suivate :

function [a,b] = ma_fonction2(x,y)

a=xXty;

b=x*y;

end

Dans ce cas, on Vérifie que:

>> [a,b] = ma_fonction2(4,2)

a =
6

b =

8

>>Whos

Name Size Bytes Class
a 1x18 double array
b 1x18 double array

Grand total is 2 elements using 16 bytes

>>

On peut éviter 1’affichage des sorties en utilisant le point-virgule :
>> [a,b]=ma_fonction2(4,2);

>>whos

Name Size Bytes Class
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a 1x18 double array

b 1x18 double array

Grand total is 2 elements using 16 bytes

Remarquons que nous pouvons appeler la fonction ma_fonction2 pour calculer uniquement la
somme de x et y. On obtient alors

>> a = ma_fonction2(4,2)

a =
6

>>whos

Name Size Bytes Class
a 1x1 8 double array

Grand total is 1 element using 8 bytes

Remarques importantes :

* Le passage des arguments d’entrée dans les fonctions se fait par valeur. Aussi, méme si elles
sont modifiées dans la fonction les valeurs des paramétres ne sont pas modifiées dans le
programme appelant.

* Si une des variables de la procédure n’est pas définie a I’intérieur de celle-ci elle doit
obligatoirement étre fournie en argument d’entrée.

* La récupération des valeurs calculées par la fonction se fait par les paramétres de sortie.

* Le nom du fichier contenant la fonction porte obligatoirement le nom de cette derniere. On
peut mettre plusieurs fonctions dans le méme M-file mais seule la fonction du méme nom
que le fichier peut étre utilisé, appelée, a partir de la fenétre de commandes ou d’une autre
fonction ou d’un script. Les autres fonctions éventuellement stockées dans le fichier peuvent
s’appeler entre elles mais ne sont pas visibles de 1’extérieur.

Habituellement, on utilise les fichiers function afin de :

— Programmer des opérations repétitives ;

— Limiter le nombre de variables dans I’invite Matlab :

— Diviser le programme (probléme) de maniere claire.

3. Définition d’une fonction par la commande « inline »

Une fonction ne comportant qu’un petit nombre d’instructions peut étre définie directement

dans la fenétre de commandes de la maniére suivante :
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>>angle=inline(‘atan(y/x)")

angle =

Inlinefunction:

angle(x,y) = atan(y/x)

>>angle(5,4)

ans =

0.6747

Les arguments de la fonction angle sont normalement fournis a I’appel dans 1’ordre
d’apparition dans la définition de la fonction. On peut aussi specifier les arguments d’appel
explicitement

>>f =inline('sin(alpha*(x+y))','’x",'y","alpha’)

f =

Inlinefunction:

f(x,y,alpha) =sin(alpha*(x+y))

>>f(0.2,0.3,pi)

ans =

1

4. Fonctions outils

Enfin, notez que certaines commandes spéciales ne peuvent s’utiliser qu’en relation a une
fonction: nargin, donne le nombre d’arguments d’entrée passes a 1’appel de la fonction.
function c=testargl1(a,b)

if (nargin== 1)

C=2%3;

elseif (nargin == 2)

c=a+b;

end

nargin peut aussi étre utilisée pour connaitre le nombre prévu d’arguments d’entrée
>>nargin(’testargl’)

ans =

2

La commande nargout fonctionne de maniére analogue pour les arguments de sortie.
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Chapitre 4: Fonctions et représentation graphique sous Matlab

1. Graphiques simples

Cette section vise une initiation aux nombreuses facultés graphiques offertes par Matlab.

Dans toutes les representations graphiques, le logiciel se base sur des données discrétes
rangées dans des matrices ou des vecteurs colonnes. Par exemple, pour représenter des
courbes du type y = f(x) ou des surfaces z = (X, y), les données x, y, z doivent étre des
vecteurs colonnes (x et y) ou des matrices (z) aux dimensions compatibles. L’instruction de
dessin correspondante (par exemple plot(x,y) pour tracer des courbes planes) est alors utilisée
et éventuellement complétée par des arguments optionnels (couleur, type de trait, échelle sur
les axes, etc...). La visualisation du résultat s’effectue dans une fenétre graphique (avec

possibilité de zoom, de rotation, d’ impression).

a) La fonction plot:
La fonction plot est utilisable avec des vecteurs ou des matrices. Elle trace des lignes en
reliant des points de coordonnées définis dans ses arguments, et elle a plusieurs formes:
Si elle contient deux vecteurs de la méme taille comme arguments: elle considere les
valeurs du premier vecteur comme les éléments de I'axe X (les abscisses), et les valeurs du
deuxieme vecteur comme les éléments de I’axe Y (les ordonnées), comme dans 1’exemple qui
suit :
>> A=[253-20]
A=

2 5 3 -2 0
>>B=[-40314]
B=

4 0 3 1 4

>>plot(A,B)

Si elle contient un seul vecteur comme argument: elle considéere les valeurs du vecteur
comme les éléments de I'axe Y (les ordonnees), et leurs positions relatives définiront I'axe X
(les abscisses),
Exemple:1
>>V=[2168-305]
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V=

2 1 6 8 -3 0 5
>>plot(V)

>>

Exemple:2

>> x=[0:0.01:2*pi];

>>plot(x,cos(x))

b) Modification de I'apparence d'une courbe

Ces graphiques manquent cependant de clarté. Il est possible de manipuler I'apparence d'une
courbe en modifiant la couleur de la courbe, la forme des points de coordonnées et le type de
ligne reliant les points.

Pour cela, on ajoute un nouvel argument (qu'on peut appeler un marqueur) de type chaine de
caracteres a la fonction plot comme ceci:

plot(x,y," marqueur’)
Le contenu du marqueur est une combinaison d'un ensemble de caracteres spéciaux

rassemblés dans le tableur suivant:

Couleur de la courbe Représentation des points
Le caractere Son effet - En ligne pleine
b Courbe en bleu ; En pointillé
g Courbe en vert -- En tiret
r Courbe en rouge . Un point
y Courbe en jaune 0 Un cercle
k Courbe en noir X Le symbole x

Pour en savoir plus, particulierement sur les couleurs et types de courbes, tapez help plot a

I’invite Matlab.

¢) Annotation d'une figure:
Dans une figure, il est préférable de mettre une description textuelle aidant I'utilisateur a
comprendre la signification des axes et de connaitre le but ou l'intérét de la visualisation

concernée.
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Il est tres intéressant également de pouvoir signaler des emplacements ou des points

significatifs dans une figure par un commentaire signalant leurs importances.

v Pour donner un titre a une figure contenant une courbe nous utilisons la fonction title
comme Ceci:
>>title(" titre de la figure’)

v" Pour donner un titre pour I'axe vertical des ordonnées y, nous utilisons la fonction
ylabel comme ceci:
>>ylabel(’ ceci est I"axe des ordonnées Y )

v Pour donner un titre pour I'axe horizontal des abscisses x , nous utilisons la fonction
xlabel comme ceci:
>>xlabel(’ ceci est I"axe des abscisses X ')

v Pour écrire un texte (un message) sur la fenétre graphique a une position indiquée par
les coordonnées X et y, nous utilisons la fonction text comme ceci:
>>text(x,y,'ce point est important’)

v' Pour mettre un texte sur une position choisie manuellement par la souris, nous
utilisons la fonction gtext, qui a la syntaxe suivant:
>>gtext(‘ce point est choisi manuellement')

v Pour mettre un quadrillage (une grille), nous utilisons la commande grid (ou grid on)
pour I'enlever nous réutilisons la méme commande grid (ou grid off).

v Pour fixer les limites sur les axes des abscisses et des ordonnées
>>axis([xmin xmax ymin ymax]

Par exemple:

Dessinons la fonction: y=—2x>+x*—2x+4pour x variant de -4 jusqu'a 4, avec un pas 0.5

clear all

close all
x=-4:0.5:4:
y=-2.*X.3+X.2-2.*X+4,

plot(xy)

grid on

title(" Dessiner une courbe')

xlabel('L"axe des abscisses')

ylabel('L"axe des ordonnees’)
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d) Afficher plusieurs courbes dans une méme fenétre (hold on)

Il est possible d’afficher plusieurs courbes dans une méme fenétre graphique grace a la

commande hold on. Les résultats de toutes les instructions graphiques exécutées aprés appel a

la commande hold on sera superposés sur la fenétre graphique active. Pour rétablir la situation

antérieure (le résultat d’une nouvelle instruction graphique remplace dans la fenétre graphique

le dessin précedent) on tapera hold off.

Voici un exemple d’utilisation de la commande hold on

clear all

close all
x=linspace(0,pi,30);
yl=cos(X);
plot(x,y1,'o-r")
y2=sin(x);

hold on
plot(x,y2,'x-b")
y3=exp(-x);

hold on

pIOt(X’y31I*'g')

e) Utiliser plot avec plusieurs arguments.

On peut utiliser plot avec plusieurs couple (X, y) ou triplets (x,y," marqueur’) comme

arguments. Un script est tout indiqué :

% graphique.m

clear all

close all
x=[0:0.01:2*pi];
yl=cos(X); y2=sin(x);
figure(1)

plot(x,y1,"' x,y2,'+"
title('sinus et cosinus')
xlabel('x")
ylabel(*f(x)")
legend(‘cos(x)','sin(x)",0)

% cos(x) en points ., sin(x) en +

% le 0 place la légende a c6té des courbes
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Remarque

On dispose donc de deux fagons de superposer plusieurs courbes sur une méme figure.

On peut soit donner plusieurs couples de vecteurs abscisses/ordonnées comme argument de la
commande plot, soit avoir recours a la commande hold on. Suivant le contexte on privilégiera

I’une de ces solutions plutot que 1’autre.

2. Afficher plusieurs graphiques (subplot)

Voila une fonctionnalité tres utile pour présenter sur une méme page graphique un grand
nombre de résultats.

L’idée générale est de découper la fenétre graphique en pavées de méme taille, et d’afficher
un graphe dans chague pavé. On utilise I’instruction subplot en lui spécifiant le nombre de
pavés sur la hauteur, le nombre de pavés sur la largeur, et le numéro du pavé dans lequel on
va tracer:

subplot (Nbre pavés sur hauteur, Nbre pavés sur largeur, Numéro pavé)

La virgule peut étre omise. Les paveés sont numérotés dans le sens de la lecture d’un texte : de
gauche a droite et de haut en bas.

Une fois que 1’on a tapé une commande subplot, toutes les commandes graphiques suivantes
seront exécutées dans le pavé spécifié.

Comme exemple taper la suite d’instructions suivantes :

clear all

close all

x=[0:0.01:2*pi];

subplot(221)

plot(x,sin(x),'b")

subplot(222)

plot(x,cos(x),'r")

subplot(223)

plot(cos(2*x),'g")

subplot(224)

plot(sin(2*x),'k")
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3. Echelles logarithmiques

On peut tracer des échelles log en abscisse, en ordonnée ou bien les deux. Les fonctions

correspondantes s’appellent respectivement semilogx, semilogy et loglog. Elles s’utilisent

exactement de la méme maniére que plot.

Par exemple :
>>x=1:100;

>>semilogx(x,log(x))

4. Autres types de représentation

Outre la représentation cartésienne de courbes ou de surfaces, il existe d’autres possibilités

pour illustrer graphiquement un résultat. On peut citer parmi les plus utiles, les instructions

contour,ezmesh (pour tracer les courbes de niveau d’une surface paramétrique), mesh,ezplot3

(courbes paramétriques dans 1’espace),hist, rose (histogramme d’un échantillon de données

statistiques), etc...

Type Description commande

semilogy axe des y en log de base 10 et axe des x linéaire semilogy(x,y)

semilogx axe des x en log et axes des y linéaire semilogx(x,f(x))

loglog les deux axes sont en log de base 10 loglog(x,y)

errorbar graphique avec bar d’erreur en y sur chaque valeur | errorbar(x,y,e);
e : vecteur erreur en chaque
point de x.
errorbar(x,y,e",ed"n):
e'P : étant la limite
supérieure de I’erreur et
edo""‘Ia limite inférieure.

bar graphique a bars verticales ou horizontales bar(x,y)

barh barh(x,y)

hist histogramme hist(y,nbins);

nbins = nbre de barreaux
hist(y,x) ; x = location du

centre du barreau
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plot3 Tracé d’une ligne paramétrique en 3D plot3(x,y,z)

mesh Tracé d’une surface en 3D, a partir de matrices de | mesh(X,y,z)
maillage
surf Tracé d’une surface en 3D avec dégradé de couleur, | surf(x,y,z)

a partir de matrices de maillage

5. Fonctions mathématiques simples

Les opérateurs algébriques (+, -, *, /, .*,./) ont été définis précédemment pour les scalaires,
vecteurs et matrices. On montrera ici (sans étre exhaustif), les principales fonctions
mathématiques fournies dans Matlab et leur utilisation. Pour les fonctions non présentées,
I’utilisateur peut toujours utiliser I’aide des fonctions avec la fonction help qui prend pour
argument le nom de la fonction. Par exemple, la function cosinus:
>> help cos
COS Cosine of argument in radians.

COS(X) is the cosine of the elements of X.
Dans la suite, on présente les fonctions mathématiques usuelles et leur appel dans Matlab.

Ensuite, on présente les principales fonctions spécifiques aux matrices.

6. Fonctions mathématiques usuelles

Toutes les fonctions mathématiques de base sont déja programmeées dans Matlab.

Toutes les fonctions courantes et moins courantes existent. La plupart d’entre elles
fonctionnent en complexe. On retiendra que pour appliquer une fonction a une valeur, il faut
mettre cette derniére entre parenthéses. Exemple :

>>sin(pi/12)

ans =

0.16589613269342

Voici une liste non exhaustive :

— fonctions trigonométriques et inverses : sin, cos, tan, asin, acos, atan

— fonctions hyperboliques (on rajoute «h») : sinh, cosh, tanh, asinh, acosh, atanh

— racine, logarithmes et exponentielles : sqgrt, log, log10, exp

— fonctions erreur : erf, erfc
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— fonctions de Bessel et Hankel: besselj, bessely, besseli, besselk, besselh et hankel. Il faut
deux paramétres : l'ordre de la fonction et I’argument lui-méme. Ainsi J1(3)
s’écrirabesselj(1,3)

La notion de fonction est plus générale dans Matlab, et certaines fonctions peuvent avoir

plusieurs entrées (comme besselj par exemple) mais aussi plusieurs sorties.

a) Fonctions matricielles
Toutes les fonctions matricielles de base sont déja programmées dans Matlab.
Voici quelques exemples :
Size, length, diag, det, norm, rank, trace, sum, prod, mean, std, var, max, min, rand, null, inv,

pinv, sort, reshape, fliplr, flipud, tril, triu,...
b) Fonctions avancées

Ce sont des fonctions qui interviennent en analyse numérique telles que: lu, chol, gr, cond, eig,

fzero,...

38



Chapitre 5: Programmation avec Matlab et structures de contrdle

Nous avons vu jusqu’a présent comment utiliser Matlab pour effectuer des commandes ou
pour évaluer des expressions en les écrivant dans la ligne de commande, par conséquent les
commandes utilisées s’écrivent généralement sous forme d’une seule instruction
(éventuellement sur une seule ligne).

Cependant, il existe des problemes dont la description de leurs solutions nécessite plusieurs
instructions, ce qui réclame 1’utilisation de plusieurs lignes. Comme par exemple la recherche
des racines d’une équation de second degré (avec prise en compte de tous les cas
possibles).Une collection d’instructions bien structurées visant a résoudre un probléme donné
s’appelle un programme. Dans cette partie, on va présenter les mécanismes d’écriture et
d’exécution des programmes en Matlab. On va parler ensuite des tests et des boucles en

commencant par introduire les opérateurs de comparaison et les opérateurs logiques.

1. Principe général

Le principe est simple: regrouper dans un fichier une série de commandes Matlab et les
exécuter en bloc. Tout se passera comme si vous les tapiez au fur et a mesure dans une session
Matlab. Il est fortement conseillé de procéder de cette fagon en créant un fichier programme
(M-file) car cela permet notamment de récupérer facilement le travail fait la veille.

Les fichiers de commandes peuvent porter un nom quelconque mais doivent finir par
I’extension .m (attention toutefois a certains caracteres qui sont interdits : le blanc, le symbole
+,.., Matlab ne le dira pas tout de suite mais enverra a la premicre tentative d’exécution un

message d’erreur qui dit que le fichier est introuvable).

2. Ou doit se trouver le fichier de commande?

Le plus simple, c’est qu’il se trouve dans le répertoire courant (¢’est-a-dire celui ot on a lancé
Matlab). Il peut se trouver aussi dans un répertoire quelconque mais référencé dans la variable
path Matlab. Tapez cette commande pour en voir le contenu, Matlab vous affichera tous les
répertoires accessibles. 1l est en général conseillé de se créer un répertoire propre ou d’utiliser
le répertoire par défaut de Matlab. Pour connaitre le repertoire actuel il suffit de taper la
commande pwd dans I’invite de Matlab.

Le path peut étre modifié avec la commande addpath. Cette commande permet de placer le

chemin d’accés au fichier dans le fichier qui contient tous les chemins d’accés par défaut ou
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déclares, c'est-a-dire path, et qui est exécuté automatiqguement au démarrage de Matlab. Voici
un exemple:

addpath (genpath('C:\Documents and Settings\admin\Mes documents\MATLAB\Dossier"))
Cette commande permet de rajouter le nouveau répertoire « Dossier », crée dans le répertoire
par défaut de Matlab qui est nommé MATLAB, au path d’accés.

Ainsi tous les fichiers de commandes présents dans le nouveau répertoire « Dossier » seront

accessibles de n’importe ou.

3. Commentaires et auto-documentation
Tout ce qui se trouve apres le symbole % sera considéré comme un commentaire. Il est

également possible d’auto-documenter ses fichiers de commande.

4. Suppression de ’affichage
L’affichage des résultats de toutes les commandes n’est pas nécessaire. Pour certaines
commandes (création de gros tableaux), cela peut s’aveérer fastidieux.
On peut donc placer le caractere ; a la fin d’une ligne de commande pour indiquer a Matlab

qu’il ne doit pas afficher le résultat.

5. Pause dans I’exécution
Si I’on entre la commande pause dans un fichier de commandes, le programme s’arrétera a

cette ligne tant qu’on n’a pas tapé «Entrée» ou «Enter» en cas d’un clavier QWERTY.

6. Mode verbeux
Si I’on souhaite qu’au fur et & mesure de son execution, Matlab affiche la séquence de
commandes qu’il est en train d’exécuter, il suffit de taper :
>>echo on
Pour revenir au mode normal, on tapera simplement echo off. Ce mode peut-étre utilisé en
combinaison avec pause pour gque le programme affiche un commentaire du style «Appuyez
sur une touche pour continuer». Il suffit d’écrire le message dans un commentaire :
echo on
pause % Appuyez sur une touche pour continuer !

echo off
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7. Opérateurs de comparaison et logiques

Matlab utilise le langage C. Notons tout d’abord le point important suivant, justement inspiré

du langage C:

Matlab représente la constante logique «<FAUX» par 0 et la constante «VRAIE» par 1.

Ceci est particulierement utile par exemple pour définir des fonctions par morceaux.

Il est important de se familiariser avec les opérateurs logiques. Le premier type de ces

opeérateurs permet de comparer des valeurs entre elles.

Opérateur Syntaxe Matlab
Egal a ==
Différent de ~=
Supérieur a >
Supérieur ou égal a >=
Inférieur a <
Inférieur ou égal a <=
Négation ~
Ou |
Et &

Par exemple, on veut comparer deux valeurs entre elles :
>> a=sin(2*pi);

>> b=cos(2*pi);

>> bool=(a>b)

bool=

0

a=
-2.4493e-016 % ici a devrait égaler 0, la précision est limitée!
>>p

b=

1

Les operateurs logiques sont intéressants pour construire des fonctions par morceaux.

sin(x) si x>0

Imaginons que 1’on veuille définir la fonction suivante: f (x) =+ . )
sin(2x) sinon
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Voila comment écrire la fonction:
>> f = inline('sin(x).*(x>0) + sin(2*x).*not(x>0)")
f=

Inline function:

f(x) = sin(x).*(x>0) + sin(2*x).*not(x>0)

On ajoute les deux expressions sin x et sin 2x en les pondérant par la condition
logiquedéfinissant leurs domaines de validité. On peut tester que ¢a marche en représentant la
courbe:

>> X=-2*pi:2*pi/100:2*pi;

>> plot(x,f(x))

Il faut noter ici que I’emploie de 1’opérateur *==" est tres risqué lorsque 1’on compare des
valeurs numeriques. En effet, la précision de ’ordinateur étant limitée, il est préférable
d’utiliser une condition sur la différence comme dans le code suivant :

if abs(a-b) <eps % eps est la précision machine (2.2204e-016)

bool=1;

else

bool=0;

end

Il est aussi possible de lier entre elles des conditions par I’opérateur ’et’ (&) et “ou’ (|).

Ces notions seront utiles pour la construction des conditions qui seront présentées dans les

prochaines sections.

Critere sur les valeurs : Fonction find

Nous avons vu qu'il était aisé d'appliquer un opérateur logique sur un tableau. Cela nous
renvoie un tableau contenant des 1 ou des O (valeurs logiques true ou false) selon que le
critere logique est vérifié ou non. Ce principe peut étre exploité pour écrire facilement une
fonction définie par morceaux, mais cela ne permet pas d'extraire ou de modifier des valeurs
selon un test logique. Pour cela, on peut utiliser la fonction find.

La fonction find est utile pour identifier simplement les éléments non nuls d'un tableau, et par
extension, d'identifier les valeurs vérifiant un critére logique donné.

indices = find(M) %renvoie dans la variable indices la liste des indices du tableau M dont

les éléments sont non nuls.
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indices = find(opération logique sur M)  %renvoie dans la variable indices la liste des

indices du tableau M Vérifiant I'opération logique.

Par exemple:
>> x=[-1.203.16.2-3.3-2.1]
X =

-1.2000 0 3.1000 6.2000 -3.3000 -2.1000
>>find(x) %La fonction find permet d'identifier les éléments comportant des valeurs non
nulles
ans =

1 3 4 5 6
>>inds = find(x < 0) % permet de trouver tous les éléments correspondant a un critére
logique :
inds =

1 5 6

8. Les entrées/sorties
a) Entrée au clavier :
L’utilisateur peut saisir des informations au clavier grace a la commande de x=input(...).
>> X=input('saisir une valeur de x :')
saisir une valeur de x :5
X =
5
b) Sortie a I’écran
Pour afficher quelque chose a 1’écran, I’utilisateur peut utiliser la commande disp, qui affiche

le contenu d’une variable (chaine de caractéres, vecteur, matrice...).

>>A=[123];
disp(A);
1 2 3

9. Instructions de contréle
Les instructions de contrdle sous Matlab sont trés proches de celles existant dans d’autres

langages de programmation.
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a) Boucles if-elseif-else
Dans un programme interviennent souvent des conditions. Les boucles if-elseif-else sont une
structure de programmation qui est trés utile pour rendre compte de cette situation.
En pseudo-code, on peut résumer la chose de la fagon suivante:
si CONDITION1, FAIRE ACTION1. % condition 1 remplie
sinon et si CONDITION2, FAIRE ACTION2. % condition 1 non-remplie,

% mais condition 2 remplie

sinon, FAIRE ACTION3 % conditions 1 et 2 non-remplies
En Matlab, le pseudo-code précédent devient :
if CONDITION1
ACTIONI,
elseif CONDITION2
ACTIONZ;
else
ACTIONS;
end
Si la condition est évaluée a vrai (true), les instructions entre le if et le end seront exécutées),
sinon elles ne seront pas (ou si un else existe les instructions entre le else et le end seront
exécutées). S’il est nécessaire de vérifier plusieurs conditions au lieu d’une seule, on peut
utiliser des clauses elseif pour chaque nouvelle condition, et a la fin on peut mettre un else
dans le cas ou aucune condition n’a été évaluée a vrai.
Par exemple :
On regoit un entier a, s’il est impair négatif, on le rend positif. S’il est impair positif, on lui
ajoute 1. S’il est pair, on ajoute 2 a sa valeur absolue.
La courte fonction suivante permet de réaliser cette transformation (notez ici, I’emploi du
modulo pour déterminer si I’entier est divisible par 2).
function b=transf_entier(a)
if a<0 &mod(a,2) ~= 0 % mod permet de trouver le reste d’une division
b=-a;
elseif a>=0 & mod(a,2) ~= 0
b=a+1,;
else
b=abs(a)+2;

end
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Ainsi, le programme va étre exécuté en suivant les instructions écrites dans son M-File. Si une
instruction est terminée par un point virgule, alors la valeur de la variable concernée ne sera
pas affichée, par contre si elle se termine par une virgule ou un saut a la ligne, alors les
résultats seront affichés.
Remarque
Il existe la fonction solve prédéfinie en Matlab pour trouver les racines d’une équation (et
beaucoup plus). Si nous voulons I’appliquer sur notre exemple, il suffit d’écrire :
>>s0lve('-2*x"2+x+3=0",'X’)
ans =

-1

3/2

b) Boucles for

Les boucles for sont tres utiles dans la plupart des applications mathématiques(par exemple,
pour effectuer un calcul sur tous les éléments d’un vecteur).
En Matlab, il est parfois beaucoup plus efficace d’utiliser les opérateurs algébriques
usuels définis plus tot (par exemple, le *.*’). Dans les cas ou il estime possible de se soustraire
a I’utilisation de ces boucles, voici le prototype en pseudo-code qui les traduit.
Incrément = valeur initiale
Pour incrément=valeur initiale jusqu’a valeur finale
ACTIONLI...N
AJOUTER 1 a incrément
En Matlab, ce pseudo-code devient :
for i = O:valeur_finale
ACTIONZ;
ACTIONZ;

ACTIONN;

end

Remarquez que I’incrément peut étre différent de 1,
Par exemple :

si I’on veut calculer les carrées des nombres pairs entre 0 et 10 :

for i=0:2:10
carre = i"2
end
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c) Boucles while
Une boucle while permet de répéter une opération tant qu’une condition (critere) n’est pas
remplie. En pseudo-code, elle peut étre schématisée de la fagon suivante :
Tant que CONDITION est VRAIE
ACTIONL1...N
En Matlab, on écrit ce type de boucle de la maniére suivante:
while CONDITION
ACTION1;
ACTIONZ;

ACTIONN;
end
Ce type de boucle est trés souvent utilisé pour faire converger une itération vers une valeur
désirée dont la précision est fixée par un test de convergence.
Par exemple :
On veut trouver le nombre d’entiers positifs nécessaires pour avoir une somme plus grande
que 100. On pourrait réaliser cette tdche de la maniére suivante:
function n=nombre_entier
n=0; % initialisation des valeurs
somme=0;
while somme < 100
n=n+1; % itération de n
somme=somme+n; % nouvelle somme
end

d) Boucles switch
Les boucles switch permettent parfois de remplacer les boucles if-elseif-else, particulierement
dans le cas de menus. La boucle switch exécuté des groupes d’instructions selon la valeur
d’une variable ou d’une expression. Chaque groupe est associé a une clause case qui définit
si ce groupe doit étre exécuté ou pas selon 1’égalité de la valeur de ce case avec les résultats
d’évaluation de I’expression de switch. Si toutes les cases n’ont pas été acceptées, il est
possible d’ajouter clause otherwise qui sera exécutee seulement si aucun case n’est exécuté.
Le prototype de ce type de boucle en pseudo-code est le suivant :
Déterminer CAS
CAS choisi est CAS1
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ACTION1

CAS choisi est CAS2
ACTIONZ2
AUTREMENT
ACTION3

En Matlab, on obtient le code suivant :

switch (CAS)
case {CAS1}
ACTION1
case {CAS2}
ACTIONZ2
otherwise
ACTION3
end

Par exemple :

On veut faire une calculatrice simple en Matlab, pour déterminer I’exponentielle ou le

logarithme en base e d’un nombre entré par 1’utilisateur.
Une maniere simple de rendre le programme interactif serait d’utiliser le script suivant :

operation=input(’Opération: (1) exp ; (2) log ? °);

nombre=input(’Valeur: ’);

switch operation

case 1

b=exp(nombre)

case 2

b= log(nombre)

otherwise

disp(’mauvais choix -- operation’)

end

Avec la sortie (par exemple) suivante :

>>calcul_rapide

Opération: (1) exp ; (2) log ? 1
Valeur: 0.5

b =

1.6
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Chapitre 5: Résolution des équations non-linéaires f(x)=0

Dans ce chapitre, nous présentons plusieurs techniques de résolution des équations non
linéaires. Les méthodes proposées sont :

» La méthode de la bissection

» La méthode de Newton-raphson

» La méthode de point fixe
1. Définition:

L’objet essentiel de ce chapitre est 1’approximation des racines d’une fonction réelle d’une
variable réelle, ¢’est-a-dire la résolution approchée du probléme suivant :

Etant donné une équation non linéaire, a une seule variable, est définie par : f(x)=0

La valeur de la variable x qui vérifie cette égalité est appelée solution (ou racine) de I'équation,

elle est notée c.
2. Meéthode de la bissection

Cette méthode est appelée aussi « Dichotomie », elle repose sur un théoréme important ¢’est
le théoréeme des valeurs intermédiaires qui est a la base de 1’étude de celle-ci ainsi que des
autres méthodes.

a) Théoreme :
Si f est une fonction continue sur I’intervalles [a, b] et si on a f(a).f(b)<0 alors I’équation
f(x)=0 posséde au moins une racines dans I’intervalle [a,b].

b) Développement de la méthode

On s’assure que Si f(a). f(b) sur I’intervalles [a,b], la racine est unique ( c.a.d. que f est

monotone dans ’intervalle [a,b] ).

On partage [a,b], en 2 intervalles [a,c], et [c,b], tel que ¢ = %
Si f(a). f(c) <0 celaimplique que la racine € [a,c]

Si f(c¢).f(b) <0 celaimplique que la racines € [c,b]

Si f(c) = 0, c serait la racine exacte
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Le domaine gardé sera a son tour partage jusqu'a arriver a un petit domaine selon une
précision donnée dont sa moitié sera considérée comme racine approchée de 1’équation
f(x)=0.

La figure ci-dessous illustré le principe de la méthode de Dichotomie :

4

Y

foy -

v

[Sa3 E—

Figure 1: Principe de la méthode de Dichotomie

Exemple 1

Calculer la racines de I’équation f(x) = x® —x — 1 = 0 dans I’intervalle [1,2] avec la
précision £=0,001.

Solution 1 :

La fonction f(x)=0 est un polyndéme donc continue sur [1,2]

f=-1, f@)=61 = f(D)-£(2)<0,

Donc d’apres le théoréme des valeurs intermédiaires, il existe au moins une racine ¢ €[1,2]
tel que f(c)=0.

Deplus f’(x)=6x>-1 VYV x<€[1,2] f (x)>0 = f ./ (fest monotone)

On deduit alors que la racines de f dans [1,2] est unique.

On cherche maintenant a calculer une approximation de cette racine.

Nous allons construire les suites (a,)nen (bn)nen €t (Cn)nen

Etape 0:ap=1 , by=2 ,co = (ap+ by)/2=15, f(1.5)=8.8609

Test. f(ag)-f(co) = f(1).f(1.5) <0 = on resserre I’intervalle du c6té droit (c6té de b)
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1 1.0000 2.0000 1.5000 0.5000 8.8609 f(ay).f(cy) = f(1).f(1.5)
< 0 (cotédeb)

2 1.0000 1.5000 1.2500 0.2500  1.5647 f(ao = ay).f(c;)

= f(1).f(1.25)
< 0 (cotédeb)

3 1.0000 1.2500 1.1250 0.1250  -0.0977 f(a, = ay).f(cz)

= f(1).f(1.125)
> 0 (coté dea)

4 11250 1.2500 1.1875  0.0625  0.6167 flas = c,). f(cs)
= £(1.125). f(1.1875)
< 0 (coté deb)

10 1.1300 1.1348 1.1338 0.001 0.0096

c) Algorithme de la méthode
Pasl: ¢ < (a+Db)/2
Pas2: Si b —c < &, c estconsidérée racines approchée ( stop)
Pas 3:Si f(c) =0, c estconsidérée racine exacte ( stop)
Pas4:Sif(a).f(c)<0 alors ¢ < b
Sinon c<a

Pas 5: Retour au pas 1.

d) Convergence et estimation de [ ’erreur
On démontre que la méthode de la bissection est convergente (vers la solution unique de
I’équation f(x)=0 dans I’intervalle [a,b]).
On cherche a déterminer I’erreur maximale commise en utilisant la méthode de la bissection

dans I’intervalle [a,b].
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Intervalle Initial

! -
a by
\ La solution exacte

Pour i=1: La longueur du premier intervalle [a,, b;][a,b] estb; —a; =b—a

. . . b—
Pour i=2: La longueur du deuxieme intervalle [a,,b,] est b, —a, = Ta
. . . b—
Pour i=3: La longueur du troisieme intervalle [a;,b;] est b; — a3 = Zza
. . . . b—a
Pour i=4: La longueur du quatrieme intervalle [a,,b,] est b, —a, = 5
. i . . b—
Pour i=n : La longueur de n'*™ (dernier) intervalle [a,,,b,] est b, —a, = zn_‘i
Intervalle Initial
a C / b
| I l
| 1 . !
\ ~_J
Y Y La solution exacte
L I,
d, Cn / bn
| I |
I | |
o
. , +b . L. .
La racine approchée est ¢, = anz  Si on désigne par a la solution exacte, alors on a:
b,—a, b-—a
ch—al<b,—c, = = <é¢

b—a

Donc, ’erreur  |c, — a| < - 1)

La relation (1) permet aussi de calculer a ’avance le nombre max d’itérations nécessaires,

Z 0o (2) (n ne dépend pas de f)



Comme exemple : Si l'intervalle est [1,2] ete = 1073 alors 71>9,93
On prend n=10. Il est important de remarquer que le nombre d’itérations nécessaire donné par
la formule ci-dessus est, dans plusieurs cas, une surestimation du nombre réel d’itérations
nécessaire (pour le calcul on peut se contenter de n=9 tout en ayant atteint la précision
voulue).

3. Meéthode de Newton-Raphson

Soit a la racine exacte de 1’équation f(x) = 0. Si f est continue et continument dérivable au
voisinage de «, alors le développement en série de Taylor autour de x, ( x, étant la valeur

Initiale) s’écrit:

fl f”( ) flll( )
FG) = flo) + EE2 (= g L2 (= x) 2+ L (e — x0) ¥ 4 o
— /

Donc on peut écrire : R
fO) = fxo) + f'(x0) (x — x0)+R

Posons x = « on trouve:
@) = o)+ (=X ) + R =0
Xo
IO

=2 a = Xo
En ignorant R; on obtient une nouvelle approximation x, ( meilleure que x, )

oSG
LT )

On considere maintenant le développement en série de Taylor autour de x;

De la méme maniére que précédemment on trouve une nouvelle valeur x, tel que:

Xy = 2y — L
27T G

Ainsi on obtient la relation récursive suivante :

X, donné
x . f(xk-1)
S T C

X =
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a. Interprétation graphique de la méthode

y=f(x)
tg6 Représente la dérivée:
p f(xg-1) =0
fr) =="———

k-1~ Xk

Figure 1.1. Méthode de Newton-Raphson

Exemple 2 :

Trouver par la méthode de Newton-Raphson la valeur approximative de la racine de
x>—x+2=0 apartirde x, = —1 pour une précision &= 10"°

Solution 2:
f)=x5—x+2=0>= f'(x)=5x*-1

En appliquant la formule de Newton-Raphson :

X, donné
. [
T )

nous obtenons: X = Xp—q —

Alors en partant de x, = —1, on obtient les itérations illustrées dans le tableau suivant:

0 -1.000000
1 -1.500000
2 -1.331620
3 -1.273516
4 -1.267237
5 -1.261768
6 -1.267168
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|xx — x—1] = |x¢ — x5| < & donc la racine approchée de 1’équation f(x) = 0 est

c~=-—1,267168

b. Algorithme de la méthode
Pasl: k «1

f(Xk-1)

Pas2: x, «— xp_1 ~ ey

Pas 3 : Si |x;, — xx_1] < & Alors on arréte (x,racine approchée)
Sinon Pas4: K «— K+1
Pas 5 : Retour au pas 2
c. Convergence et estimation de [’erreur
Théoreme:

On démontre que si f est définie sur I’intervalle [a, b] tel que:

1. f(a).f(b)<O

2. Vx€ [ab] f'x)#0

3. Vx €la,b] f"(x)#0
Alors la méthode de Newton- Raphson engendre une suite qui converge vers la solution
unique de f(x) = 0, en partant de I’approximation x, Vérifiant:

f"(x0)- f(x0) >0

On démontre aussi que 1’erreur commise en utilisant la méthode de Newton-Raphson comme
outil de résolution s’écrit:

M (x) — xk—1)2

2m

la — xi| <

Avec M = Max{|f"(x)]} , x € [a,b]
m =min{|f"(x)|} , x € [a,b]

4. Meéthode de point fixe

Avant d’aborder la méthode du point fixe, il est important de définir ce que signifie un point

fixe d’une fonction.
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a. Définition
Soit la fonction g(x) définie dans I’intervalle [a, b]. Tout point ¢ € [a, b] tel que : ¢ = g(x)
est dit point fixe de g (x).
L’équation f(x) = 0, avec f continue sur [a, b] peut étre mise sous la forme x = g(x) tel
que:

f&x) =x—gx).

Le choix d’une valeur initiale de la racine x, permet d’avoir une premiére approximation x;
Tel que :x; = g(x,) puis une meilleure approximation x, tel que: x, = g(x;) ainsi on

obtient une suite définie par la relation récursive suivante:

Xo
{xk = g(xk-1)

Exemple 3
Soit a4 Résoudre I’équation x> — 2 = 0 a partir de la valeur initiale x, = 1.2
Solution 3:
Il est possible de transformer 1’équation précédente en plusieurs formes x = g(x)
Par exemple :

a. Ona x3-2=0

x3—24+x=x=g;(x)

x, = 1.200
x; = 0.928
x, = —0.273
X3 = —2.293
xy = —16.349

enplusonsaitque x> —2=0=x3=2= x =213

Alors on remarque qu’on s’éloigne de la racine exacte 21/3 = Divergence.

b. Ona x3-2=0
x3—2—-5x=-5x
x3—-2—-5x
-5
x = g,(x) = (2+ 5x —x3)/5 on obtient:
Xy = 1.200
X, = 1.2544

=X
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x, = 1.2596
x3 = 1.2599
x, = 1.2599
On remarque qu’on s approche rapidement de la racine exacte 2'/3 = Convergence
De la on conclure que le choix de la forme x = g(x) est capital dans la détermination de la

convergence ou la divergence de la méthode du point fixe.
b. Algorithme de la méthode

Pasl: ke 1

Pas2: x;, <« g(xy_1)

Pas 3: Si|x; —xx_1] < € alorson arréte (x;, racine approchée)
Sinon Pas4: : ke k+1

Pas 5: Retour au pas 2
c. Etude de la convergence de la méthode

Théoréme:
On démontre que si g: [a, b] = [a, b] posséde un point fixe dans ’intervalle [a, b] etsi

lg'(x)] < k <1 cepoint estunique.

Exemple 4:

2_
On montre que la fonction g(x) = le posséde un point fixe unique dans I’intervalle

[—1,1].

Solution 4:
Division I’intervalle en 2 parties : [—1,0] et [0,1]
g(=1)=g91)=0 € [-11]
g0 =-5 € [-11]
Et nous avons :
Ve [F1L0: g@N =90 =-7 <Sg@)<g(-1)=0

vxe [01]: glx)» =g(0)= —§ <gx)<g(1)=0
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Donc g:[-1,1] - [-1,1]

Enplus |g'(0)| = 2x/3| <= < 1

On conclut que le point fixe est unique dans [—1,1],

Théoreme:

On démontre que si la fonction g: [a, b] = [a, b]

vérifie [g'(x)| <k <1 V x € [a,b],alors lasuite définie par la relation récursive

suivante:
-
X = g (Xp-1)
est convergente et converge vers le point fixe unique de g dans [a, b]
d. Estimation de l’erreur

On démontre que I’erreur commise en utilisant la méthode du point fixe comme outil de

résolution vérifie la relation:

|xn - dl < |xn — Xn-1

T 1-k
Ou

a:la solution exacte
Xn: la solution approchée

Ixn - xn—ll

k =
|xn - xn—zl

Mise en ceuvre sous Matlab

Ecrire un programme sous Matlab qui permet de trouver la racine de: f(x) = 2x? —x — 1
sur I’intervalle [0.5, 1.5] en utilisant la méthode de dichotomie, la méthode de Newton-
Raphson et la méthode de point fixe jusqu’a la convergence avec une précision de 1073 et

xO == 08
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Chapitre 6 : Résolution des équations linéaires (Méthodes directes)

1. Introduction:
Dans ce chapitre, nous allons aborder deux principales méthodes de résolution des systémes
linéaires, a savoir:
» Laméthode de Carmer
» La méthode d’élimination de Gauss

» La méthode Gauss avec pivot

De facon générale, la résolution d’un systéme d’équations linéaires consiste a trouver un
vecteur X =[x, x, X3 ...%,] "
(X dénotera un vecteur colonne et I’indice supérieur T désignera sa transposée) solution de:

a11 xl + a12 xz + a13 x3 + -+ aln xn = bl
a1 X1 + Az Xy + a23 x3 + -+ aZn xn = bz

Apy X1 + Apz X2 + Apg X3 + -+ Apy Xy = by

On peut utiliser la notation matricielle, qui est beaucoup plus pratique et surtout plus
compacte, On écrit alors le systéme précédent sous la forme:
AX=b
Ou: A est la matrice :
Eth = [by b, bs ..b,]," Bien entendu, la matrice A et le vecteur b sont connus.

Il reste a déterminer le vecteur X.

2. Méthode de Cramer:
La méthode de Cramer est basée sur le calcul du déterminant de la matrice A et les
déterminants associés aux inconnues x; (i =1,...,n)

a. Solution utilisant les déterminants

det A : Déterminant de la matrice A, avec detA # 0

det i: Déterminant associé a I’inconnue Xx;

_ deti
i = det4
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Soit le systéme a 3 équations :

a11 X1 + Q12 X2 + a3 X3 = by
A1 X1 + Qzp Xy + A3 X3 = by
A31 X1 + A3 X5 + A33 X3 = b3

ai;; A1z di3
detA = [Gz21 Az ap3
asz; dzz dsz

b1 aiz ais
by azz a3
b3 azp ass
a1 412 Q413
a1 Gz2 Qagz3
az1 a3z 0433

detl = bz a22 a23 et xl =

az1 by aps

_ __laszq b3 ass
det2 =|ay; by ay3 et X2 = (@11 @iz iz
az1 QA 0az3
azi1 a3z ass

a1 aiz by
az1 Qazz by
a3z Az b3
a1 412 Q13
az1 Gz daz3
azi1 a3z ass

det3 = a;1 0apo b2 et X3 =

Remarque:

Si detA = |A| =0 = le nombre solutions est infini ou inexistant.

b. Solution utilisant la matrice inverse A~1
SidetA= |A]#0= A ! existe.
Soit le systéme d’équations AX = B ; multiplions les 2 membres par A~ (I’inverse de A) :
A1AX=A"1'B celadevient: X=A"1B

Pour calculer ’'inverse de A:
1
detA

Al = CT avec CT est le transposé de la comatrice A
Remarque:
La méthode de Cramer exige un grand nombre d’opérations de calcul ((n2 +n)n! — 1) .

Si n est élevé, le nombre d’opérations augmente et par conséquent le temps de calcul. De

plus, pour les moyens et grands systemes l’erreur cumulée d’arrondi augmente avec le
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nombre d’opérations et altére la précision des résultats. On va aborder d’autres méthode qui
nécessitent

Un nombre limité d’opérations de calcul, donc rapides et plus précises.

3. Méthode de Gauss

a. Principe
Cette méthode est basée sur la transformation du systeme linéaire A X=b
En un systéme équivalent A'X = b tel que la matrice A’est une matrice triangulaire
supérieure.
La transformation de la matrice A en A’ et le vecteur b en b’ passe par plusieurs étapes nous
présentons a travers 1’exemple suivant:
Pour une meilleure praticabilité, on forme la matrice A4 telle que A =[A4: b] et qu’on

appelle matrice augmentée de A.

Exemple 1:
Soit a résoudre par Gauss le systéme linéaire suivant:

x1+3x2+3x3=0
{ 2x1+2x, =2
3x1 + sz + 6X3 =11

Solution 2:

Soit a résoudre le systeme suivant :

le +2x2 =2

{ x1+3x2+3x3:O
3x1+2x2+6x3 =11

ou:
1 3 3 X1 0
A=1|2 2 0O|; X=(Xx2) ;b=\ 2
3 2 6 X3 11
On adopte I’écriture suivante:
1 3 3: 0 1k
A=2 2 0: 2 [E;
3 2 6:11 1E;

- i ; 0) _
Etape 1: puisque le pivota;y =1+ 0

Alors on élimine de x; de E, et E;
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Ez(_E2—§E1 ,E3<_E3—%E1

B 1 3 3: 0 1E;
AD=l0 -4 —-6: 2 |E;
0 -7 -3:11 lE;

Etape 2 : puisque le pivot aglz) =—4*0

Alors on élimine de x, de E;

Ea — B~ (3)Es

1 3 3 : 0 1E,
A®=[0 -4 -6 i 2 |E,
0 0 15/2 :15/2 |E;

Etape 3 : comme le pivot ag? =15/2+0

5 1 3 3 10 £k
A®=l0 -4 -6 2 |E,
0 0 1 :1lE;

Par substitution inverse on obtient:
x3=1
—4xy —6X3 =2 = Xy =—2
X1 +3x,+3x3=0=> x4, =3

Donc, la solution est :

L3
X=|-2
1
Et le déterminant de A est donné par :
— 1713 (i-1_ _(0) 1) (2) _ 15 _
det(4) =[[j-.1a; "=a;; xaz; xaz3 =1 X (=4) ¥ 5 =30
b. Algorithme
1. Triangularisation
ik
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a;j=a;j—wag; j=k+1,n+1; i=k+1L,n;k=1n-1

2. Substitution inverse
(b =X ax)

i — )
a;;

i=nn-—-1,..,1
4. Méthode de Gauss avec pivot:

Dans le processus d’élimination de la méthode de Gauss, on a suppos€¢ a chaque étape
k (k =1,n— 1) que I’élément a;, # 0, mais cette supposition n’est pas toujours vraie. Si
ayx = 0, on cherche I’équation E,, parmi celles qui suivent E; ou I’élément ajj, #0 pour faire
la permutation (Ej, < E;) et ainsi avoir ay # 0.

Aussi, on remarque que la division par de petites valeurs génére une grande erreur ce qui nous
ameéne a choisir ay le plus grand en valeur absolue , c.a.d.:

lajk| = Max{lagl} ; k<i<n

Apreés le choix de ay, on poursuit normalement 1’étape en cours selon Gauss.

Mise en ceuvre sous Matlab
Ecrire un programme sous Matlab qui permet de résoudre le systeme des équations linéaires

suivant en utilisant la méthode d’élimination de Gauss.

2x1 + Xo + ZX3 =10
6x1 + 4x2 = 26
8x1 + 5x2 + x3 = 35

62



Chapitre 7 : Résolution des équations linéaires (Méthodes itératives)

1. Introduction:

On a vu que les méthodes directes donnent la solution exacte du systeme d’équations
lineaires, cependant elles restent gourmandes en mémoire. Dans ce chapitre on va introduire
les méthodes itératives ou indirectes qui donnent une solution approximative du systeme
d’équations linéaires. Ces méthodes sont trés faciles a mettre en ceuvre et a programmer, elles

ne consomment pas la mémoire et donnent des résultats autant précis que 1’on veut.

2. Meéthode Jacobi

Soit le systeme d’équations suivant:

a1 X1 + aqz Xy + a3z X3 + -4+ Aip Xp = b1

a1 X1 + Qay2 Xy + a3 X3 + -+ Arp Xy = bz

A1 X1+ Qpp Xo + a3 X3+ -+ apy X, = by,

1)

Transformons le systéme en supposant que les éléments du pivot sontnon nuls a; #0 i =
1,2,..n

x; = (by — Qy2X; — Ay3X3 =+ — A1pXp)/A1q
Xy = (by — Az1x1 — Ax3X3 — " — AypXp) /Ay )
Xn = (bn — Ap2Xy — Ap3zX3 — =*° — an,n—lxn—l)/ann

Cette forme est appelée forme réduite du systtme Ax = b. Elle peut s’écrire autrement

X; = [bl - 2?:1 aijxj]/aii i=1,..n

Pour résoudre le systéme (1) on utilise 1’écriture (2) en portant les termes de droite a

I’itération (k) et ceux a gauche a I’itération (k).
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xikﬂ) = (b - a12x§k) - a13x§k) e alnxr(lk))/all

k+1 k k k
x§ ) = (b - a21x£ ) azsxé - aanr(L ))/azz (3)
k+1 k k k
X,EL ™ o (b aang ) an3x§ ) an,n—1x1(1—)1)/ann
En prenant une estimation initiale X(® = (xfo),xéo), (0)) et en utilisant le systéme (3) on
calcule XV = (xil),xél),..., (a ))ensune on remplace le vecteur X(Mdans le systeme (3)

avec k=1 on calcule X@@et continue de la méme facon de calculer les vecteurs X, x®)
X®), ... jusqu’a la convergence.
Le processus itératif aura lieu en utilisant un vecteur initial X(© et la forme réduite peut étre

formulée comme suite :

Xi(k“):[bi_ " 1aUX(k)]/a” i=1,.,n eti#j

3. Meéthode de Gauss-Seidel:
La méthode de Gauss-Seidel est une amélioration de la méthode de Jacobi en effet elle rend le
processus itératif plus rapide.
Soit le systéme des 3 équations a trois inconnues:

11 X1+ aq2 X2 + a43 X3 = by
Qz1 X1 + A3 X3 + A3 X3 = b,
a3q X1 + azp X3 + azz x3 = by

Ce systeme peut s’écrit avec les €léments du pivot sontnonnuls a; # 0 et i =1,2,..n
x1 = (by — a12%2 — ay3x3)/an

Xy = (b — az1Xx1 — ay3X3)/az;
x3 = (b3 — az X1 — azyX;)/ass

A la premigre itération, on calcule a partir du vecteur initial : x(® = ( © xéo),xéo))

Les valeurs de x de la premiére itération se calculent ainsi.

1 0
() (b1 a12x§) a13x§ ))/am

1
( ) = W _ a23x3 )/azz

(bz — 1%,
1
( ) = (bs - a31x£ ) - a32x2 )/a33

Et on continue jusqu’a aboutir a une précision suffisante

Le systéme réduit reste le méme sauf que la valeur nouvelle de Xl.(k“)

obtenue dans la ieme

équation sera injectée dans la suivante:
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k+1 k k
X(+) (b —a12X()_a13X() = X )/an

k+1 k+1 k
Xé ) = (b - a21X( = a23X§ ) - "'—aZan )/azz

k+1 k+1 k+1 k+1
X,S ) = (bn - anlxi )~ aané ) an,n—1X£—1 ))/ann
Le processus itératif se fera avec un vecteur initial et ’utilisation de la formule
k+1 i— k+1 k . .,
Xl( ) = [bl—23=11aUX]( )— ?=i+1ainj( )]/aii , L= 1,...,7’1 eti i]

La méthode de Gauss-Seidel est une variante améliorée de la méthode de Jacobi. En effet, a

X2(k+1)

I’itération k+1 , au moment du calcul de ,on posséde déja une meilleure

(k+1) (k+1)

approximation de X; que X( ) 3 savoir X; . De méme, au moment du calcul de X;

X(k+1) X(k+1)

on peut utiliser et qui ont été déja calculés. Plus Généralement, pour le calcul

de X% on peut utiliser P, x5 x5 deja calculés et les xHY, xSD

X l(f; Y de I'itération précédente.

4. Critére d’arrét

On utilise le plus souvent les critéres suivants:

|x.(n) — xi(n_l)| <e i=T1n

« Ou [[x™ —x®™D| <e (erreur absolue)

£() _g(n-1) _
|F- 0 (erreur relative)

B PO

5. Condition de convergence :

On démontre que si A est une matrice a diagonale strictement dominante (condition
suffisante), la méthode de Jacobi et de Gauss-Seidel sont convergentes. C.a.d.:

Yioilay] <lagl  vi=Tn
ji

Mise en ceuvre sous Matlab
Ecrire un programme sous Matlab qui permet de résoudre le systeme des équations linéaires
suivant en utilisant la méthode de Gauss-Seidel.

1
2
2

Avec la solution estimée X© = et erreur e = 107
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