SÉRIE D'EXERCICES

Espaces vectoriels

EXERCICE 1. Les ensembles suivants, munis de leurs opérations usuelles, sont-ils des espaces vectoriels?

 $E_1 = \{(x, y) \in \mathbb{R}^2 / xy \ge 0\}, \ E_2 = \{(x, y, z) \in \mathbb{R}^3 / -x + 3y + z = 0\}, \ E_3 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_3 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_4 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_5 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{ et } x - 3y = 0\}, \ E_7 = \{(x, y, z) \in \mathbb{C}^3 / x + iy + z = 0 \text{$

 $E_{4} = \{(x, x+y, x+y+z) \mid x, y, z \in \mathbb{R}\}, E_{5} = \{P \in \mathbb{C}[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{6} = \{P \in K[X] \mid \deg(P) = n\}, E_{6} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in \mathbb{C}[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid \deg(P) = n\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X)\}, E_{7} = \{P \in K[X] \mid P(X-3) = 2P(X+1) + P(X+1) +$

 E_7 est l'ensemble des fonctions dérivables sur \mathbb{R} , E_8 est l'ensemble des fonctions monotones sur \mathbb{R} ,

 $E_9 = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ est born\'ee}\}, \quad E_{10} = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} + 2u_n\}.$

EXERCICE 2. Soient $u_1, \ldots, u_n, u_{n+1}$ des vecteurs d'un espace vectoriel E. Etablir que :

- 1. Si $(u_1, \dots, u_n, u_{n+1})$ est génératrice de E et $u_{n+1} \in \text{Vect}(u_1, \dots, u_n)$, alors (u_1, \dots, u_n) est génératrice de E.
- 2. Si (u_1, \ldots, u_n) est libre et $u_{n+1} \notin \text{Vect}(u_1, \ldots, u_n)$, alors $(u_1, \ldots, u_n, u_{n+1})$ est libre.

EXERCICE 3. Dans $E = \mathbb{R}^3$, soient les vecteurs u = (-1, 2, 1), v = (0, 1, -1) et w = (3, -4, -5).

- 1. La famille (u, v) est-elle libre?
- 2. La famille (u, v, w) est-elle libre?
- 3. Déterminer $x \in \mathbb{R}$ pour que $(x, 1, 2) \in \text{Vect}\{u, v\}$.
- 4. Soient u' = (1,0,-3) et v' = (-2,5,1). Montrer que $Vect\{u,v\} = Vect\{u',v'\}$.

EXERCICE 4. Soient les vecteurs $u_1 = (1, -1, i), u_2 = (-1, i, 1)$ et $u_3 = (i, 1, -1)$ de \mathbb{C}^3 .

- 1. Montrer que (u_1, u_2, u_3) est une base de \mathbb{C}^3 .
- 2. Calculer les coordonnées du vecteur v = (1+i, 1-i, i) dans cette base.

EXERCICE 5.

- 1. Soit (P_0, P_1, \dots, P_n) une famille de **polynômes échelonnés** dans $\mathbb{K}_n[X]$, c'est-à-dire vérifiant $\deg(P_i) = i$ pour tout $i \in \{0, \dots, n\}$. Montrer que (P_0, P_1, \dots, P_n) est une base de $\mathbb{K}_n[X]$.
- 2. En déduire que pour tout $a \in \mathbb{K}$, la famille $(1, X a, (X a)^2, \dots, (X a)^n)$ est une base de $\mathbb{K}_n[X]$ et donner les coordonnées d'un polynôme quelconque $P \in \mathbb{K}_n[X]$ dans cette base.

EXERCICE 6. Dans le \mathbb{R} -espace vectoriel $E = \mathbb{R}^3$, soit le sous-espace $F = \{(x, y, z) \in E \mid x - y + z = 0\}$.

- 1. Donner une base et la dimension de F.
- 2. Soit $G = \text{Vect}\{(1, 1, -1)\}$. Montrer que $E = F \oplus G$. 3. L'ensemble $F \cup G$ est-il un sous-espace vectoriel de E?

EXERCICE 7. Soient les sous-espaces $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + z = 0\}$ et $G = \{(6a + b, 8a + 2b, -a + 3b) \mid a, b \in \mathbb{R}\}$ de \mathbb{R}^3 . Déterminer une base et la dimension de chacun des sous-espaces vectoriels F, G, $F \cap G$ et F + G.

EXERCICE 8. Soit l'ensemble $F = \{ P \in \mathbb{C}_4[X] / P(0) = P'(0) = P'(1) = 0 \}.$

- 1. Montrer que F est un \mathbb{C} -espace vectoriel. En donner une base et la dimension.
- 2. Montrer que le sous-espace $G = \text{Vect}(1, X, 1 + X + X^2)$ est un supplémentaire de F dans $\mathbb{C}_4[X]$.

Applications linéaires

EXERCICE 9. Soit l'espace vectoriel $E = \mathbb{R}^3$ muni de la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ et f l'endomorphisme de E tel que $f(e_1) = e_1 - e_2$, $f(e_2) = -e_1 + 2e_2 - e_3$, $f(e_3) = -e_2 + e_3$.

- 1. Calculer f(x, y, z). Trouver une base et la dimension du noyau ker(f). Compléter cette base en une base de E.
- 2. Déterminer $rang(f(e_1), f(e_2), f(e_3))$. En déduire rang(f). Pouvait-on déduire rang(f) de la question précédente?
- 3. Déduire une base et la dimension de l'image Im(f). Compléter cette base en une base de E.
- 4. Montrer que ker(f) et Im(f) sont supplémentaires.

EXERCICE 10. Soit $f: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ définie par f(x,y) = (3x - iy, x + 2y).

Montrer que f est un automorphisme de \mathbb{C}^2 et déterminer son automorphisme réciproque.

EXERCICE 11. Soit $f \in \mathcal{L}(\mathbb{R}^n)$ tel que $f^2 - 3f + \mathrm{Id}_E = 0$.

- 1. Montrer que f est un automorphisme et déterminer f^{-1} en fonction de f et Id_E .
- 2. Existe-t-il $v \in \mathbb{R}^n$ tel que f(v) = 2v?

EXERCICE 12. Soit $f \in \mathcal{L}(E)$. Montrer que :

- 1. $\ker(f^k) \subseteq \ker(f^{k+1})$ et $\operatorname{Im}(f^{k+1}) \subseteq \operatorname{Im}(f^k) \ \forall \ k \in \mathbb{N}$.
- 2. $\ker(f) = \ker(f^2) \iff \operatorname{Im}(f) \cap \ker(f) = \{0_E\}.$

EXERCICE 13. Soient les sous-espaces supplémentaires F et G de $E = \mathbb{R}^3$ traités dans l'exercice 6.

Soit $p \in \mathcal{L}(E)$ la projection sur F parallèlement à G et $s \in \mathcal{L}(E)$ la symétrie par rapport à F et parallèlement à G. Calculer p(x, y, z) et s(x, y, z). Rappeler et vérifier la formule entre p et s

EXERCICE 14. Montrer qu'il existe une application linéaire unique f de \mathbb{R}^3 dans \mathbb{R}^2 telle que :

f(1,0,0) = (0,1), f(1,1,0) = (1,0), f(1,1,1) = (1,1). Calculer f(x,y,z). Déterminer le noyau et l'image de f.

EXERCICE 15. Soit f l'application de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 définie par f(P) = (P(0), P'(1), P''(2)). Montrer que f est linéaire et déterminer $\ker(f)$. Est-il un isomorphisme ? Si oui, donner son automorphisme réciproque.

Matrices

EXERCICE 16. Soit *E* l'ensemble des matrices
$$M(a,b,c) = \begin{pmatrix} a & -c & -b \\ b & a & -c \\ c & b & a \end{pmatrix}$$
 avec a,b,c dans \mathbb{C} .

- 1. Montrer que E est un espace vectoriel sur \mathbb{C} dont on précisera une base et la dimension.
- 2. Montrer que $(E, +, \times)$ est une sous-algèbre commutative de l'algèbre $(\mathcal{M}_3(\mathbb{C}), +, \times)$.

EXERCICE 17. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice non nulle.

- 1. Développer et simplifier le produit $(I_n A)(I_n + A + A^2 + \cdots + A^{p-1})$ pour $p \in \mathbb{N}^*$.
- 2. On dit que la matrice A est **nilpotente** s'il existe un entier $k \ge 1$ tel que $A^k = 0$. Le plus petit entier p tel que $A^p = 0$ s'appelle l'**indice de nilpotence** de A, c'est-à-dire, $A^p = 0$ et $A^{p-1} \neq 0$.

Montrer que si A est nilpotente, alors la matrice $I_n - A$ est inversible et donner son inverse $(I_n - A)^{-1}$.

EXERCICE 18. Soit la matrice
$$A = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$$
.

- 1. Décomposer A sous forme aI + bJ où I et J sont deux matrices à déterminer.
- 2. Montrer que la matrice J est nilpotente.
- 3. En déduire A^n pour tout $n \in \mathbb{N}$ à l'aide de la formule du binôme de Newton.

EXERCICE 19. Soit E un espace vectoriel muni d'une base $\mathscr{B} = (e_1, e_2, e_3)$ et $f \in \mathscr{L}(E)$ l'endomorphisme de E dont la

matrice dans la base
$$\mathscr{B}$$
 est $A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$.
Soit $\mathscr{B}' = (e'_1, e'_2, e'_3)$ la famille définie par : $e'_1 = e_1 + e_2 - e_3$, $e'_2 = e_1 - e_3$, $e'_3 = e_1 - e_2$.

- 1. Montrer que \mathscr{B}' est une base de E. Former la matrice D de f dans la base \mathscr{B}' .
- 2. Ecrire la matrice de passage P de la base \mathscr{B} à la base \mathscr{B}' et calculer son inverse P^{-1} .
- 3. Quelle relation lie les matrices A, D, P et P^{-1} ?
- 4. Calculer D^n pour tout $n \in \mathbb{N}$, puis déduire A^n .
- 5. Vérifier que Tr(D) = Tr(A) et rang(D) = rang(A). Pourquoi a-t-on ces égalités ?

EXERCICE 20. Soit $n \in \mathbb{N}^*$. Soit l'application $f : \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$, $P(X) \mapsto P(X+1) + P(X)$.

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer la matrice de f dans la base canonique $\mathscr{B} = (1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$. f est-il un automorphisme?

EXERCICE 21. On considère la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- 1. Calculer $A^2 3A + 2I_2$. En déduire que A est inversible et calculer son inverse.
- 2. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire l'expression de la matrice A^n .

EXERCICE 22. Trouver le rang de chacune des matrices suivantes à l'aide de la méthode de Gauss :

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 2 & -3 & -4 \\ 3 & 1 & 5 \\ -1 & 0 & -1 \\ 0 & 2 & 4 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ -1 & 0 & -1 & -3 \end{pmatrix}, \ D = \begin{pmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{pmatrix}.$$

EXERCICE 23. A l'aide de la méthode de Gauss, déterminer si les matrices suivantes sont inversibles et, pour le cas échéant, déterminer leurs inverses :

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 5 \\ -1 & 1 & -1 \\ 0 & 3 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 3 & 2 & 1 \end{pmatrix}.$$

Déterminants

EXERCICE 24. Soit M une matrice carrée d'ordre 2. Montrer que $\det(M) = \frac{1}{2} \left((\operatorname{Tr} M)^2 - \operatorname{Tr} \left(M^2 \right) \right)$, où Tr est la trace.

EXERCICE 25. Calculer les déterminants suivants à l'aide des transformations élémentaires et préciser si les matrices associées sont inversibles :

$$\begin{vmatrix} 2019 & 2020 \\ 1440 & 1441 \end{vmatrix}, \quad \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 6 & 9 \end{vmatrix}, \quad \begin{vmatrix} 4 & -1 & 1 & 4 \\ 3 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 1 & 0 & 5 \end{vmatrix}, \quad \begin{vmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{vmatrix}, \quad \begin{vmatrix} 1 & j^2 & j \\ j & 1 & j^2 \\ j^2 & j & 1 \end{vmatrix}$$
 où $j = e^{\frac{2i\pi}{3}}$.

EXERCICE 26.

- 1. Pour quelles valeurs du réel λ , la matrice $A_{\lambda} = \begin{pmatrix} -\lambda & 2 & 2 \\ 2 & -\lambda & -2 \\ 2 & -2 & -\lambda \end{pmatrix}$ est-elle inversible?
- 2. Déterminer rang (A_{λ}) suivant les valeurs de λ .
- 3. Pour $\lambda = 0$, calculer le déterminant $\det \left(2 \left[{}^{t} \left(A_0^{2019} \right) \right]^{-1} \times A_0^{2020} \right)$.

EXERCICE 27. Considérons la matrice
$$A_n = \begin{pmatrix} a & 1 & 1 & \cdots & 1 & 1 \\ a & a & 1 & \cdots & 1 & 1 \\ a & a & a & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a & a & a & \cdots & a & 1 \\ a & a & a & \cdots & a & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}), \text{ où } a \in \mathbb{C}.$$

- 1. On note $D_n = \det(A_n)$. Calculer D_2 et D_3 .
- 2. Montrer que pour tout $n \ge 2$, $D_n = (a-1)D_{n-1}$. En déduire la valeur de D_n pour tout $n \ge 1$.
- 3. Déterminer le rang de la matrice A_n suivant les valeurs de a.

EXERCICE 28. Soit le déterminant d'ordre *n* suivant :

$$D_n = \begin{vmatrix} 1+x^2 & x & 0 & \cdots & 0 & 0 \\ x & 1+x^2 & x & \cdots & 0 & 0 \\ 0 & x & 1+x^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1+x^2 & x \\ 0 & 0 & 0 & \cdots & x & 1+x^2 \end{vmatrix}.$$

1. Calculer D_1, D_2 et D_3 .

- 2. Trouver une relation de récurrence entre D_n, D_{n-1}, D_{n-2} .
- 3. En déduire une relation de récurrence pour la suite $\Delta_n = D_n D_{n-1}$.
- 4. Calculer alors D_n .

EXERCICE 29. Soit T l'opérateur linéaire de $\mathcal{M}_2(K)$ défini par T(A) = MA où $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- 1. Ecrire la matrice de T dans la base canonique $\mathscr{B} = (E_{11}, E_{12}, E_{21}, E_{22})$ de $\mathscr{M}_2(K)$.
- 2. En déduire le déterminant det(T).

Systèmes linéaires

EXERCICE 30. Résoudre et discuter éventuellement les systèmes suivants par la méthode de Gauss en donnant leurs rangs :

$$\begin{cases} x - 2y + 2z = 3 \\ 3x - 2z = -7 \\ -x + y + z = 6 \end{cases}, \begin{cases} 3x - y + 2z = 8 \\ -x + 5y + 3z = -1 \end{cases}, \begin{cases} x + 2y + z = -1 \\ 2x + y - z = 1 \\ -x + y + 2z = -2 \\ x + y + z = 4 \end{cases}, \begin{cases} x - y + z = m \\ x + my - z = 1 \\ x - y - z = 1 \end{cases}$$

EXERCICE 31. Montrer que le premier système linéaire de l'exercice précédent est de Cramer. Résoudre ce système par les formules de Cramer et retrouver le résultat obtenu par la méthode de Gauss.

Exercices facultatifs de révision

EXERCICE 32. On considère l'espace vectoriel $E = \mathbb{R}_2[X]$ muni de sa base canonique $\mathscr{B} = (1, X, X^2)$. Pour tout polynôme P de E on associe le polynôme f(P) = P - (X - 2)P', où P' est la dérivée de P.

- 1. Montrer que $\forall P \in E, f(P) \in E$ et que f est un endomorphisme de E.
- 2. Donner une base de ker(f). En déduire le rang de f.
- 3. Donner une base de Im(f).
- 4. Montrer que les sous-espaces vectoriels ker(f) et Im(f) sont supplémentaires dans E.
- 5. Déterminer la matrice A de f dans la base \mathcal{B} .
- 6. Soit $\lambda \in \mathbb{R}$. Calculer le déterminant $\det(A \lambda I_3)$, où I_3 est la matrice unité d'ordre 3.
- 7. Pour quelles valeurs du paramètre λ la matrice $A \lambda I_3$ est-elle inversible?
- 8. Donner le rang de la matrice $A \lambda I_3$ selon les valeurs de λ .
- 9. Montrer que la famille $\mathscr{B}' = (1, X 2, (X 2)^2)$ est une base de E.
- 10. Déterminer la matrice A' de f dans la base \mathcal{B}' .
- 11. Pour tout entier $n \in \mathbb{N}^*$, déterminer la matrice de l'endomorphisme f^n dans la base \mathscr{B}' .
- 12. Écrire la matrice de passage P de la base \mathscr{B} à la base \mathscr{B}' .
- 13. Calculer P^{-1} .
- 14. Montrer que les matrices A^n et $(A')^n$ sont semblables pour tout entier $n \in \mathbb{N}$.
- 15. Sans faire les calculs et sans donner de résultats, expliquer comment obtenir la matrice A^n pour ≥ 2 .

EXERCICE 33. L'espace vectoriel $E = \mathbb{R}^3$ est muni de sa base canonique $\mathscr{B} = (e_1, e_2, e_3)$. On considère l'endomorphisme f de E donné par : $f(e_1) = e_1$, $f(e_2) = e_1 + 2e_2$, $f(e_3) = -e_1 + e_2 + 3e_3$.

- 1. Ecrire la matrice $A = M(f, \mathcal{B})$ de f dans la base \mathcal{B} .
- 2. L'endomorphisme f est-il injectif, surjectif, bijectif? Justifier les réponses.
- 3. Déterminer une base de $\ker(f 2\operatorname{Id}_E)$. En déduire le rang de l'endomorphisme $f 2\operatorname{Id}_E$.
- 4. Déterminer un sous-espace supplémentaire de $ker(f 2Id_E)$ dans E.
- 5. On donne les vecteurs : $e_1'=e_1$, $e_2'=e_1+e_2$, $e_3'=e_2+e_3$. Montrer que $\mathscr{B}'=(e_1',\ e_2',\ e_3')$ est une base de E.
- 6. Déterminer la matrice $A' = M(f, \mathcal{B}')$ de f dans la base \mathcal{B}' .
- 7. Montrer que la matrice A' est inversible et calculer son inverse $(A')^{-1}$.
- 8. Déterminer les réels α , β , γ dans \mathbb{R} tels que $(A')^3 + \alpha(A')^2 + \beta A' + \gamma I_3 = 0$, où I_3 est la matrice unité d'ordre 3.
- 9. En déduire que la matrice A vérifie aussi la même relation $A^3 + \alpha A^2 + \beta A + \gamma I_3 = 0$.
- 10. Montrer que la matrice A est inversible et exprimer A^{-1} en fonction de A^2 , A et I_3 .
- 11. Sans calculer explicitement la matrice A^n , déterminer la trace de A^n pour $n \in \mathbb{N}$.