

Département de Physique

A.U.: 2019-2020

TD de Traitement du signal TD N° 4 Signaux aléatoires

Exercice 1 : (Examen juin 2015)

On considère x(t), un processus stochastique stationnaire au sens large de <u>moyenne nulle</u> et de fonction de corrélation $Rxx(\tau)$ et soit le signal y(t) défini par : y(t) = x(t) + At,

A : une variable aléatoire de moyenne nulle, de variance égale à 1 et indépendante de $\mathbf{x}(\mathbf{t})$.

- 1- Calculer la moyenne E[y(t)] et la fonction de corrélation Ryy $(t + \tau, t)$ de y(t).
- **2-y(t)** est-il stationnaire au sens large?
- 3- Calculer la fonction d'inter-corrélation $\mathbf{R}\mathbf{x}\mathbf{y}(\mathbf{t}+\mathbf{\tau},\mathbf{t})$ entre $\mathbf{x}(\mathbf{t}+\mathbf{\tau})$ et $\mathbf{y}(\mathbf{t})$.

Exercice 2: (Examen janvier 2014)

A l'entrée d'un filtre linéaire invariant dans le temps et de réponse impulsionnelle $\mathbf{h}(\mathbf{t})$, on applique un signal aléatoire : $\mathbf{e}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) + \mathbf{b}(\mathbf{t})$

 $x(t) = \lambda \cos(2\pi f_0 t); \lambda \text{ et } f_0 \text{ des constantes } \text{et } \mathbf{b}(t) : \text{un bruit blanc stationnaire de densité spectrale de puissance } \sigma_h^2;$

 $h(t) = \exp(-at) U(t)$; a>0 et U(t): la fonction échelon unité.

- **1-** Calculer la T.F de h(t) notée **H(f)**. Que représente-t-elle?
- 2- Déterminer la puissance du signal $\mathbf{g}_{\mathbf{b}}$ (t) défini par $\mathbf{g}_{\mathbf{b}}$ (t) = \mathbf{b} (t) * \mathbf{h} (t) qu'on notera $\boldsymbol{P}_{\boldsymbol{g}_{\mathbf{b}}}$
- 3- Déterminer le spectre du signal filtré défini par : $\mathbf{g}_{\mathbf{x}}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t})$ On mettra $\mathbf{H}(\mathbf{f})$ sous la forme $\mathbf{H}(\mathbf{f}) = \mathbf{A}(\mathbf{f}) \exp[\mathbf{j}\Phi(\mathbf{f})]$.
- **4-** En déduire l'expression du signal $\mathbf{g}_{\mathbf{x}}$ (t) etsa puissance qu'on notera $\mathbf{P}_{\mathbf{g}_{\mathbf{x}}}$.
- 5- En déduire le rapport signal-bruit du signal filtré défini par : $RSB = \frac{P_{g_x}}{P_{g_b}}$

<u>N.B</u>: * désigne l'opérateur de convolution; $\int \frac{1}{1+x^2} dx = \pi$ et **DSP** $[g_b(t)] = \sigma_b^2 |H(f)|^2$

Exercice 3:

On considère le signal $s(t) = x(t) + A \cos(2\pi f_0 t)$ avec x(t) un bruit stationnaire de moyenne nulle et $A \cos(2\pi f_0 t)$ un signal déterministe.

- 1- Montrer que s(t) n'est pas stationnaire et calculer sa puissance instantanée moyenne.
- **2-** Calculer la puissance moyenne temporelle de s(t) et la comparer avec celle obtenue en 1.
- 3- Calculer la fonction d'autocorrélation du signal s(t) puis sa valeur moyenne temporelle.
- 4- Etudier la densité spectrale de s(t).
- 5- Si $\mathbf{x}(t)$ est un bruit gaussien, donner l'allure de la densité spectrale associée à $\mathbf{y}(t)$.

M. El Amraoui FSM-UMI SMP6-EII TDS - Chapitre 4 2019 - 2020 Page 1

On considère le signal sinusoïdal bruité : $s(t) = cos (w_0 t + \theta) + b (t)$ transmis à travers un filtre linéaire de réponse fréquentielle : $H(\omega) = \frac{R/L}{j \omega + R/L}$, où b(t) est un bruit de moyenne nulle et de fonction de corrélation : $R_b(\tau) = K \delta(\tau)$.

 w_0 est une constante et θ une variable aléatoire uniformément distribuée sur $]\pi$, $2\pi[$; b(t)et θ sont indépendants.

- **1-** Calculer la moyenne E(s(t)) de s(t).
- 2- Calculer la fonction de corrélation $R_{ss}(t + \tau, t)$ de s(t).
- **3-s(t)** est-il stationnaire au sens large?
- **4-b(t)** est-il stationnaire au sens large?
- 5- Calculer la moyenne E(y(t)) de la sortie y(t) du filtre quand on applique s(t).

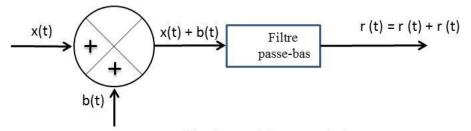
Nota : on donne primitive de $e^{ax} \sin w_0 x$ est : $\frac{e^{ax}}{a^2 + w_0^2} \left[a \sin w_0 x - w_0 \cos w_0 x \right]$

6- Calculer la densité spectrale de puissance de b(t).

Exercice 5: (Examen de rattrapage Fevrier 2014)

Dans une chaine de télécommunication, le canal de transmission est modélisé par l'addition au signal transmis d'un bruit $\mathbf{b}(\mathbf{t})$ suivi d'un filtre passe-bas idéal de fréquence de coupure F_c comme représenté par la figure 1. Le bruit est un bruit blanc gaussien centré de densité spectrale de puissance \mathbf{B} et indépendant du signal transmis. Le signal reçu est noté $\mathbf{r}(\mathbf{t})$.

- **1-** Théoriquement pour transmettre le signal sans démonstration, quelle devrait être la fréquence de coupure du filtre modélisant le canal ?
- **2-** En pratique $F_c = 2/T$, déterminer l'expression de $\mathbf{r}(\mathbf{t})$ en fonction du signal transmis $\mathbf{x}(\mathbf{t})$, du bruit $\mathbf{b}(\mathbf{t})$ et de la réponse impulsionnelle du filtre $\mathbf{h}(\mathbf{t})$.
- 3- En déduire l'expression de la fonction d'autocorrélation du signal reçu, $C_{rr}(\tau)$ en fonction des fonctions d'autocorrélation du signal reçu et du bruit reçu, respectivement $C_{rx}(\tau)$ et $C_{rb}(\tau)$
- **4-** Déterminer l'expression de la densité spectrale de puissance, $\mathbf{Sr}(\mathbf{f})$ du signal reçu et la représenter.
- 5- Déterminer le rapport signal sur bruit avant et après la transmission; le signal étant le signal quantifié (non prise en compte de l'erreur de quantification).



Modèle du canal de transmission

Figure 1

M. El Amraoui FSM-UMI SMP6-EII TDS - Chapitre 4 2019 - 2020 Page 2