
1

Licence en science et technique :

 Energies Renouvelables, Option : Technologie

Solaires et éoliennes

2023-2024

Université Moulay Ismaïl

Faculté des Sciences et Techniques;

Errachidia

Département de physique

Pr. Sara TEIDJ

Elément de Module : Calcul Scientifique

(P522)
Polycopié de Cours

2

Table des matières

Introduction .. 4

Chapitre 1: Introduction à l'environnement Matlab .. 5

1. Présentation de Matlab ... 5

2. L’environnement Matlab .. 6

3. Les principales constantes, fonctions et commandes ... 9

Chapitre 2: Opérations mathématiques de base avec Matlab .. 11

1. Vecteurs .. 11

2. Matrices .. 15

3. Les polynômes dans Matlab ... 20

a) Représentation d'un polynôme ... 20

b) Les racines d'un polynôme .. 20

c) Détermination des coefficients d’un polynôme à partir de ses racines 20

d) Evaluer le polynôme .. 20

e) Les opérations de polynôme .. 21

4. Extraction d’une sous-matrice .. 22

5. Génération automatique des matrices ... 24

Chapitre 3: Fichiers script et function .. 25

1. Fichiers script ... 25

2.Fichiers function (M-file function) ... 27

3. Définition d’une fonction par la commande « inline » ... 29

4. Fonctions outils .. 30

Chapitre 4: Fonctions et représentation graphique sous Matlab 31

1. Graphiques simples ... 31

a) La fonction plot ... 31

b) Modification de l'apparence d'une courbe ... 32

c) Annotation d'une figure ... 32

d) Afficher plusieurs courbes dans une même fenêtre (hold on) 34

e) Utiliser plot avec plusieurs arguments ... 34

2. Afficher plusieurs graphiques (subplot) ... 35

3. Echelles logarithmiques .. 36

4. Autres types de représentation ... 36

5. Fonctions mathématiques simple .. 37

3

6. Fonctions mathématiques usuelles .. 37

a) Fonctions matricielles .. 38

b) Fonctions avancées ... 38

Chapitre 5: Programmation avec Matlab et structures de contrôle 39

1. Principe général ... 39

2. Où doit se trouver le fichier de commande? ... 39

3. Commentaires et autodocumentation ... 40

4. Suppression de l’affichage .. 40

5. Pause dans l’exécution .. 40

6. Mode verbeux .. 40

7. Opérateurs de comparaison et logiques .. 41

8. Les entrées/sorties .. 43

9. Instructions de contrôle ... 43

a) Boucles if-elseif-else ... 44

b) Boucles for ... 45

c) Boucles while .. 46

d) Boucles switch ... 46

Chapitre 5: Résolution des équations non-linéaires 𝑓(𝑥)=0 .. 48

1. Définition ... 48

2. Méthode de la bissection .. 48

3. Méthode de Newton-Raphson ... 52

4. Méthode de point fixe ... 54

Chapitre 6 : Résolution des équations linéaires (Méthodes directes) 58

1. Introduction .. 58

2. Méthode de Cramer ... 58

3. Méthode de Gauss .. 59

4. Méthode de Gauss avec pivot .. 62

Chapitre 7 : Résolution des équations linéaires (Méthodes itératives) 63

1. Introduction .. 63

2. Méthode Jacobi ... 63

3. Méthode de Gauss-Seidel ... 64

4. Critère d’arrêt ... 65

5. Condition de convergence ... 65

Références ... 66

4

Introduction

Ce cours constitue une introduction au Calcul Scientifique. Son objectif est de présenter des

méthodes numériques permettant de résoudre avec un ordinateur des problèmes

mathématiques qui ne peuvent pas être traités simplement avec une feuille et un stylo.

Après la présentation de quelques éléments de base de Matlab, on introduira les principales

opérations usuelles sur les scalaires, les vecteurs et les matrices. On verra ensuite comment

utiliser des fichiers script (M-file) et function avec Matlab avant de présenter certaines

opérations graphiques offertes par ce logiciel.

Dans le chapitre 4 on apprendra la syntaxe des tests et des différentes boucles de

programmation en Matlab, et dans le chapitre 5 on verra quelques fonctions plus avancées

existant dans Matlab.

Dans le chapitre 5, 6 et 7 on apprendra comment résoudre les équations non-linéaires, les

équations linéaires par les méthodes directes et des équations linéaires par les méthodes

itératives.

Il faut rappeler ici qu’un langage scientifique comme Matlab exige rigueur et maîtrise parfaite.

Sa simplicité apparente ne doit pas cacher l’effort qu’il faut fournir pour apprendre

correctement la syntaxe qu’il utilise et savoir ensuite comment traduire dans ce langage les

algorithmes mathématiques. Un langage de programmation ne peut se substituer au travail

amont qui consiste à traduire sous forme d’algorithme et ensuite d’organigramme ce que l’on

veut programmer.

5

Chapitre1: Introduction à l'environnement Matlab

1. Présentation de Matlab

Matlab est un langage de programmation, mais il est beaucoup plus que ça. Il s’agit en fait de

ce qu’on appelle une console d’exécution (shell) qui partage certaines des caractéristiques

des consoles DOS ou UNIX.

Comme toutes les consoles, Matlab permet d’exécuter des fonctions, d’attribuer des valeurs à

des variables, d’effectuer des opérations mathématiques, de manipuler des matrices, de tracer

facilement des graphiques, etc.

La figure 1 présente l’écran Matlab de base: la fenêtre de commandes.

Le symbole >> s’appelle prompt ou bien invite de Matlab. Il invite l’utilisateur à taper une

commande.

Figure 1 : Fenêtre de commandes de Matlab

La commande quit permet de quitter MATLAB :

>>quit

La commande help permet de donner l’aide sur un problème donné.

6

Il est utile de noter que le langage Matlab n’est pas un langage compilé (contrairement au

langage C++, par exemple). Le logiciel lit et exécute les programmes instruction par

instruction et ligne par ligne.

Lorsque Matlab détecte une erreur, le logiciel s’arrête et un message d’erreur ainsi que la

ligne où l’erreur est détectée s’affichent à l’écran. Apprendre à lire les messages d’erreur

est donc important pour ”déboguer” les programmes rapidement et efficacement.

2. L'environnement de Matlab

Matlab affiche au démarrage plusieurs fenêtres. Selon la version on peut trouver les fenêtres

suivantes:

Current Folder : indique le répertoire courant ainsi que les fichiers existants.

Work space: indique toutes les variables existantes avec leurs types et valeurs.

Command History: utilisée pour formuler nos expressions et interagir avec Matlab.

 C'est la fenêtre que nous utilisons tout au long de ce chapitre.

Figure 2 : L'environnement de Matlab

Dans la fenêtre de commande, l’utilisateur peut affecter des valeurs à des variables et

effectuer des opérations sur celles-ci.

Par exemple :

7

>> x=4

x =

4

>> y=2

y =

2

>>x+y

ans =

6

>>x*y

ans =

8

>>

Ici, il faut noter que lorsque l’utilisateur ne fixe pas de variable de sortie, Matlab place par

défaut le résultat d’une opération dans la variable ans. Il est toujours possible de

connaître les variables utilisées et leur type à l’aide de la commande who ou bien whos. Par

exemple, pour les manipulations précédentes:

>>whos

Name Size Bytes Class

ans 1x1 8 double array

x 1x1 8 double array

y 1x1 8 double array

Grand total is 3 elements using 24 bytes

>>

La solution de x+y a donc été perdue. Il est donc préférable de toujours donner des noms aux

variables de sortie :

>> x=4;

>> y=2;

>> a=x+y

a =

6

>> b=x*y

b=

8

8

>>whos

Name Size Bytes Class

a 1x1 8 double array

b 1x1 8 double array

x 1x1 8 double array

y 1x1 8 double array

Grand total is 4 elements using 32 bytes

>>

Notons au passage que le point-virgule permet de ne pas afficher la valeur à l’écran, ce qui

permettra éventuellement des programmes plus rapides.

Le signe de pourcentage (%) permet de mettre ce qui suit sur une ligne en commentaire

(Matlab n’en tiendra pas compte à l’exécution).

La fonction clear permet d’effacer des variables. Par exemple :

>>clear x % on efface x de la mémoire

>>whos

Name Size Bytes Class

a 1x1 8 double array

b 1x1 8 double array

y 1x1 8 double array

Grand total is 3 elements using 24 bytes

>>

La sortie de la fonction whos donne, entre autre, la classe de la variable. Plusieurs classes de

variables sont disponibles à l’utilisateur de Matlab.

Le signe de pourcentage % permet de mettre ce qui suit sur une ligne en commentaire

(Matlab n'en tiendra pas compte à l'exécution).

Les classes les plus utiles pour l’utilisateur débutant sont l’entier, le réel simple, le réel double

et les variables caractère ‘char’.

 Pour les variables char, la déclaration se fait entre apostrophes:

>> mot1 = ’bonjour’

mot1 = bonjour

Il est possible de concaténer des mots à l’aide des parenthèses carrées (crochets)(la fonction

strcat de Matlab permet d’effectuer sensiblement la même tâche) :

>> mot1 = ’bonjour’;

9

>> mot2 = ’tout le monde’;

>> mot1_2 = [mot1 ’ ’ mot2] % l’emploi de ’ ’ permet d’introduire un espace

mot1_2 = bonjour tout le monde.

3. Les principales constantes, fonctions et commandes

Matlab définit les constantes suivantes:

 La constante Sa valeur

pi 3.1415.....=

exp(1) e 2.7183=

i 1= −

j 1= −

Inf 

NaN Not a Number (Pas un nombre)

eps 162 10− 

Parmi les fonctions fréquemment utilisées, on peut noter les suivantes:

La fonction Sa signification

sin(x) Le sinus de x (en radian)

cos(x) Le cosinus de x (en radian)

tan(x) Le tangent de x (en radian)

asin(x) L'arc sinus de x (en radian)

acos(x) L'arc cosinus de x (en radian)

atan(x) L'arc tangent de x (en radian)

sqrt(x) La racine carrée de x : x

abs(x) La valeur absolue de x : x

exp(x) xe=

log(x) Logarithme naturel de x : eln(x) log (x)=

log10(x) Logarithme à base 10 de x : 10log (x)

imag(x) La partie imaginaire du nombre complexe x

real(x) La partie réelle du nombre complexe x

10

round(x) Arrondi un nombre vers l'entier le plus

proche

floor(x) Arrondi un nombre vers l'entier le plus petit:

 max n n x,nentier

ceil(x) Arrondi un nombre vers l'entier le plus

grand:  max n n x,nentier

conj(X) conjugué du nombre complexe X

angle(X) argument (en radians)

Matlab offre beaucoup de commandes pour l'interaction avec l'utilisateur. Nous nous

contentons pour l'instant d'un petit ensemble, et nous exposons les autres au fur et à mesure de

l'avancement du cours.

La commande Sa signification

who Affiche le nom des variables utilisées

whos Affiche des informations sur les variables utilisées

clear x y Supprime les variables x et y

clear, clear all Supprime toutes les variables

clc Efface l'écran

exit,quit Fermer l'environnement Matlab

format:

format long

format short e

format long e

Définit le format de sortie pour les valeurs numériques.

 format long à 15 chiffres.

format court à 5 chiffres avec notation en virgule flottante.

format long à 15 chiffres avec notation en virgule flottante.

disp permet d'afficher un tableau de valeurs numériques ou de

caractères.

Num2str pour convertir une valeur numérique en une chaîne de

caractères

Input permet de demander à l'utilisateur d'un programme de fournir

des données (La syntaxe est var = input(' une phrase ').

11

Chapitre 2: Opérations mathématiques de base avec Matlab:

Scalaires, vecteurs et matrices

Plusieurs types de données sont disponibles dans Matlab. Les types traditionnels que l’on

retrouve dans tous les langages de programmation: les types numériques (single, double, int8,

etc...), caractères char, les tableaux de réels, et les tableaux creux sparse, et les types

composées cell, structure ainsi que les types définis par l’utilisateur, comme les fonctions

inline. Le type de donnée privilégiée sous Matlab est les tableaux à une ou deux dimensions,

qui correspondent aux vecteurs et matrices utilisés en mathématiques et qui sont aussi utilisés

pour la représentation graphique. Nous allons donc nous attarder sur leur définition et leur

maniement dans les paragraphes qui suivent.

L’élément de base de Matlab est la matrice. C’est-à-dire qu’un scalaire est une matrice de

dimension 1x1, un vecteur colonne de dimension n est une matrice nx1, un vecteur ligne de

dimension n, une matrice 1xn. Contrairement aux langages de programmation usuels (i.e.

C++), il n’est pas obligatoire de déclarer les variables avant de les utiliser et, de ce fait, il faut

prendre toutes les précautions dans la manipulation de ces objets.

Les scalaires se déclarent directement, par exemple :

>> x = 0;

>>a = x;

1. Vecteurs

Les vecteurs lignes se déclarent de la manière suivante :

>>V_ligne = [0 1 2]

V_ligne =

0 1 2

Ou bien

>>V_ligne = [0, 1, 2]

V_ligne =

 0 1 2

Pour les vecteurs colonnes, on sépare les éléments par des points-virgules (;) :

>>V_colonne = [0;1;2]

V_colonne =

12

0

1

2

Il est possible de transposer un vecteur à l’aide de la fonction transpose ou avec le point

apostrophe (.'). Ainsi,

>>V_colonne=transpose(V_ligne)

V_colonne =

0

1

2

>>V_colonne=V_ligne.'

V_colonne =

0

1

2

Le double point (:) est l’opérateur d’incrémentation dans Matlab. Ainsi, pour créer un vecteur

ligne des valeurs de 0 à 1 par incrément de 0.2, il suffit d’utiliser:

>> V= [0:0.2:1]

V =

Columns 1 through 6

0 0.2000 0.4000 0.6000 0.8000 1.0000

Par défaut, l’incrément est de 1. Ainsi, pour créer un vecteur ligne des valeurs de 0 à 5 par

incrément de 1, il suffit d’utiliser :

>> V=[0:5]

V =

0 1 2 3 4 5

On peut accéder à un élément d’un vecteur et même modifier celui-ci directement (Notez que

contrairement au C++, il n’y a pas d’indice 0 dans les vecteurs et matrices en Matlab) :

>>a=V(2);

>> V(3)=3*a

V =

0 1 3 3 4 5

13

La création d'un vecteur dont les composants sont ordonnés par intervalles régulier et avec un

nombre d'éléments bien déterminé peut se réaliser avec la fonction linspace (début, fin,

nombre d'éléments).

Le pas d'incrémentation est calculé automatiquement par Matlab selon la formule suivante:

fin début
le pas

nombre d'éléments 1

−
=

−

>> X=linspace(1,10,4) % un vecteur de quatre élément de 1 à 10

X =

 1 4 7 10

La taille d'un vecteur (le nombre de ses composants)peut être obtenue avec la fonction length

comme suit:

>>length(X) % la taille du vecteur X

ans =

 4

Les opérations usuelles d’addition, de soustraction et de multiplication par scalaire sur les

vecteurs sont définies dans MATLAB :

>> V1=[1 2];

>> V2=[3 4];

>> V=V1+V2 % addition de vecteurs

V =

4 6

>> V=V2-V1 % soustraction de vecteurs

V =

2 2

>> V=2*V1 % multiplication par un scalaire

V =

2 4

Dans le cas de la multiplication et de la division, il faut faire attention aux dimensions des

vecteurs en cause.

Pour la multiplication et la division élément par élément, on ajoute un point devant l’opérateur

(.* et ./). Par exemple :

>> V=V1.*V2 % multiplication élément par élément

14

V =

3 8

>> V=V1./V2 % division élément par élément

V =

0.3333 0.5000

Cependant, Matlab lance une erreur lorsque les dimensions ne concordent pas. Les messages

d’erreur sont utiles pour corriger les programmes (parenthèse oublié par exemple). Il faut

cependant procéder à la vérification systématique de l’instruction ou du programme avant de

lancer l’exécution (reflexe de base d’un programmeur):

>> V3=[1 2 3]

V3 =

1 2 3

>> V=V1.*V3

??? Error using ==> .* Matrix dimensions must agree.

La multiplication de deux vecteurs est donnée par (*). Ici, l’ordre a de l’importance :

>> V1=[1 2]; % vecteur 1x2

>> V2=V1.’; % vecteur 2x1

>> V=V1*V2

V =

5

>> V=V2*V1

V =

1 2

2 4

Il est aussi possible de concaténer des vecteurs.

 Par exemple :

>> V1=[1 2];

>> V2=[3 4];

>> V=[V1 V2]

V =

1 2 3 4

De même, pour les vecteurs colonnes :

>> V1=[1;2];

>> V2=[3;4];

15

>> V=[V1;V2]

V =

1

2

3

4

2. Matrices

On peut aussi créer des matrices à partir de vecteurs, par exemple,

>> V1=[1 2];

>> V2=[3 4];

>> V=[V1;V2]

V =

1 2

3 4

qui n’est pas équivalent à :

>> V1=[1;2];

>> V2=[3;4];

>> V=[V1 V2]

V =

1 3

2 4

Il faut donc être très prudent dans la manipulation des vecteurs. Par exemple, une mauvaise

concaténation :

>> V1=[1 2];

>> V2=[3;4];

>> V=[V1;V2]

??? Error using ==>vertcat All rows in the bracketed expression must have the same

number of columns.

Les matrices peuvent aussi être construites directement :

>> M=[1 2; 3 4]

M =

1 2

16

3 4

On peut évidemment avoir accès aux éléments de la matrice par :

>> m21=M(2,1) % 2e ligne, 1ere colonne

m21 =

3

On peut aussi ”compter” les éléments. Matlab compte alors tous les éléments d’une colonne

(de haut en bas) avant d’accéder à la colonne suivante. Ainsi, dans la matrice 3x3 suivantes:

>> A=[1 2 3; 8 5 6;7 8 9]

A =

1 2 3

8 5 6

7 8 9

les valeurs des éléments ai,j sont données par leur rang affecté par Matlab. Le4e élément est

2 :

>> a4=A(4)

a4 =

2

Il est aussi possible de stocker dans un vecteur une ou plusieurs lignes (ou colonnes).

Ainsi, si l’on veut stocker la deuxième colonne de la matrice A :

>> V=A(:,2) % ici, (:) signifie toutes les lignes

V =

2

5

8

De la même manière, si l’on veut stocker les lignes 2 et 3 :

>> M2=A(2:3,:) % (2:3) signifie ligne 2 à 3

% et (:) signifie toutes les colonnes

M2 =

8 5 6

7 8 9

Il est possible d’inverser inv(), de transposer transpose() ou avec l’apostrophe (.’)les matrices :

>>invM=inv(M)

invM =

-2.0000 1.0000

17

1.5000 -0.5000

>>transpM=M.’

transpM =

1 3

2 4

Un des intérêts de Matlab est la possibilité d’utiliser directement les opérations

mathématiques prédéfinies pour les matrices. L’addition et la soustraction sont directes

(attention aux dimensions) ainsi que la multiplication par un scalaire :

>> A=[1 2;3 4];

>> B=[4 3;2 1];

>> C=A+B % addition

C=

5 5

5 5

>> D=A-B % soustraction

D=

-3 -1

1 3

>> C=3*A % multiplication par un scalaire

C=

3 6

9 12

Pour la multiplication et la division, les opérateurs usuels (* et /) sont définis pour la

multiplication et division matricielles :

>> C=A*B % multiplication de matrices

C=

8 5

20 13

>> D=A/B % division de matrices

D=

1.5000 -2.5000

2.5000 -3.5000

Afin de réaliser la multiplication et la division élément par élément, on précède les opérateurs

par un point (.* et ./) :

18

>> C=A.*B % multiplication élément par élément

C=

4 6

6 4

>> D=A./B % division élément par élément

D=

0.2500 0.6667

1.5000 4.0000

D’autres opérations sur les matrices seront présentées dans les sections subséquentes.

Il faut noter certaines matrices spéciales qui peuvent être utilisées, par exemple la matrice

identité :

>> I=eye(3) % matrice identité

I=

1 0 0

0 1 0

0 0 1

On peut aussi déclarer des vecteurs (et des matrices) ne contenant que des zéros ou des 1.

>>V_nul=zeros(1,2) % un vecteur de 1 ligne, 2 colonnes de 0

V_nul=

0 0

>>V_un=ones(1,2) % un vecteur de 1 ligne, 2 colonnes de 1

V_un=

1 1

>>M_un=ones(2,2) % une matrice 2x2 de 1

M_un=

1 1

1 1

Dans certaines applications, il est parfois utile de connaître les dimensions d’une matrice, et la

longueur d’un vecteur (retournés, par exemple, par une fonction).

Dans ce cas, on utilise les fonctions length et size.

>> V=[0:0.1:10]; % utilisation de length - vecteur 1x101

>> n=length(V)

n=

19

101

>> M=[1 2 3; 4 5 6]; % utilisation de size - matrice 2x3

>> [n,m]=size(M)

n=

2

m=

3

>>dim=length(M) % utilisation de length sur une matrice

dim=

3

Dans ce cas length donne la plus grande dimension, ici le nombre de colonnes.

A=[1 2 3 ; 2 4 5 ; 6 7 8];

det(A) % calcule le déterminant de A

>>det(A)

ans =

 -5.0000

>> B=[-5 -2; 2 1];

>>abs(B) % la valeur absolue

ans =

 5 2

 2 1

Il existe aussi des commandes qui sont propres aux vecteurs. Ces commandes s’appliquent

aussi aux matrices. Dans ce cas la commande porte sur chaque vecteur colonne de la matrice.

La commande Sa signification

sum(x) Somme des éléments du vecteur x

prod(x) produit des éléments du vecteur x

max(x) plus grand élément du vecteur x

min(x) plus petit élément du vecteur x

mean(x) moyenne des éléments du vecteur x

sort(x) ordonne les éléments du vecteur x par ordre

croissant

20

3. Les polynômes dans Matlab

Dans Matlab, les polynômes sont représentés sous forme de vecteurs lignes dont les

composantes sont données par ordre des puissances décroissantes. Un polynôme de degré n

est représenté par un vecteur de taille (n+1).

a) Représentation d'un polynôme

Le polynôme: p(x)=3x² - 5x + 2

On commence par définir un " vecteur " qui contient les coefficients du polynôme :

 p = [3 -5 2]

p =

 3 -5 2

b) Les racines d'un polynôme:

La fonction roots permet de trouver les racines d'un polynôme. L'exemple suivant montre

l'utilisation de cette fonction.

roots(p) % trouver les racines d'un polynôme

ans =

1.0000

0.6667

c) Détermination des coefficients d’un polynôme à partir de ses racines

La fonction poly permet de trouver le polynôme à partir de ses racines.

 On cherche, par exemple, le polynôme qui a pour racines: 2 et 1

Celle-ci peuvent être définies comme les éléments d'un vecteur a.

a=[2 1]

a =

 2 1

>>poly(a) %trouve le polynôme à partir de ses racines

ans =

 1 -3 2

Qui correspond à f(x)= x² -3x +2

d) Evaluer le polynôme

Pour évaluer un polynôme en un point, on utilise la fonction polyval

Essayons de trouver la valeur du polynôme p en 1 et celle du polynôme a en 0.

>> p = [3 -5 2]

21

p =

 3 -5 2

>>polyval(p,1) % évalue le polynôme

ans =

 0

>> a=[2 1]

a =

 2 1

>>polyval(a,0)

ans =

 1

e) Les opérations de polynôme

La multiplication et la division de polynôme peuvent être réalisées facilement avec MATLAB.

Soit deux polynômes P1 et P2 définis par :

2

P1(x) x 2

P2(x) x 2x 1

= +

= − +

>> P1=[1 2]

P1 =

 1 2

>> P2=[1 -2 1]

P2 =

 1 -2 1

Le résultat de la multiplication de P1 par P2 est le polynôme P3 qui s’obtient avec la fonction

conv.

>> P3=conv(P1,P2)

P3 =

 1 0 -3 2

La division de deux polynômes se fait par la fonction deconv. Le quotient Q et le reste R de la

division peuvent être obtenus sous forme d’élément d’un tableau.

>> [Q, R] = deconv (P2, P1)

Q =

 1 -4

R =

 0 0 9

22

4. Extraction d’une sous-matrice

On peut utiliser les deux points pour extraire une sous-matrice d’une matrice A.

A(:,j) :extrait la jème colonne de A. On considère successivement toutes les lignes de

A et on choisit le jème élément de chaque ligne.

A(i,:) :extrait la ième ligne de A.

A(:) :reforme le matrice A en un seul vecteur colonne en concaténant toutes les colonnes de A.

A(j:k) :extrait les éléments j à k de A et les stocke dans un vecteur ligne

A(:,j:k) :extrait la sous-matrice de A formée des colonnes j à k.

A(j:k,:) : extrait la sous-matrice de A formée des lignes j à k.

A(j:k,q:r) :extrait la sous-matrice de A formée des éléments situés dans les lignes j à ket dans

les colonnes q à r.

Ces définitions peuvent s’étendre à des pas d’incrémentation des lignes et des colonnes

différents de 1.

Par exemple:

>> A=[1 2 3 4; 5 6 7 8;9 10 11 12] % création de la matrice A

A =

 1 2 3 4

 5 6 7 8

 9 10 11 12

>> A(2,3) % l'élément dur la 2éme ligne à la 3éme colonne

ans =

 7

>>A(1,:) % tous les éléments de la 1ére ligne

ans =

 1 2 3 4

>>A(:,2) % tous les éléments de la 2éme colonne

ans =

 2

 6

 10

>>A(2:3,:) % tous les éléments de la 2éme et la 3éme ligne

ans =

23

 5 6 7 8

 9 10 11 12

>>A(1:2,3:4) % la sous matrice supérieure droite de taille 2x2

ans =

 3 4

 7 8

>>A([1,3],[2,4]) % la sous matrice: ligne(1,3) et colonnes (2,4)

ans =

 2 4

 10 12

>>A(:,3)=[] % supprimer la 3éme colonne

A =

 1 2 4

 5 6 8

 9 10 12

>>A(2,:)=[] % supprimer la 2éme ligne

A =

 1 2 4

 9 10 12

>> A=[A , [0;0]] % Ajouter une nouvelle colonne ou A(:,4)=[0;0]

A =

 1 2 4 0

 9 10 12 0

>> A=[A ;[1, 1, 1, 1]] % Ajouter une nouvelle ligne ou A(3,:)=[1 1 1 1]

A =

 1 2 4 0

 9 10 12 0

 1 1 1 1

24

5. Génération automatique des matrices:

Dans Matlab, il existe des fonctions qui permettent de générer automatiquement des matrices

particulières. Dans le tableau suivant nous présentons les plus utilisées:

La fonction Signification

zeros(n) Génère une matrice nxn avec tous les éléments=0

zeros(m,n) Génère une matrice mxn avec tous les éléments=0

ones(n) Génère une matrice nxn avec tous les éléments=1

ones(m,n) Génère une matrice mxn avec tous les éléments=1

eye(n) Génère une matrice identité de dimension nxn

magic(n) Génère une matrice magique de dimension nxn

rand(m,n) Génère une matrice dimension mxn de valeur aléatoire

25

Chapitre 3: Fichiers script et function

Jusqu’à présent, l’utilisation que nous avons faite de Matlab s’apparente beaucoup à

celle d’une calculatrice. Pour des tâches répétitives, il s’avère beaucoup plus pratique et

judicieux d’écrire des programmes pour effectuer les calculs désirés.

Il existe deux types de fichiers qui peuvent être programmé savec Matlab: les fichiers

script(M-file) et function. Dans les deux cas, il faut lancer l’éditeur de fichier et sauvegarder

le fichier avec l’extension .m.

1. Fichiers script

Comme tout langage, Matlab possède aussi un certain nombre d’instructions syntaxiques

(boucles simples, conditionnelles, etc...) et de commandes élémentaires (lecture, écriture,

etc...). Ces instructions syntaxiques seront vues dans la partie suivante du cours.

Dès que le calcul à effectuer implique un enchaînement de commandes un peu compliqué, il

vaut mieux écrire ces dernières dans un fichier. Par convention un fichier contenant des

commandes Matlab porte un nom avec le suffixe. m et s’appelle pour cette raison un M-file

ou encore script. On utilisera toujours l’éditeur intégré au logiciel qui se lance à partir de la

fenêtre de commande en cliquant sur les icônes New ou open dans la barre de menu.

Une fenêtre d'édition comme celle-ci va apparaître:

Figure 3 : La fenêtre d'édition de Matlab

26

Une fois le fichier enregistré sous un nom valide, on peut exécuter les commandes qu’il

contient en tapant son nom - sans le suffixe .m - dans la fenêtre de commande. Si vous avez

ouvert l’éditeur comme indiqué, à partir de la fenêtre de commande, les M-file seront créés

dans le répertoire courant, accessible depuis cette fenêtre, et vous n’aurez pas de problème

d’accès. Si vous voulez exécuter des scripts qui se trouvent ailleurs dans l’arborescence des

fichiers, vous aurez éventuellement à modifier le Path en cliquant sur le menu file− >SetPath

ou bien en changeant de répertoire de travail(cliquer sur l’onglet current directory).

Le fichier script permet de lancer les mêmes opérations que celles écrites directement à la

fenêtre de commandes de Matlab après le symbole prompt (>>). Toutes les variables

utilisées dans un script sont disponibles à l’invite Matlab (fenêtres de commandes) une

fois le script exécuté.

Un script Matlab est composé d’une suite d’instructions, toutes séparées par une virgule (ou

de manière équivalente, un passage à la ligne) ou un point virgule. La différence entre ces

deux types de séparation est liée à l’affichage ou non du résultat à l’écran (seulement effectué

dans le premier cas).

Par exemple, créons à l’aide de l’éditeur intégré de Matlab dans le répertoire de travail choisi,

déjà déclaré par SetPath, le fichier test. m. Supposons qu’il contient les instructions suivantes :

clear all

close all

x=4;

y=2;

a=x +y

b=x*y

Ecrivons dans la fenêtre de commandes le nom du fichier

>>test

a =

6

b =

8

En tapant whos ensuite, on produit la sortie suivante:

Name Size Bytes Class

a 1x1 8 double array

b 1x1 8 double array

27

x 1x1 8 double array

y 1x1 8 double array

Grand total is 4 elements using 32 bytes

>>

Habituellement, on utilise les fichiers script afin de :

– Déclarer des variables ;

– Effectuer des opérations mathématiques ;

– Appeler des fonctions ;

– Tracer des figures ;

– Programmer des algorithmes.

2. Fichiers function (M-file function)

L’idée de base d’une fonction est d’effectuer des opérations sur une ou plusieurs entrées ou

arguments pour obtenir un résultat qui sera appelé sortie. Il estime portant de noter que l’appel

de la fonction se fait en précisant ses variables entrées si ces dernières ne sont pas disponibles

à l’invite Matlab.

Il est possible de créer nos propres fonctions en écrivant leurs codes " source" dans des

fichiers M-files (portant le même nom de fonction) en respectant la syntaxe suivant:

function [1r , 2r ,…, nr] = nom_fonction (1arg , 2arg ,…, narg)

 % le corps de la fonction

1r =… % la valeur retournée pour 1r

2r =… % la valeur retournée pour 2r

nr =… % la valeur retournée pour nr

% le end est facultatif

end

où : 1r , 2r ,…, nr sont les valeurs retournées ,et 1arg , 2arg ,…, narg sont les arguments.

le rôle d'une fonction est d'effectuer des opérations sur une ou plusieurs entrées pour obtenir

un résultat qui sera appelé sortie.

Par exemple, la fonction suivante admet une seule sortie a qui constitue le résultat de

l’addition des deux arguments d’entrée x et y:

function a = ma_fonction(x,y)

28

a=x+y;

end

Lorsqu’on tape dans la fenêtre de commandes:

>> a = ma_fonction(4,2)

on obtient

a = 6

Ensuite, on vérifieque

>>whos

Name Size Bytes Class

a 1x1 8 double array

Grand total is 1 element using 8 bytes

>>

Modifions la fonction pour lui demander de calculer aussi le produit de x et y de la façon

suivate :

function [a,b] = ma_fonction2(x,y)

a=x+y;

b=x*y;

end

Dans ce cas, on vérifie que:

>> [a,b] = ma_fonction2(4,2)

a =

6

b =

8

>>whos

Name Size Bytes Class

a 1x1 8 double array

b 1x1 8 double array

Grand total is 2 elements using 16 bytes

>>

On peut éviter l’affichage des sorties en utilisant le point-virgule :

>> [a,b]=ma_fonction2(4,2);

>>whos

Name Size Bytes Class

29

a 1x1 8 double array

b 1x1 8 double array

Grand total is 2 elements using 16 bytes

Remarquons que nous pouvons appeler la fonction ma_fonction2 pour calculer uniquement la

somme de x et y. On obtient alors

>> a = ma_fonction2(4,2)

a =

6

>>whos

Name Size Bytes Class

a 1x1 8 double array

Grand total is 1 element using 8 bytes

Remarques importantes :

* Le passage des arguments d’entrée dans les fonctions se fait par valeur. Aussi, même si elles

sont modifiées dans la fonction les valeurs des paramètres ne sont pas modifiées dans le

programme appelant.

* Si une des variables de la procédure n’est pas définie à l’intérieur de celle-ci elle doit

obligatoirement être fournie en argument d’entrée.

* La récupération des valeurs calculées par la fonction se fait par les paramètres de sortie.

* Le nom du fichier contenant la fonction porte obligatoirement le nom de cette dernière. On

peut mettre plusieurs fonctions dans le même M-file mais seule la fonction du même nom

que le fichier peut être utilisé, appelée, à partir de la fenêtre de commandes ou d’une autre

fonction ou d’un script. Les autres fonctions éventuellement stockées dans le fichier peuvent

s’appeler entre elles mais ne sont pas visibles de l’extérieur.

Habituellement, on utilise les fichiers function afin de :

– Programmer des opérations répétitives ;

– Limiter le nombre de variables dans l’invite Matlab ;

– Diviser le programme (problème) de manière claire.

3. Définition d’une fonction par la commande « inline »

Une fonction ne comportant qu’un petit nombre d’instructions peut être définie directement

dans la fenêtre de commandes de la manière suivante :

30

>>angle=inline('atan(y/x)')

angle =

Inlinefunction:

angle(x,y) = atan(y/x)

>>angle(5,4)

ans =

0.6747

Les arguments de la fonction angle sont normalement fournis à l’appel dans l’ordre

d’apparition dans la définition de la fonction. On peut aussi spécifier les arguments d’appel

explicitement

>>f =inline('sin(alpha*(x+y))','x','y','alpha')

f =

Inlinefunction:

f(x,y,alpha) =sin(alpha*(x+y))

>>f(0.2,0.3,pi)

ans =

1

4. Fonctions outils

Enfin, notez que certaines commandes spéciales ne peuvent s’utiliser qu’en relation à une

fonction: nargin, donne le nombre d’arguments d’entrée passés à l’appel de la fonction.

function c=testarg1(a,b)

if (nargin == 1)

c=2*a;

elseif (nargin == 2)

c=a+b;

end

nargin peut aussi être utilisée pour connaître le nombre prévu d’arguments d’entrée

>>nargin(’testarg1’)

ans =

2

La commande nargout fonctionne de manière analogue pour les arguments de sortie.

31

Chapitre 4: Fonctions et représentation graphique sous Matlab

1. Graphiques simples

Cette section vise une initiation aux nombreuses facultés graphiques offertes par Matlab.

Dans toutes les représentations graphiques, le logiciel se base sur des données discrètes

rangées dans des matrices ou des vecteurs colonnes. Par exemple, pour représenter des

courbes du type y = f(x) ou des surfaces z = f(x, y), les données x, y, z doivent être des

vecteurs colonnes (x et y) ou des matrices (z) aux dimensions compatibles. L’instruction de

dessin correspondante (par exemple plot(x,y) pour tracer des courbes planes) est alors utilisée

et éventuellement complétée par des arguments optionnels (couleur, type de trait, échelle sur

les axes, etc...). La visualisation du résultat s’effectue dans une fenêtre graphique (avec

possibilité de zoom, de rotation, d’impression).

a) La fonction plot:

La fonction plot est utilisable avec des vecteurs ou des matrices. Elle trace des lignes en

reliant des points de coordonnées définis dans ses arguments, et elle a plusieurs formes:

Si elle contient deux vecteurs de la même taille comme arguments: elle considère les

valeurs du premier vecteur comme les éléments de l'axe X (les abscisses), et les valeurs du

deuxième vecteur comme les éléments de l’axe Y (les ordonnées), comme dans l’exemple qui

suit :

>> A=[2 5 3 -2 0]

A =

 2 5 3 -2 0

>> B=[-4 0 3 1 4]

B =

 -4 0 3 1 4

>>plot(A,B)

Si elle contient un seul vecteur comme argument: elle considère les valeurs du vecteur

comme les éléments de l'axe Y (les ordonnées), et leurs positions relatives définiront l'axe X

(les abscisses),

Exemple:1

>> V=[2 1 6 8 -3 0 5]

32

V =

 2 1 6 8 -3 0 5

>>plot(V)

>>

Exemple:2

>> x=[0:0.01:2*pi];

>>plot(x,cos(x))

b) Modification de l'apparence d'une courbe

Ces graphiques manquent cependant de clarté. Il est possible de manipuler l'apparence d'une

courbe en modifiant la couleur de la courbe, la forme des points de coordonnées et le type de

ligne reliant les points.

Pour cela, on ajoute un nouvel argument (qu'on peut appeler un marqueur) de type chaîne de

caractères à la fonction plot comme ceci:

plot(x,y,' marqueur')

Le contenu du marqueur est une combinaison d'un ensemble de caractères spéciaux

rassemblés dans le tableur suivant:

 Couleur de la courbe Représentation des points

 Le caractère Son effet - En ligne pleine

b Courbe en bleu : En pointillé

g Courbe en vert -- En tiret

r Courbe en rouge . Un point

y Courbe en jaune o Un cercle

k Courbe en noir x Le symbole x

Pour en savoir plus, particulièrement sur les couleurs et types de courbes, tapez help plot à

l’invite Matlab.

c) Annotation d'une figure:

Dans une figure, il est préférable de mettre une description textuelle aidant l'utilisateur à

comprendre la signification des axes et de connaître le but ou l'intérêt de la visualisation

concernée.

33

Il est très intéressant également de pouvoir signaler des emplacements ou des points

significatifs dans une figure par un commentaire signalant leurs importances.

✓ Pour donner un titre à une figure contenant une courbe nous utilisons la fonction title

comme ceci:

>>title(' titre de la figure')

✓ Pour donner un titre pour l'axe vertical des ordonnées y, nous utilisons la fonction

ylabel comme ceci:

>>ylabel(' ceci est l"axe des ordonnées Y ')

✓ Pour donner un titre pour l'axe horizontal des abscisses x , nous utilisons la fonction

xlabel comme ceci:

>>xlabel(' ceci est l"axe des abscisses X ')

✓ Pour écrire un texte (un message) sur la fenêtre graphique à une position indiquée par

les coordonnées x et y, nous utilisons la fonction text comme ceci:

>>text(x,y,'ce point est important')

✓ Pour mettre un texte sur une position choisie manuellement par la souris, nous

utilisons la fonction gtext, qui a la syntaxe suivant:

>>gtext('ce point est choisi manuellement')

✓ Pour mettre un quadrillage (une grille), nous utilisons la commande grid (ou grid on)

pour l'enlever nous réutilisons la même commande grid (ou grid off).

✓ Pour fixer les limites sur les axes des abscisses et des ordonnées

>>axis([xmin xmax ymin ymax]

Par exemple:

Dessinons la fonction:
3 2y 2x x 2x 4=− + − + pour x variant de -4 jusqu'à 4, avec un pas 0.5

clear all

close all

x=-4:0.5:4;

y=-2.*x.^3+x.^2-2.*x+4;

plot(x,y)

grid on

title(' Dessiner une courbe')

xlabel('L"axe des abscisses')

ylabel('L"axe des ordonnées')

34

d) Afficher plusieurs courbes dans une même fenêtre (hold on)

Il est possible d’afficher plusieurs courbes dans une même fenêtre graphique grâce à la

commande hold on. Les résultats de toutes les instructions graphiques exécutées après appel à

la commande hold on sera superposés sur la fenêtre graphique active. Pour rétablir la situation

antérieure (le résultat d’une nouvelle instruction graphique remplace dans la fenêtre graphique

le dessin précédent) on tapera hold off.

Voici un exemple d’utilisation de la commande hold on

clear all

close all

x=linspace(0,pi,30);

y1=cos(x);

plot(x,y1,'o-r')

y2=sin(x);

hold on

plot(x,y2,'x-b')

y3=exp(-x);

hold on

plot(x,y3,'*-g')

e) Utiliser plot avec plusieurs arguments.

On peut utiliser plot avec plusieurs couple (x, y) ou triplets (x,y,' marqueur') comme

arguments. Un script est tout indiqué :

% graphique.m

clear all

close all

x=[0:0.01:2*pi];

y1=cos(x); y2=sin(x);

figure(1)

plot(x,y1,'.',x,y2,'+') % cos(x) en points . , sin(x) en +

title('sinus et cosinus')

xlabel('x')

ylabel('f(x)')

legend('cos(x)','sin(x)',0) % le 0 place la légende à côté des courbes

35

Remarque

On dispose donc de deux façons de superposer plusieurs courbes sur une même figure.

On peut soit donner plusieurs couples de vecteurs abscisses/ordonnées comme argument de la

commande plot, soit avoir recours à la commande hold on. Suivant le contexte on privilégiera

l’une de ces solutions plutôt que l’autre.

2. Afficher plusieurs graphiques (subplot)

Voilà une fonctionnalité très utile pour présenter sur une même page graphique un grand

nombre de résultats.

L’idée générale est de découper la fenêtre graphique en pavées de même taille, et d’afficher

un graphe dans chaque pavé. On utilise l’instruction subplot en lui spécifiant le nombre de

pavés sur la hauteur, le nombre de pavés sur la largeur, et le numéro du pavé dans lequel on

va tracer:

subplot (Nbre pavés sur hauteur, Nbre pavés sur largeur, Numéro pavé)

La virgule peut être omise. Les pavés sont numérotés dans le sens de la lecture d’un texte : de

gauche à droite et de haut en bas.

Une fois que l’on a tapé une commande subplot, toutes les commandes graphiques suivantes

seront exécutées dans le pavé spécifié.

Comme exemple taper la suite d’instructions suivantes :

clear all

close all

x=[0:0.01:2*pi];

subplot(221)

plot(x,sin(x),'b')

subplot(222)

plot(x,cos(x),'r')

subplot(223)

plot(cos(2*x),'g')

subplot(224)

plot(sin(2*x),'k')

36

3. Echelles logarithmiques

On peut tracer des échelles log en abscisse, en ordonnée ou bien les deux. Les fonctions

correspondantes s’appellent respectivement semilogx, semilogy et loglog. Elles s’utilisent

exactement de la même manière que plot.

Par exemple :

>> x=1:100;

>>semilogx(x,log(x))

4. Autres types de représentation

Outre la représentation cartésienne de courbes ou de surfaces, il existe d’autres possibilités

pour illustrer graphiquement un résultat. On peut citer parmi les plus utiles, les instructions

contour,ezmesh (pour tracer les courbes de niveau d’une surface paramétrique), mesh,ezplot3

(courbes paramétriques dans l’espace),hist, rose (histogramme d’un échantillon de données

statistiques), etc...

Type Description commande

semilogy axe des y en log de base 10 et axe des x linéaire semilogy(x,y)

semilogx axe des x en log et axes des y linéaire semilogx(x,f(x))

loglog les deux axes sont en log de base 10 loglog(x,y)

errorbar graphique avec bar d’erreur en y sur chaque valeur errorbar(x,y,e);

e : vecteur erreur en chaque

point de x.

errorbar(x,y,eup,edown);

eup : étant la limite

supérieure de l’erreur et

edown :la limite inférieure.

bar

barh

graphique à bars verticales ou horizontales bar(x,y)

barh(x,y)

hist histogramme hist(y,nbins);

nbins = nbre de barreaux

hist(y,x) ; x = location du

centre du barreau

37

plot3 Tracé d’une ligne paramétrique en 3D plot3(x,y,z)

mesh Tracé d’une surface en 3D, à partir de matrices de

maillage

mesh(x,y,z)

surf Tracé d’une surface en 3D avec dégradé de couleur,

à partir de matrices de maillage

surf(x,y,z)

5. Fonctions mathématiques simples

Les opérateurs algébriques (+, -, *, /, .*,./) ont été définis précédemment pour les scalaires,

vecteurs et matrices. On montrera ici (sans être exhaustif), les principales fonctions

mathématiques fournies dans Matlab et leur utilisation. Pour les fonctions non présentées,

l’utilisateur peut toujours utiliser l’aide des fonctions avec la fonction help qui prend pour

argument le nom de la fonction. Par exemple, la function cosinus:

>> help cos

COS Cosine of argument in radians.

 COS(X) is the cosine of the elements of X.

Dans la suite, on présente les fonctions mathématiques usuelles et leur appel dans Matlab.

Ensuite, on présente les principales fonctions spécifiques aux matrices.

6. Fonctions mathématiques usuelles

Toutes les fonctions mathématiques de base sont déjà programmées dans Matlab.

Toutes les fonctions courantes et moins courantes existent. La plupart d’entre elles

fonctionnent en complexe. On retiendra que pour appliquer une fonction à une valeur, il faut

mettre cette dernière entre parenthèses. Exemple :

>>sin(pi/12)

ans =

0.16589613269342

Voici une liste non exhaustive :

– fonctions trigonométriques et inverses : sin, cos, tan, asin, acos, atan

– fonctions hyperboliques (on rajoute «h») : sinh, cosh, tanh, asinh, acosh, atanh

– racine, logarithmes et exponentielles : sqrt, log, log10, exp

– fonctions erreur : erf, erfc

38

– fonctions de Bessel et Hankel: besselj, bessely, besseli, besselk, besselh et hankel. Il faut

deux paramètres : l’ordre de la fonction et l’argument lui-même. Ainsi J1(3)

s’écrirabesselj(1,3)

La notion de fonction est plus générale dans Matlab, et certaines fonctions peuvent avoir

plusieurs entrées (comme besselj par exemple) mais aussi plusieurs sorties.

a) Fonctions matricielles

Toutes les fonctions matricielles de base sont déjà programmées dans Matlab.

Voici quelques exemples :

Size, length, diag, det, norm, rank, trace, sum, prod, mean, std, var, max, min, rand, null, inv,

pinv, sort, reshape, fliplr, flipud, tril, triu,…

b) Fonctions avancées

Ce sont des fonctions qui interviennent en analyse numérique telles que: lu, chol, qr, cond, eig,

fzero,…

39

Chapitre 5: Programmation avec Matlab et structures de contrôle

Nous avons vu jusqu’à présent comment utiliser Matlab pour effectuer des commandes ou

pour évaluer des expressions en les écrivant dans la ligne de commande, par conséquent les

commandes utilisées s’écrivent généralement sous forme d’une seule instruction

(éventuellement sur une seule ligne).

Cependant, il existe des problèmes dont la description de leurs solutions nécessite plusieurs

instructions, ce qui réclame l’utilisation de plusieurs lignes. Comme par exemple la recherche

des racines d’une équation de second degré (avec prise en compte de tous les cas

possibles).Une collection d’instructions bien structurées visant à résoudre un problème donné

s’appelle un programme. Dans cette partie, on va présenter les mécanismes d’écriture et

d’exécution des programmes en Matlab. On va parler ensuite des tests et des boucles en

commençant par introduire les opérateurs de comparaison et les opérateurs logiques.

1. Principe général

Le principe est simple: regrouper dans un fichier une série de commandes Matlab et les

exécuter en bloc. Tout se passera comme si vous les tapiez au fur et à mesure dans une session

Matlab. Il est fortement conseillé de procéder de cette façon en créant un fichier programme

(M-file) car cela permet notamment de récupérer facilement le travail fait la veille.

Les fichiers de commandes peuvent porter un nom quelconque mais doivent finir par

l’extension .m (attention toutefois à certains caractères qui sont interdits : le blanc, le symbole

+,.., Matlab ne le dira pas tout de suite mais enverra à la première tentative d’exécution un

message d’erreur qui dit que le fichier est introuvable).

2. Où doit se trouver le fichier de commande?

Le plus simple, c’est qu’il se trouve dans le répertoire courant (c’est-à-dire celui où on a lancé

Matlab). Il peut se trouver aussi dans un répertoire quelconque mais référencé dans la variable

path Matlab. Tapez cette commande pour en voir le contenu, Matlab vous affichera tous les

répertoires accessibles. Il est en général conseillé de se créer un répertoire propre ou d’utiliser

le répertoire par défaut de Matlab. Pour connaître le répertoire actuel il suffit de taper la

commande pwd dans l’invite de Matlab.

Le path peut être modifié avec la commande addpath. Cette commande permet de placer le

chemin d’accès au fichier dans le fichier qui contient tous les chemins d’accès par défaut ou

40

déclarés, c'est-à-dire path, et qui est exécuté automatiquement au démarrage de Matlab. Voici

un exemple:

addpath (genpath('C:\Documents and Settings\admin\Mes documents\MATLAB\Dossier'))

Cette commande permet de rajouter le nouveau répertoire « Dossier », crée dans le répertoire

par défaut de Matlab qui est nommé MATLAB, au path d’accès.

Ainsi tous les fichiers de commandes présents dans le nouveau répertoire « Dossier » seront

accessibles de n’importe où.

3. Commentaires et auto-documentation

Tout ce qui se trouve après le symbole % sera considéré comme un commentaire. Il est

également possible d’auto-documenter ses fichiers de commande.

4. Suppression de l’affichage

L’affichage des résultats de toutes les commandes n’est pas nécessaire. Pour certaines

commandes (création de gros tableaux), cela peut s’avérer fastidieux.

On peut donc placer le caractère ; à la fin d’une ligne de commande pour indiquer à Matlab

qu’il ne doit pas afficher le résultat.

5. Pause dans l’exécution

Si l’on entre la commande pause dans un fichier de commandes, le programme s’arrêtera à

cette ligne tant qu’on n’a pas tapé «Entrée» ou «Enter» en cas d’un clavier QWERTY.

6. Mode verbeux

Si l’on souhaite qu’au fur et à mesure de son exécution, Matlab affiche la séquence de

commandes qu’il est en train d’exécuter, il suffit de taper :

>>echo on

Pour revenir au mode normal, on tapera simplement echo off. Ce mode peut-être utilisé en

combinaison avec pause pour que le programme affiche un commentaire du style «Appuyez

sur une touche pour continuer». Il suffit d’écrire le message dans un commentaire :

echo on

pause % Appuyez sur une touche pour continuer !

echo off

41

7. Opérateurs de comparaison et logiques

Matlab utilise le langage C. Notons tout d’abord le point important suivant, justement inspiré

du langage C:

Matlab représente la constante logique «FAUX» par 0 et la constante «VRAIE» par 1.

Ceci est particulièrement utile par exemple pour définir des fonctions par morceaux.

Il est important de se familiariser avec les opérateurs logiques. Le premier type de ces

opérateurs permet de comparer des valeurs entre elles.

Opérateur Syntaxe Matlab

Egal à = =

Différent de ~ =

Supérieur à >

Supérieur ou égal à >=

Inférieur à <

Inférieur ou égal à <=

Négation ~

Ou |

Et &

Par exemple, on veut comparer deux valeurs entre elles :

>> a=sin(2*pi);

>> b=cos(2*pi);

>> bool=(a>b)

bool=

0

>> a

a=

-2.4493e-016 % ici a devrait égaler 0, la précision est limitée!

>>b

b=

1

Les opérateurs logiques sont intéressants pour construire des fonctions par morceaux.

Imaginons que l’on veuille définir la fonction suivante:
sin(x) si x 0

f (x)
sin(2x) sinon


=


.

42

Voilà comment écrire la fonction:

>> f = inline('sin(x).*(x>0) + sin(2*x).*not(x>0)')

f =

 Inline function:

f(x) = sin(x).*(x>0) + sin(2*x).*not(x>0)

On ajoute les deux expressions sin x et sin 2x en les pondérant par la condition

logiquedéfinissant leurs domaines de validité. On peut tester que ça marche en représentant la

courbe:

>> x=-2*pi:2*pi/100:2*pi;

>> plot(x,f(x))

Il faut noter ici que l’emploie de l’opérateur ’==’ est très risqué lorsque l’on compare des

valeurs numériques. En effet, la précision de l’ordinateur étant limitée, il est préférable

d’utiliser une condition sur la différence comme dans le code suivant :

if abs(a-b) <eps % eps est la précision machine (2.2204e-016)

bool=1;

else

bool=0;

end

Il est aussi possible de lier entre elles des conditions par l’opérateur ’et’ (&) et ’ou’ (|).

Ces notions seront utiles pour la construction des conditions qui seront présentées dans les

prochaines sections.

Critère sur les valeurs : Fonction find

Nous avons vu qu'il était aisé d'appliquer un opérateur logique sur un tableau. Cela nous

renvoie un tableau contenant des 1 ou des 0 (valeurs logiques true ou false) selon que le

critère logique est vérifié ou non. Ce principe peut être exploité pour écrire facilement une

fonction définie par morceaux, mais cela ne permet pas d'extraire ou de modifier des valeurs

selon un test logique. Pour cela, on peut utiliser la fonction find.

La fonction find est utile pour identifier simplement les éléments non nuls d'un tableau, et par

extension, d'identifier les valeurs vérifiant un critère logique donné.

indices = find(M) %renvoie dans la variable indices la liste des indices du tableau M dont

les éléments sont non nuls.

43

indices = find(opération logique sur M) %renvoie dans la variable indices la liste des

indices du tableau M vérifiant l'opération logique.

Par exemple:

>> x = [-1.2 0 3.1 6.2 -3.3 -2.1]

x =

 -1.2000 0 3.1000 6.2000 -3.3000 -2.1000

>>find(x) %La fonction find permet d'identifier les éléments comportant des valeurs non

nulles

ans =

 1 3 4 5 6

>>inds = find(x < 0) % permet de trouver tous les éléments correspondant à un critère

logique :

inds =

 1 5 6

8. Les entrées/sorties

a) Entrée au clavier :

L’utilisateur peut saisir des informations au clavier grâce à la commande de x=input(…).

>> X=input('saisir une valeur de x :')

saisir une valeur de x :5

X =

 5

b) Sortie à l’écran

Pour afficher quelque chose à l’écran, l’utilisateur peut utiliser la commande disp, qui affiche

le contenu d’une variable (chaîne de caractères, vecteur, matrice…).

>> A=[1 2 3] ;

disp(A);

 1 2 3

9. Instructions de contrôle

Les instructions de contrôle sous Matlab sont très proches de celles existant dans d’autres

langages de programmation.

44

a) Boucles if-elseif-else

Dans un programme interviennent souvent des conditions. Les boucles if-elseif-else sont une

structure de programmation qui est très utile pour rendre compte de cette situation.

En pseudo-code, on peut résumer la chose de la façon suivante:

si CONDITION1, FAIRE ACTION1. % condition 1 remplie

sinon et si CONDITION2, FAIRE ACTION2. % condition 1 non-remplie,

 % mais condition 2 remplie

sinon, FAIRE ACTION3 % conditions 1 et 2 non-remplies

En Matlab, le pseudo-code précédent devient :

if CONDITION1

ACTION1;

elseif CONDITION2

ACTION2;

else

ACTION3;

end

Si la condition est évaluée à vrai (true), les instructions entre le if et le end seront exécutées),

sinon elles ne seront pas (ou si un else existe les instructions entre le else et le end seront

exécutées). S’il est nécessaire de vérifier plusieurs conditions au lieu d’une seule, on peut

utiliser des clauses elseif pour chaque nouvelle condition, et à la fin on peut mettre un else

dans le cas ou aucune condition n’a été évaluée à vrai.

Par exemple :

On reçoit un entier a, s’il est impair négatif, on le rend positif. S’il est impair positif, on lui

ajoute 1. S’il est pair, on ajoute 2 à sa valeur absolue.

La courte fonction suivante permet de réaliser cette transformation (notez ici, l’emploi du

modulo pour déterminer si l’entier est divisible par 2).

function b=transf_entier(a)

if a<0 &mod(a,2) ~= 0 % mod permet de trouver le reste d’une division

b=-a;

elseif a>=0 & mod(a,2) ~= 0

b=a+1;

else

b=abs(a)+2;

end

45

Ainsi, le programme va être exécuté en suivant les instructions écrites dans son M-File. Si une

instruction est terminée par un point virgule, alors la valeur de la variable concernée ne sera

pas affichée, par contre si elle se termine par une virgule ou un saut à la ligne, alors les

résultats seront affichés.

Remarque

Il existe la fonction solve prédéfinie en Matlab pour trouver les racines d’une équation (et

beaucoup plus). Si nous voulons l’appliquer sur notre exemple, il suffit d’écrire :

>>solve('-2*x^2+x+3=0','x')

ans =

 -1

 3/2

b) Boucles for

Les boucles for sont très utiles dans la plupart des applications mathématiques(par exemple,

pour effectuer un calcul sur tous les éléments d’un vecteur).

En Matlab, il est parfois beaucoup plus efficace d’utiliser les opérateurs algébriques

usuels définis plus tôt (par exemple, le ’.*’). Dans les cas où il estime possible de se soustraire

à l’utilisation de ces boucles, voici le prototype en pseudo-code qui les traduit.

Incrément = valeur initiale

Pour incrément=valeur_initiale jusqu’à valeur finale

ACTION1...N

AJOUTER 1 à incrément

En Matlab, ce pseudo-code devient :

for i = 0:valeur_finale

ACTION1;

ACTION2;

...

ACTIONN;

end

Remarquez que l’incrément peut être différent de 1,

Par exemple :

si l’on veut calculer les carrées des nombres pairs entre 0 et 10 :

for i=0:2:10

carre = i^2

end

46

c) Boucles while

Une boucle while permet de répéter une opération tant qu’une condition (critère) n’est pas

remplie. En pseudo-code, elle peut être schématisée de la façon suivante :

Tant que CONDITION est VRAIE

ACTION1...N

En Matlab, on écrit ce type de boucle de la manière suivante:

while CONDITION

ACTION1;

ACTION2;

...

ACTIONN;

end

Ce type de boucle est très souvent utilisé pour faire converger une itération vers une valeur

désirée dont la précision est fixée par un test de convergence.

Par exemple :

On veut trouver le nombre d’entiers positifs nécessaires pour avoir une somme plus grande

que 100. On pourrait réaliser cette tâche de la manière suivante:

function n=nombre_entier

n=0; % initialisation des valeurs

somme=0;

while somme < 100

n=n+1; % itération de n

somme=somme+n; % nouvelle somme

end

d) Boucles switch

Les boucles switch permettent parfois de remplacer les boucles if-elseif-else, particulièrement

dans le cas de menus. La boucle switch exécuté des groupes d’instructions selon la valeur

d’une variable ou d’une expression. Chaque groupe est associé à une clause case qui définit

si ce groupe doit être exécuté ou pas selon l’égalité de la valeur de ce case avec les résultats

d’évaluation de l’expression de switch. Si toutes les cases n’ont pas été acceptées, il est

possible d’ajouter clause otherwise qui sera exécutée seulement si aucun case n’est exécuté.

Le prototype de ce type de boucle en pseudo-code est le suivant :

Déterminer CAS

CAS choisi est CAS1

47

ACTION1

CAS choisi est CAS2

ACTION2

AUTREMENT

ACTION3

En Matlab, on obtient le code suivant :

switch (CAS)

case {CAS1}

ACTION1

case {CAS2}

ACTION2

otherwise

ACTION3

end

Par exemple :

On veut faire une calculatrice simple en Matlab, pour déterminer l’exponentielle ou le

logarithme en base e d’un nombre entré par l’utilisateur.

Une manière simple de rendre le programme interactif serait d’utiliser le script suivant :

operation=input(’Opération: (1) exp ; (2) log ? ’);

nombre=input(’Valeur: ’);

switch operation

case 1

b=exp(nombre)

case 2

b= log(nombre)

otherwise

disp(’mauvais choix -- operation’)

end

Avec la sortie (par exemple) suivante :

>>calcul_rapide

Opération: (1) exp ; (2) log ? 1

Valeur: 0.5

b =

1.6

48

Chapitre 5: Résolution des équations non-linéaires 𝑓(𝑥)=0

Dans ce chapitre, nous présentons plusieurs techniques de résolution des équations non

linéaires. Les méthodes proposées sont :

➢ La méthode de la bissection

➢ La méthode de Newton-raphson

➢ La méthode de point fixe

1. Définition:

L’objet essentiel de ce chapitre est l’approximation des racines d’une fonction réelle d’une

variable réelle, c’est-à-dire la résolution approchée du problème suivant :

Étant donné une équation non linéaire, à une seule variable, est définie par : 𝑓(𝑥)=0

La valeur de la variable 𝑥 qui vérifie cette égalité est appelée solution (ou racine) de l'équation,

elle est notée 𝑐.

2. Méthode de la bissection

Cette méthode est appelée aussi « Dichotomie », elle repose sur un théorème important c’est

le théorème des valeurs intermédiaires qui est à la base de l’étude de celle-ci ainsi que des

autres méthodes.

a) Théorème :

Si 𝑓 est une fonction continue sur l’intervalles [𝑎, 𝑏] et si on a 𝑓(𝑎).𝑓(𝑏)<0 alors l’équation

𝑓(𝑥)=0 possède au moins une racines dans l’intervalle [𝑎,𝑏].

b) Développement de la méthode

On s’assure que si 𝑓(𝑎). 𝑓(𝑏) sur l’intervalles [𝑎,𝑏], la racine est unique (c.à.d. que 𝑓 est

monotone dans l’intervalle [𝑎,𝑏]).

On partage [𝑎,𝑏], en 2 intervalles [𝑎,𝑐], et [𝑐,𝑏], tel que 𝑐 =
𝑎+𝑏

2

 Si 𝑓(𝑎). 𝑓(𝑐) < 0 cela implique que la racine ∈ [𝑎,𝑐]

 Si 𝑓(𝑐). 𝑓(𝑏) < 0 cela implique que la racines ∈ [𝑐,𝑏]

 Si 𝑓(𝑐) = 0 , 𝑐 serait la racine exacte

49

Le domaine gardé sera à son tour partage jusqu'à arriver à un petit domaine selon une

précision donnée dont sa moitié sera considérée comme racine approchée de l’équation

𝑓(𝑥)=0.

La figure ci-dessous illustré le principe de la méthode de Dichotomie :

Figure 1: Principe de la méthode de Dichotomie

Exemple 1

Calculer la racines de l’équation 𝑓(𝑥) = 𝑥6 − 𝑥 − 1 = 0 dans l’intervalle [1,2] avec la

précision 𝜀=0,001.

Solution 1 :

La fonction 𝑓(𝑥)=0 est un polynôme donc continue sur [1,2]

𝑓(1) = −1 , 𝑓(2) = 61 ⇒ 𝑓(1).𝑓(2)<0,

Donc d’après le théorème des valeurs intermédiaires, il existe au moins une racine 𝑐 ∈[1,2]

tel que 𝑓(𝑐)=0.

De plus 𝑓’(𝑥)= 6𝑥5−1 ∀ 𝑥∈[1,2] 𝑓′ (𝑥)>0 ⇒ 𝑓 ↗ (f est monotone)

On déduit alors que la racines de 𝑓 dans [1,2] est unique.

On cherche maintenant à calculer une approximation de cette racine.

Nous allons construire les suites (𝑎𝑛)𝑛∈ℕ ,(𝑏𝑛)𝑛∈ℕ 𝑒𝑡 (𝑐𝑛)𝑛∈ℕ

Etape 0 : 𝑎0=1 , 𝑏0=2 , 𝑐0 = (𝑎0 + 𝑏0)/2=1.5 , 𝑓(1.5)=8.8609

Test. 𝑓(𝑎0). 𝑓(𝑐0) = 𝑓(1). 𝑓(1.5) < 0 ⟹ on resserre l’intervalle du côté droit (côté de b)

𝒏

𝒂 𝒃 𝒄 𝒃 − 𝒄 𝒇(𝒄) test

50

c) Algorithme de la méthode

Pas1 : 𝑐 ← (𝑎 + 𝑏)/2

Pas 2: Si 𝑏 − 𝑐 ≤ 𝜀, 𝑐 est considérée racines approchée (stop)

Pas 3: Si 𝑓(𝑐) = 0 , 𝑐 est considérée racine exacte (stop)

 Pas 4: Si 𝑓(𝑎). 𝑓(𝑐) < 0 alors 𝑐 ← 𝑏

 Si non 𝑐 ← 𝑎

Pas 5: Retour au pas 1.

d) Convergence et estimation de l’erreur

On démontre que la méthode de la bissection est convergente (vers la solution unique de

l’équation 𝑓(𝑥)=0 dans l’intervalle [𝑎,𝑏]).

On cherche à déterminer l’erreur maximale commise en utilisant la méthode de la bissection

dans l’intervalle [𝑎,𝑏].

1 1.0000 2.0000 1.5000 0.5000 8.8609 𝑓(𝑎0). 𝑓(𝑐0) = 𝑓(1). 𝑓(1.5)
< 0 (côté de b)

2 1.0000 1.5000 1.2500 0.2500 1.5647 𝑓(𝑎0 = 𝑎1). 𝑓(𝑐1)
= 𝑓(1). 𝑓(1.25)
< 0 (côté de b)

3 1.0000 1.2500 1.1250 0.1250 -0.0977 𝑓(𝑎1 = 𝑎2). 𝑓(𝑐2)
= 𝑓(1). 𝑓(1.125)
> 0 (côté de a)

4 1.1250 1.2500 1.1875 0.0625 0.6167 𝑓(𝑎3 = 𝑐2). 𝑓(𝑐3)
= 𝑓(1.125). 𝑓(1.1875)
< 0 (côté de b)

… … … … … … …

10 1.1300 1.1348 1.1338 0.001 0.0096 …

51

Pour i=1: La longueur du premier intervalle [𝑎1, 𝑏1][𝑎, 𝑏] est 𝑏1 − 𝑎1 = 𝑏 − 𝑎

Pour i=2 : La longueur du deuxième intervalle [𝑎2,𝑏2] est 𝑏2 − 𝑎2 =
𝑏−𝑎

2

Pour i=3 : La longueur du troisième intervalle [𝑎3,𝑏3] est 𝑏3 − 𝑎3 =
𝑏−𝑎

2²

Pour i=4 : La longueur du quatrième intervalle [𝑎4,𝑏4] est 𝑏4 − 𝑎4 =
𝑏−𝑎

23

 Pour i=n : La longueur de nième (dernier) intervalle [𝑎𝑛,𝑏𝑛] est 𝑏𝑛 − 𝑎𝑛 =
𝑏−𝑎

2𝑛−1

La racine approchée est 𝑐𝑛 =
𝑎𝑛+𝑏𝑛

2
, Si on désigne par 𝛼 la solution exacte, alors on a:

|𝑐𝑛 − 𝛼| ≤ 𝑏𝑛 − 𝑐𝑛 =
𝑏𝑛 − 𝑎𝑛
2

=
𝑏 − 𝑎

2𝑛
≤ 𝜀

Donc, l’erreur |𝑐𝑛 − 𝛼| ≤
𝑏−𝑎

2𝑛
 (1)

La relation (1) permet aussi de calculer à l’avance le nombre max d’itérations nécessaires,

𝑛 ≥
ln(

𝑏−𝑎

𝜀
)

ln (2)
 (2) (n ne dépend pas de f)

 𝐼1 𝐼2

𝐚𝐧 𝐜𝐧 𝐛𝐧

𝛂

52

Comme exemple : Si l’intervalle est [1,2] et 𝜀 = 10−3 alors 𝑛≥9,93

On prend 𝑛=10. Il est important de remarquer que le nombre d’itérations nécessaire donné par

la formule ci-dessus est, dans plusieurs cas, une surestimation du nombre réel d’itérations

nécessaire (pour le calcul on peut se contenter de 𝑛=9 tout en ayant atteint la précision

voulue).

3. Méthode de Newton-Raphson

Soit 𝛼 la racine exacte de l’équation 𝑓(𝑥) = 0. Si 𝑓 est continue et continument dérivable au

voisinage de 𝛼, alors le développement en série de Taylor autour de 𝑥0 (𝑥0 étant la valeur

Initiale) s’écrit:

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
(𝑥 − 𝑥0)+

𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)

2 +
𝑓′′′(𝑥0)

3!
(𝑥 − 𝑥0)

3 +⋯.

Donc on peut écrire :

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0)+R

Posons 𝑥 = 𝛼 on trouve:

𝑓(𝛼) = 𝑓(𝑥0) + (𝛼 − 𝑥0)𝑓
′(𝑥0) + 𝑅 = 0

⇒ 𝛼 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
+ 𝑅1

En ignorant 𝑅1 on obtient une nouvelle approximation 𝑥1(meilleure que 𝑥0)

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)

On considère maintenant le développement en série de Taylor autour de 𝑥1

De la même manière que précédemment on trouve une nouvelle valeur 𝑥2 tel que:

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)

Ainsi on obtient la relation récursive suivante :

{

𝑥0 𝑑𝑜𝑛𝑛é

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)

R

53

a. Interprétation graphique de la méthode

𝑡𝑔𝜃 Représente la dérivée:

𝑓′(𝑥𝑘) =
𝑓(𝑥𝑘−1) − 0

𝑥𝑘−1 − 𝑥𝑘

Exemple 2 :

Trouver par la méthode de Newton-Raphson la valeur approximative de la racine de

𝑥5 − 𝑥 + 2 = 0 à partir de 𝑥0 = −1 pour une précision 𝜀 = 10−6

Solution 2:

𝑓(𝑥) = 𝑥5 − 𝑥 + 2 = 0 ⇒ 𝑓′(𝑥) = 5𝑥4 −1

En appliquant la formule de Newton-Raphson :

{

𝑥0 𝑑𝑜𝑛𝑛é

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)

nous obtenons: 𝑥𝑘 = 𝑥𝑘−1 −
𝑥𝑘−1
5 −𝑥𝑘−1+2

5𝑥𝑘−1
4 −1

Alors en partant de 𝑥0 = −1, on obtient les itérations illustrées dans le tableau suivant:

K 𝒙𝒌

0 -1.000000

1 -1.500000

2 -1.331620

3 -1.273516

4 -1.267237

5 -1.261768

6 -1.267168

54

|𝑥𝑘 − 𝑥𝑘−1| = |𝑥6 − 𝑥5| ≤ 𝜀 donc la racine approchée de l’équation 𝑓(𝑥) = 0 est

 𝑐 ≃ −1,267168

b. Algorithme de la méthode

Pas 1 : k ← 1

Pas2 : 𝑥𝑘 ⟵ 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)

Pas 3 : Si |𝑥𝑘 − 𝑥𝑘−1| ≤ 𝜀 Alors on arrête (𝑥𝑘racine approchée)

Sinon Pas 4 : K ⟵ 𝐾 + 1

 Pas 5 : Retour au pas 2

c. Convergence et estimation de l’erreur

Théorème:

On démontre que si 𝑓 est définie sur l’intervalle [𝑎, 𝑏] tel que:

1. 𝑓(𝑎). 𝑓(𝑏) < 0

2. ∀ 𝑥 ∈ [𝑎, 𝑏] 𝑓′(𝑥) ≠ 0

3. ∀ 𝑥 ∈ [𝑎, 𝑏] 𝑓"(𝑥) ≠ 0

 Alors la méthode de Newton- Raphson engendre une suite qui converge vers la solution

unique de 𝑓(𝑥) = 0 , en partant de l’approximation 𝑥0 vérifiant:

𝑓"(𝑥0). 𝑓(𝑥0) > 0

On démontre aussi que l’erreur commise en utilisant la méthode de Newton-Raphson comme

outil de résolution s’écrit:

|𝛼 − 𝑥𝑘| ≤
𝑀(𝑥𝑘 − 𝑥𝑘−1)

2

2𝑚

Avec 𝑀 = 𝑀𝑎𝑥{|𝑓′′(𝑥)|} , 𝑥 ∈ [𝑎, 𝑏]

 𝑚 = 𝑚𝑖𝑛{|𝑓′′(𝑥)|} , 𝑥 ∈ [𝑎, 𝑏]

4. Méthode de point fixe

Avant d’aborder la méthode du point fixe, il est important de définir ce que signifie un point

fixe d’une fonction.

55

a. Définition

Soit la fonction 𝑔(𝑥) définie dans l’intervalle [𝑎, 𝑏]. Tout point 𝑐 ∈ [𝑎, 𝑏] tel que : 𝑐 = 𝑔(𝑥)

est dit point fixe de 𝑔(𝑥).

L’équation 𝑓(𝑥) = 0, avec 𝑓 continue sur [𝑎, 𝑏] peut être mise sous la forme 𝑥 = 𝑔(𝑥) tel

que:

𝑓(𝑥) = 𝑥 − 𝑔(𝑥).

Le choix d’une valeur initiale de la racine 𝑥0 permet d’avoir une première approximation 𝑥1

Tel que :𝑥1 = g(𝑥0) puis une meilleure approximation 𝑥2 tel que : 𝑥2 = g(𝑥1) ainsi on

obtient une suite définie par la relation récursive suivante:

{
𝑥0

𝑥𝑘 = g(𝑥𝑘−1)

Exemple 3

Soit à Résoudre l’équation 𝑥3 − 2 = 0 à partir de la valeur initiale 𝑥0 = 1.2

Solution 3:

Il est possible de transformer l’équation précédente en plusieurs formes 𝑥 = 𝑔(𝑥)

Par exemple :

a. On a 𝑥3 − 2 = 0

 𝑥3 − 2 + 𝑥 = 𝑥 = 𝑔1(𝑥)

𝑥0 = 1.200

𝑥1 = 0.928

𝑥2 = −0.273

𝑥3 = −2.293

𝑥4 = −16.349

 en plus on sait que 𝑥3 − 2 = 0 ⟹ 𝑥3 = 2 ⟹ 𝑥 = 21/3

Alors on remarque qu’on s’éloigne de la racine exacte 21/3 ⟹ Divergence.

b. On a 𝑥3 − 2 = 0

𝑥3 − 2 − 5𝑥 = −5𝑥

𝑥3 − 2 − 5𝑥

−5
= 𝑥

 𝑥 = 𝑔2(𝑥) = (2 + 5𝑥 − 𝑥3)/5 on obtient:

𝑥0 = 1.200

𝑥1 = 1.2544

56

𝑥2 = 1.2596

𝑥3 = 1.2599

𝑥4 = 1.2599

On remarque qu’on s’approche rapidement de la racine exacte 21/3 ⟹ Convergence

De là on conclure que le choix de la forme 𝑥 = 𝑔(𝑥) est capital dans la détermination de la

convergence ou la divergence de la méthode du point fixe.

b. Algorithme de la méthode

Pas 1 : 𝑘 ← 1

Pas 2: 𝑥𝑘 ← 𝑔(𝑥𝑘−1)

Pas 3: Si |𝑥𝑘 − 𝑥𝑘−1| ≤ 𝜀 alors on arrête (𝑥𝑘 racine approchée)

Sinon Pas 4: : 𝑘 ← 𝑘 + 1

 Pas 5: Retour au pas 2

c. Etude de la convergence de la méthode

Théorème:

On démontre que si 𝑔: [𝑎, 𝑏] → [𝑎, 𝑏] possède un point fixe dans l’intervalle [𝑎, 𝑏] et si

|𝑔′(𝑥)| ≤ 𝑘 < 1 ce point est unique.

Exemple 4:

On montre que la fonction 𝑔(𝑥) =
𝑥2−1

3
 possède un point fixe unique dans l’intervalle

[−1,1].

Solution 4:

Division l’intervalle en 2 parties : [−1,0] 𝑒𝑡 [0,1]

𝑔(−1) = 𝑔(1) = 0 ∈ [−1,1]

𝑔(0) = −
1

3
 ∈ [−1,1]

Et nous avons :

∀ 𝑥 ∈ [−1,0]: 𝑔(𝑥) ↘ ⇒ 𝑔(0) = −
1

3
 ≤ 𝑔(𝑥) ≤ 𝑔(−1) = 0

∀ 𝑥 ∈ [0,1]: 𝑔(𝑥) ↗ ⇒ 𝑔(0) = −
1

3
 ≤ 𝑔(𝑥) ≤ 𝑔(1) = 0

57

Donc 𝑔: [−1,1] → [−1,1]

En plus |𝑔′(𝑥)| = |2𝑥/3| ≤
2

3
< 1

On conclut que le point fixe est unique dans [−1,1],

Théorème:

On démontre que si la fonction 𝑔: [𝑎, 𝑏] → [𝑎, 𝑏]

 vérifie |𝑔′(𝑥)| ≤ 𝑘 < 1 ∀ 𝑥 ∈ [𝑎, 𝑏], alors la suite définie par la relation récursive

suivante:

{
𝑥0

𝑥𝑘 = 𝑔(𝑥𝑘−1)

est convergente et converge vers le point fixe unique de 𝑔 dans [𝑎, 𝑏]

d. Estimation de l’erreur

On démontre que l’erreur commise en utilisant la méthode du point fixe comme outil de

résolution vérifie la relation:

|𝑥𝑛 − 𝛼| ≤
𝑘

1 − 𝑘
|𝑥𝑛 − 𝑥𝑛−1|

Où

{

𝛼: 𝑙𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑒𝑥𝑎𝑐𝑡𝑒

𝑥𝑛: 𝑙𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑟𝑜𝑐ℎé𝑒

𝑘 =
|𝑥𝑛 − 𝑥𝑛−1|

|𝑥𝑛 − 𝑥𝑛−2|

Mise en œuvre sous Matlab

Ecrire un programme sous Matlab qui permet de trouver la racine de: 𝑓(𝑥) = 2𝑥2 − 𝑥 − 1

sur l’intervalle [0.5 , 1.5] en utilisant la méthode de dichotomie, la méthode de Newton-

Raphson et la méthode de point fixe jusqu’à la convergence avec une précision de 10−3 et

𝑥0 = 0.8.

58

Chapitre 6 : Résolution des équations linéaires (Méthodes directes)

1. Introduction:

Dans ce chapitre, nous allons aborder deux principales méthodes de résolution des systèmes

linéaires, à savoir:

➢ La méthode de Carmer

➢ La méthode d’élimination de Gauss

➢ La méthode Gauss avec pivot

De façon générale, la résolution d’un système d’équations linéaires consiste à trouver un

vecteur 𝑋⃗ = [𝑥1 𝑥2 𝑥3 … 𝑥𝑛]
𝑇

(𝑋⃗ dénotera un vecteur colonne et l’indice supérieur T désignera sa transposée) solution de:

{

 𝑎11 𝑥1 + 𝑎12 𝑥2 + 𝑎13 𝑥3 +⋯+ 𝑎1𝑛 𝑥𝑛 = 𝑏1
 𝑎21 𝑥1 + 𝑎22 𝑥2 + 𝑎23 𝑥3 +⋯+ 𝑎2𝑛 𝑥𝑛 = 𝑏2

⋮
 𝑎𝑛1 𝑥1 + 𝑎𝑛2 𝑥2 + 𝑎𝑛3 𝑥3 +⋯+ 𝑎𝑛𝑛 𝑥𝑛 = 𝑏𝑛

On peut utiliser la notation matricielle, qui est beaucoup plus pratique et surtout plus

compacte, On écrit alors le système précédent sous la forme:

 𝐴 𝑋⃗ = 𝑏⃗⃗

Où: 𝐴 est la matrice :

Et 𝑏⃗⃗ = [𝑏1 𝑏2 𝑏3 …𝑏𝑛],
𝑇 Bien entendu, la matrice 𝐴 et le vecteur 𝑏⃗⃗ sont connus.

 Il reste à déterminer le vecteur 𝑋⃗.

2. Méthode de Cramer:

La méthode de Cramer est basée sur le calcul du déterminant de la matrice 𝐴 et les

déterminants associés aux inconnues 𝑥𝑖 (𝑖 = 1, … , 𝑛)

a. Solution utilisant les déterminants

det 𝐴 : Déterminant de la matrice 𝐴, avec det 𝐴 ≠ 0

det 𝑖: Déterminant associé à l’inconnue 𝑥𝑖

𝑥𝑖 =
𝑑𝑒𝑡𝑖

det 𝐴

59

Soit le système à 3 équations :

{

 𝑎11 𝑥1 + 𝑎12 𝑥2 + 𝑎13 𝑥3 = 𝑏1
 𝑎21 𝑥1 + 𝑎22 𝑥2 + 𝑎23 𝑥3 = 𝑏2
 𝑎31 𝑥1 + 𝑎32 𝑥2 + 𝑎33 𝑥3 = 𝑏3

det 𝐴 = |

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|

𝑑𝑒𝑡1 = |

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

| et 𝑥1 =

|

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

|

|

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|

𝑑𝑒𝑡2 = |

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

| et 𝑥2 =

|

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

|

|

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|

𝑑𝑒𝑡3 = |

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎33 𝑏3

| et 𝑥3 =

|

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎33 𝑏3

|

|

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

|

Remarque:

Si 𝐝𝐞𝐭𝑨 = |𝑨| = 𝟎 ⟹ le nombre solutions est infini ou inexistant.

b. Solution utilisant la matrice inverse 𝑨−𝟏

Si 𝐝𝐞𝐭𝑨 = |𝑨| ≠ 𝟎 ⟹ 𝑨−𝟏 existe.

Soit le système d’équations 𝑨𝑿 = 𝑩 ; multiplions les 2 membres par 𝑨−𝟏

(l’inverse de 𝑨) :

𝑨−𝟏 𝑨𝑿 = 𝑨−𝟏 𝑩 cela devient : 𝑿 = 𝑨−𝟏 𝑩

Pour calculer l’inverse de 𝑨:

𝑨−𝟏 =
𝟏

𝒅𝒆𝒕𝑨
 𝑪𝑻 avec 𝑪𝑻 est le transposé de la comatrice A

Remarque:

La méthode de Cramer exige un grand nombre d’opérations de calcul ((𝒏𝟐 + 𝒏)𝒏! − 𝟏) .

Si n est élevé, le nombre d’opérations augmente et par conséquent le temps de calcul. De

plus, pour les moyens et grands systèmes l’erreur cumulée d’arrondi augmente avec le

60

nombre d’opérations et altère la précision des résultats. On va aborder d’autres méthode qui

nécessitent

Un nombre limité d’opérations de calcul, donc rapides et plus précises.

3. Méthode de Gauss

a. Principe

Cette méthode est basée sur la transformation du système linéaire 𝑨 𝑿⃗⃗⃗ = 𝒃⃗⃗⃗

En un système équivalent 𝑨′ 𝑿⃗⃗⃗ = 𝒃′⃗⃗⃗⃗ tel que la matrice 𝑨′est une matrice triangulaire

supérieure.

 La transformation de la matrice 𝑨 en 𝑨′ et le vecteur 𝒃 en 𝒃′ passe par plusieurs étapes nous

présentons à travers l’exemple suivant:

Pour une meilleure praticabilité, on forme la matrice 𝑨 ̃ telle que 𝑨̃ = [𝑨 ⋮ 𝒃⃗⃗⃗] et qu’on

appelle matrice augmentée de 𝑨.

Exemple 1:

Soit à résoudre par Gauss le système linéaire suivant:

{

𝒙𝟏 + 𝟑𝒙𝟐 + 𝟑𝒙𝟑 = 𝟎
𝟐𝒙𝟏 + 𝟐𝒙𝟐 = 𝟐

𝟑𝒙𝟏 + 𝟐𝒙𝟐 + 𝟔𝒙𝟑 = 𝟏𝟏

Solution 2:

Soit à résoudre le système suivant :

{
𝒙𝟏 + 𝟑𝒙𝟐 + 𝟑𝒙𝟑 = 𝟎
𝟐𝒙𝟏 + 𝟐𝒙𝟐 = 𝟐

𝟑𝒙𝟏 + 𝟐𝒙𝟐 + 𝟔𝒙𝟑 = 𝟏𝟏

Où:

𝑨 = [
𝟏 𝟑 𝟑
𝟐 𝟐 𝟎
𝟑 𝟐 𝟔

] ; 𝑿 = (

𝒙𝟏
𝒙𝟐
𝒙𝟑
) ; 𝒃 = (

𝟎
𝟐
𝟏𝟏
)

On adopte l’écriture suivante:

 𝑨̃=[
𝟏 𝟑 𝟑 ⋮
𝟐 𝟐 𝟎 ⋮
𝟑 𝟐 𝟔 ⋮

𝟎
𝟐
𝟏𝟏

]
𝑬𝟏
𝑬𝟐
𝑬𝟑

Etape 1: puisque le pivot 𝒂𝟏𝟏
(𝟎)
= 𝟏 ≠ 𝟎

Alors on élimine de 𝒙𝟏 de 𝑬𝟐 et 𝑬𝟑

61

𝑬𝟐 ⟵ 𝑬𝟐 −
𝟐

𝟏
𝑬𝟏 , 𝑬𝟑 ⟵ 𝑬𝟑 −

𝟑

𝟏
𝑬𝟏

𝑨̃(𝟏)=[
𝟏 𝟑 𝟑 ⋮
𝟎 −𝟒 −𝟔 ⋮
𝟎 −𝟕 −𝟑 ⋮

𝟎
𝟐
𝟏𝟏

]
𝑬𝟏
𝑬𝟐
𝑬𝟑

Etape 2 : puisque le pivot 𝒂𝟐𝟐
(𝟏)
= −𝟒 ≠ 𝟎

Alors on élimine de 𝒙𝟐 de 𝑬𝟑

 𝑬𝟑 ⟵ 𝑬𝟑 − (
−𝟕

−𝟒
)𝑬𝟐

𝑨̃(𝟐)=[
𝟏 𝟑 𝟑 ⋮
𝟎 −𝟒 −𝟔 ⋮
𝟎 𝟎 𝟏𝟓/𝟐 ⋮

𝟎
𝟐

𝟏𝟓/𝟐
]
𝑬𝟏
𝑬𝟐
𝑬𝟑

Etape 3 : comme le pivot 𝒂𝟑𝟑
(𝟐)
= 𝟏𝟓/𝟐 ≠ 𝟎

𝐴̃(3)=[
1 3 3 ⋮
0 −4 −6 ⋮
0 0 1 ⋮

0
2
1

]
𝐸1
𝐸2
𝐸3

Par substitution inverse on obtient:

𝒙𝟑 = 𝟏

−𝟒𝒙𝟐 − 𝟔𝒙𝟑 = 𝟐 ⟹ 𝒙𝟐 = −𝟐

𝒙𝟏 + 𝟑𝒙𝟐 + 𝟑𝒙𝟑 = 𝟎 ⇒ 𝒙𝟏 = 𝟑

Donc, la solution est :

𝑋⃗=[
3
−2
1
]

Et le déterminant de A est donné par :

𝐝𝐞𝐭(𝑨) = ∏ 𝒂𝒊𝒊
(𝒊−𝟏)𝟑

𝒊=𝟏 = 𝒂𝟏𝟏
(𝟎)
∗ 𝒂𝟐𝟐

(𝟏) ∗ 𝒂𝟑𝟑
(𝟐) = 𝟏 × (−𝟒) ×

𝟏𝟓

𝟐
= −𝟑𝟎

b. Algorithme

1. Triangularisation

𝜔 =
𝑎𝑖𝑘
𝑎𝑘𝑘

62

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝜔𝑎𝑘𝑗 ; 𝑗 = 𝑘 + 1 , 𝑛 + 1 ; i = k + 1, n ; k = 1, n − 1

2. Substitution inverse

𝑥𝑖 =
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑖

𝑛
𝑗=𝑖+1)

𝑎𝑖𝑖
; 𝑖 = 𝑛, 𝑛 − 1,… ,1

4. Méthode de Gauss avec pivot:

Dans le processus d’élimination de la méthode de Gauss, on a supposé à chaque étape

𝑘 (𝑘 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅) que l’élément 𝑎𝑘𝑘 ≠ 0, mais cette supposition n’est pas toujours vraie. Si

𝑎𝑘𝑘 = 0, on cherche l’équation 𝐸𝑦 parmi celles qui suivent 𝐸𝑘 où l’élément 𝑎𝑗𝑘 ≠0 pour faire

la permutation (𝐸𝑘 ↔ 𝐸𝑗) et ainsi avoir 𝑎𝑘𝑘 ≠ 0.

Aussi, on remarque que la division par de petites valeurs génère une grande erreur ce qui nous

amène à choisir 𝑎𝑘𝑘 le plus grand en valeur absolue , c.à.d.:

|𝑎𝑗𝑘| = 𝑀𝑎𝑥{|𝑎𝑖𝑘|} ; 𝑘 ≤ 𝑖 ≤ 𝑛

Après le choix de 𝑎𝑘𝑘, on poursuit normalement l’étape en cours selon Gauss.

Mise en œuvre sous Matlab

Ecrire un programme sous Matlab qui permet de résoudre le système des équations linéaires

suivant en utilisant la méthode d’élimination de Gauss.

{

2𝑥1 + 𝑥2 + 2𝑥3 = 10
6𝑥1 + 4𝑥2 = 26

8𝑥1 + 5𝑥2 + 𝑥3 = 35

63

Chapitre 7 : Résolution des équations linéaires (Méthodes itératives)

1. Introduction:

On a vu que les méthodes directes donnent la solution exacte du système d’équations

linéaires, cependant elles restent gourmandes en mémoire. Dans ce chapitre on va introduire

les méthodes itératives ou indirectes qui donnent une solution approximative du système

d’équations linéaires. Ces méthodes sont très faciles à mettre en œuvre et à programmer, elles

ne consomment pas la mémoire et donnent des résultats autant précis que l’on veut.

2. Méthode Jacobi

Soit le système d’équations suivant:

{

 𝒂𝟏𝟏 𝒙𝟏 + 𝒂𝟏𝟐 𝒙𝟐 + 𝒂𝟏𝟑 𝒙𝟑 +⋯+ 𝒂𝟏𝒏 𝒙𝒏 = 𝒃𝟏
 𝒂𝟐𝟏 𝒙𝟏 + 𝒂𝟐𝟐 𝒙𝟐 + 𝒂𝟐𝟑 𝒙𝟑 +⋯+ 𝒂𝟐𝒏 𝒙𝒏 = 𝒃𝟐

⋮
 𝒂𝒏𝟏 𝒙𝟏 + 𝒂𝒏𝟐 𝒙𝟐 + 𝒂𝒏𝟑 𝒙𝟑 +⋯+ 𝒂𝒏𝒏 𝒙𝒏 = 𝒃𝒏

 (1)

Transformons le système en supposant que les éléments du pivot sont non nuls 𝑎𝑖𝑖 ≠ 0 𝑖 =

1,2, … 𝑛

{

𝑥1 = (𝑏1 − 𝑎12𝑥2 − 𝑎13𝑥3 −⋯− 𝑎1𝑛𝑥𝑛)/𝑎11
𝑥2 = (𝑏2 − 𝑎21𝑥1 − 𝑎23𝑥3 −⋯− 𝑎2𝑛𝑥𝑛)/𝑎22

⋮
𝑥𝑛 = (𝑏𝑛 − 𝑎𝑛2𝑥2 − 𝑎𝑛3𝑥3 −⋯− 𝑎𝑛,𝑛−1𝑥𝑛−1)/𝑎𝑛𝑛

(2)

Cette forme est appelée forme réduite du système 𝐴𝑥 = 𝑏. Elle peut s’écrire autrement

𝑥𝑖 = [𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1]/𝑎𝑖𝑖 ; 𝑖 = 1,…𝑛

Pour résoudre le système (1) on utilise l’écriture (2) en portant les termes de droite à

l’itération (k) et ceux à gauche à l’itération (k).

64

{

 𝑥1

(𝑘+1)
= (𝑏1 − 𝑎12𝑥2

(𝑘)
− 𝑎13𝑥3

(𝑘)
−⋯− 𝑎1𝑛𝑥𝑛

(𝑘)
)/𝑎11

𝑥2
(𝑘+1)

= (𝑏2 − 𝑎21𝑥1
(𝑘) − 𝑎23𝑥3

(𝑘) −⋯− 𝑎2𝑛𝑥𝑛
(𝑘))/𝑎22

⋮

𝑥𝑛
(𝑘+1)

= (𝑏𝑛 − 𝑎𝑛2𝑥2
(𝑘) − 𝑎𝑛3𝑥3

(𝑘) −⋯− 𝑎𝑛,𝑛−1𝑥𝑛−1
(𝑘))/𝑎𝑛𝑛

 (3)

En prenant une estimation initiale 𝑋(0) = (𝑥1
(0)
, 𝑥2
(0)
, … , 𝑥𝑛

(0)
) et en utilisant le système (3) on

calcule 𝑋(1) = (𝑥1
(1)
, 𝑥2
(1)
, … , 𝑥𝑛

(1)
)ensuite on remplace le vecteur 𝑋(1)dans le système (3)

avec k=1 on calcule 𝑋(2)et continue de la même façon de calculer les vecteurs 𝑋(3), 𝑋(4),

𝑋(5),… jusqu’à la convergence.

Le processus itératif aura lieu en utilisant un vecteur initial 𝑋(0) et la forme réduite peut être

formulée comme suite :

𝑋𝑖
(𝑘+1)

= [𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑋𝑗
(𝑘)𝑛

𝑗=1]/𝑎𝑖𝑖 ; 𝑖 = 1 , … , 𝑛 et 𝑖 ≠ 𝑗

3. Méthode de Gauss-Seidel:

La méthode de Gauss-Seidel est une amélioration de la méthode de Jacobi en effet elle rend le

processus itératif plus rapide.

Soit le système des 3 équations à trois inconnues:

{

 𝒂𝟏𝟏 𝒙𝟏 + 𝒂𝟏𝟐 𝒙𝟐 + 𝒂𝟏𝟑 𝒙𝟑 = 𝒃𝟏
 𝒂𝟐𝟏 𝒙𝟏 + 𝒂𝟐𝟐 𝒙𝟐 + 𝒂𝟐𝟑 𝒙𝟑 = 𝒃𝟐
 𝒂𝟑𝟏 𝒙𝟏 + 𝒂𝟑𝟐 𝒙𝟐 + 𝒂𝟑𝟑 𝒙𝟑 = 𝒃𝟑

Ce système peut s’écrit avec les éléments du pivot sont non nuls 𝑎𝑖𝑖 ≠ 0 𝑒𝑡 𝑖 = 1,2, … 𝑛

{

𝑥1 = (𝑏1 − 𝑎12𝑥2 − 𝑎13𝑥3)/𝑎11
𝑥2 = (𝑏2 − 𝑎21𝑥1 − 𝑎23𝑥3)/𝑎22
𝑥3 = (𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2)/𝑎33

À la première itération, on calcule à partir du vecteur initial : 𝑥(0) = (𝑥1
(0)
, 𝑥2
(0)
, 𝑥3
(0)
)

Les valeurs de x de la première itération se calculent ainsi.

{

 𝑥1

(1)
= (𝑏1 − 𝑎12𝑥2

(0)
− 𝑎13𝑥3

(0)
)/𝑎11

 𝑥2
(1)
= (𝑏2 − 𝑎21𝑥1

(1)
− 𝑎23𝑥3

(0)
)/𝑎22

 𝑥3
(1)
= (𝑏3 − 𝑎31𝑥1

(1)
− 𝑎32𝑥2

(1)
)/𝑎33

Et on continue jusqu’à aboutir à une précision suffisante

Le système réduit reste le même sauf que la valeur nouvelle de 𝑋𝑖
(𝑘+1)

obtenue dans la ième

équation sera injectée dans la suivante:

65

{

 𝑋1

(𝑘+1)
= (𝑏1 − 𝑎12𝑋2

(𝑘)
− 𝑎13𝑋3

(𝑘)
−⋯− 𝑎1𝑛𝑋𝑛

(𝑘)
)/𝑎11

𝑋2
(𝑘+1)

= (𝑏2 − 𝑎21𝑋1
(𝑘+1) − 𝑎23𝑋3

(𝑘) −⋯− 𝑎2𝑛𝑋𝑛
(𝑘))/𝑎22

⋮

𝑋𝑛
(𝑘+1)

= (𝑏𝑛 − 𝑎𝑛1𝑋1
(𝑘+1) − 𝑎𝑛2𝑋2

(𝑘+1) −⋯− 𝑎𝑛,𝑛−1𝑋𝑛−1
(𝑘+1))/𝑎𝑛𝑛

Le processus itératif se fera avec un vecteur initial et l’utilisation de la formule

𝑋𝑖
(𝑘+1)

= [𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑋𝑗
(𝑘+1)𝑖−1

𝑗=1 − ∑ 𝑎𝑖𝑗𝑋𝑗
(𝑘)𝑛

𝑗=𝑖+1]/𝑎𝑖𝑖 ; 𝑖 = 1 , … , 𝑛 et 𝑖 ≠ 𝑗

La méthode de Gauss-Seidel est une variante améliorée de la méthode de Jacobi. En effet, à

l’itération 𝑘 + 1 , au moment du calcul de 𝑋2
(𝑘+1)

 ,on possède déjà une meilleure

approximation de 𝑋1 que 𝑋1
(𝑘)

 , à savoir 𝑋1
(𝑘+1)

 . De même, au moment du calcul de 𝑋3
(𝑘+1)

,

on peut utiliser 𝑋1
(𝑘+1)

 et 𝑋2
(𝑘+1)

 qui ont été déjà calculés. Plus Généralement, pour le calcul

de 𝑋𝑖
(𝑘+1)

,on peut utiliser 𝑋1
(𝑘+1)

 , 𝑋2
(𝑘+1)

,…, 𝑋𝑖−1
(𝑘+1)

 déjà calculés et les 𝑋1
(𝑘+1)

, 𝑋2
(𝑘+1)

,…,

𝑋𝑖−1
(𝑘+1)

 de l’itération précédente.

4. Critère d’arrêt

On utilise le plus souvent les critères suivants:

• |𝑥𝑖
(𝑛)
− 𝑥𝑖

(𝑛−1)
| ≤ 𝜀 𝑖 = 1, 𝑛 ̅̅ ̅̅ ̅̅ ̅

• Ou ‖𝑥⃗(𝑛) − 𝑥⃗(𝑛−1)‖ ≤ 𝜀 (erreur absolue)

• Ou
‖𝑥⃗(𝑛)−𝑥⃗(𝑛−1)‖

‖𝑥⃗(𝑛)‖
 ≤ 𝜀 (erreur relative)

5. Condition de convergence :

On démontre que si A est une matrice à diagonale strictement dominante (condition

suffisante), la méthode de Jacobi et de Gauss-Seidel sont convergentes. C.à.d.:

∑ |𝑎𝑖𝑗|
𝑛
𝑗=1
𝑗≠𝑖

< |𝑎𝑖𝑖| ∀ 𝑖 = 1, 𝑛 ̅̅ ̅̅ ̅̅ ̅

Mise en œuvre sous Matlab

Ecrire un programme sous Matlab qui permet de résoudre le système des équations linéaires

suivant en utilisant la méthode de Gauss-Seidel.

Avec la solution estimée 𝑋(0) = [
1
2
2
] et erreur 𝜀 = 10−4

66

Références

1. Nicolas Hudon. Initiation à Matlab, (nicolas.hudon@polymtl.ca), URCPC, Ecole

Polytechnique de Montréal, 22 janvier 2004

2. Marie Postel. Introduction au logiciel Matlab, Version révisée septembre 2004.

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie.

3. Alfio Quarteroni, Fausto Saleri, Paola Gervasio. Calcul Scientifique; Cours, exercices

corrigés et illustrations en MATLAB et Octave. Springer-Verlag, Italie 2010.

4. Baba Hamid Fatima Zohra. Le Calcul scientifique appliqué au Génie Civil sous Matlab,

Cours. Université des Sciences et de la Technologie d'Oran Mohamd Boudiaf

inprotected.com

https://inprotected.com?utm_source=signature&utm_medium=pdf

