

MODULE_G 618

SERIE DE TD N° 3

Exercice 1:

Deux échantillons de sable fin ont été prélevés, l'un sous le niveau piézométrique, l'autre au dessus. Le tableau ci-dessous présente les mesures effectuées.

	Echantillon 1	Echantillon 2
W (N)	2,5	2,3
V (cm ³)	130	105
W _s (N)	2,2	1,9

1) Déduire pour chaque échantillon le poids volumique apparent γ , le poids volumique sec γ_d et la teneur en eau w?

Un essai au pycnomètre a été réalisé afin de déterminer le poids volumique des particules solides γ_s (voir figure 1). On suppose que ce poids volumique est le même pour l'ensemble de la couche de sable fin. Les masses mesurées sont :

 $M_1 = 1180, 1 \ g \ ; \quad M_2 = 45, 8 \ g \quad \ \ et \qquad M_3 = 1208, 94 \ g.$

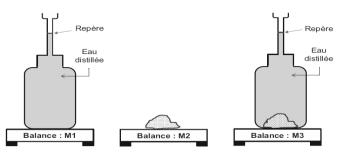


Figure 1 : Pesées au pycnomètre

- 2) Exprimer la masse volumique des particules solides ρ_s en fonction de M_1 , M_2 , M_3 et ρ_w ?
- 3) Déterminer γ_s et en déduire l'indice des vides « e » et le degré de saturation Sr des échantillons 1 et 2 ?
- 4) Déterminer lequel de ces échantillons est en-dessous du niveau piézométrique ?

Exercice 2:

Un échantillon d'argile saturée pesait 35,4g à l'état naturel et 24,2g après séchage à l'étuve. Si le poids volumique des grains solides vaut 26,2 KN/m³; déterminer la teneur en eau, l'indice des vides, la porosité, le poids volumique total, le poids volumique sec et le poids volumique déjaugé ?

Exercice 3:

Calculer le gradient hydraulique critique d'un sable dont la porosité est de 0,40 et dont la gravité spécifique est de 2,12

N.B. : Pour l'ensemble des exercices, On prend : $g = 10 \text{ m/s}^2$ et $\gamma_W = 10 \text{ KN/m}^3$