
Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

1

Structure de Données

Avancées

Support du Cours

Driss El Ouadghiri

Email : dmelouad@gmail.com

Université My Ismail
Faculté des Sciences
Département de Mathématiques et d’Informatique
Meknès

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

2

Partie 1

Rappels:
• Structures (enregistrements)
• Pointeurs
• Allocation dynamique de la memoire

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

3

Les structures

Les structures permettent de rassembler des valeurs de type différent. Par
exemple pour une adresse, on a besoin d’un numéro (int) et un nom de la rue
(char).
Déclaration struct adresse {

int numero ;
char rue[50] ;

} ;
• Chaque élément déclaré à l’intérieur de la structure est appelé un champ.
• Le nom donné à la structure est appelé étiquette de la structure.

Ici, on a déclaré un type de structure et non pas une variable structure.
On déclare une variable associée à une structure de la manière suivante :

struct adresse adr1, adr2 ;
on peut initier une structure lors de sa déclaration :

struct adresse adr1 = {15, ‘’Avenue Saghro’’} ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

4

Manipulation
On accède aux données contenues dans un champs d’une structure en

faisant suivre le nom de la structure par un point ‘.’ et le nom du champ voulu :
adr2.numero = 19 ; strcpy(adr2.rue , ‘’Rue Annajah’’) ;

Si deux structures on le même type, on peut effectuer :
adr1 = adr2 ; /* la personne qui habitait adr1 a déménagé à adr2 */

Mais on ne peut pas comparer deux structures (avec = = ou !=). La
comparaison se fait champ par champ.

Tableau de structure
on déclare un tableau de structure de la même façon qu’un tableau de

variables simples :
struct adresse pers[50] ;

Attention: La structure adresse est déjà déclarée avant le tableau pers
qui est un tableau dont chaque élément est une structure de type adresse.

pers[i].ruefait référence au champ ruede la ièmepersonne du tableau pers.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

5

Structure de structure:
On peut utiliser une structure comme champ d’une autre structure:

struct adresse {
int numero ;
rue char[50] ; } ;

struct employe {
char nom[20] ;
char prenom[20] ;
struct adresse domicile ; } ;

struct employe rep_empl[50] ;

strcpy(rep_empl[0].nom ; ‘’Amalou’’) ;
strcpy(rep_empl[0].prenom ; ‘’Ider’’) ;
rep_empl[0].maison.numero = 19 ;
strcpy(rep_empl[0].maison.rue ; ‘’Avenue Zaid Ouhmad’’) ;
On peut accéder aux valeurs de ce tableau par :

char ch1;
ch1 = rep_empl[0].prenom ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

6

Les pointeurs
Lors de la compilation d’un programme, l’ordinateur réserve dans sa mémoire

une place pour chaque variable déclarée. C’est à cette place que la valeur de la
variable est stockée. Le compilateur associe à la variable l’adresse de stockage
(adresse de début de la place mémoire réservée). Lors de l’exécution du
programme, à chaque rencontre d’un nom d’une variable, le programme va
chercher à l’adresse correspondante la valeur de la mémoire.
Exemple:

int a = 0xf ;/* entier codé sur 4 octets */
short b = 0x0 ;/* entier codé sur 2 octets */
int c = 0x9 ;/* entier codé sur 4 octets */

Ceci, est stocké en mémoire de la manière suivante :

Ici on suppose que l’espace servant à stocker les données commence à
l’adresse (bfbff000).

Non Adresse hexa Valeur en hexadécima
a bfbff000 00 00 00 0f
b bfbff004 00 00
c bfbff006 00 00 00 09

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

7

a est stocké sur 4 octets et son adresse est (bfbff000), donc l’adresse
de b sera (bfbff000)+(4) = (bfbff004).
b est codé sur 2 octets et son adresse est (bfbff004), donc l’adresse
e c sera (bfbff004)+(2) = (bfbff006).

Définition et déclaration d’un pointeur :
Un pointeur est une variable qui a pour valeur l’adresse d’une

variable : celle sur laquelle elle pointe.
Un pointeur est toujours associé à un type de variable et un seul.
Au moment e la déclaration, on détermine le type de la variable

qui sera pointé par le pointeur, en écrivant le type concerné, puis le
non du pointeur avec une * devant.

int *ptn ; /* ptn est une variable pointeur sur un entier */
int n ; /* la varaible n est un entier */

pour afficher l’adresse de la variable n au pointeur ptn on utilise
l’ opérateur adresse &(qui signifie adresse de) : ptn := &n ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

8

Exemple2 :
#include<include.h>
main() {

float *px ; /*déclaration d’un pointeur sur un réel */
float x = 45.9 ;
px = &x ; /* px pointe sur x */
printf(‘’Adresse de x : %x \n’’, &x) ;
printf(‘’Valeur de px : %x \n’’, px) ;
printf(‘’Valeur de x : %4.1f \n’’, x) ;
printf(‘’Valeur pointée par px : %5.1f \n’’, *px) ;
return 0;

}
Le programme affichera ceci à l’écran:

Adresse de x : bfbffa4c (par exemple)
Valeur de px : bfbffa4c
Valeur de x : 45.9
Valeur pointée par px : 45.9

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

9

Pointeurs et fonctions :
Une variable globale est une variable connue dans toutes les fonctions

d’un programme.
Une variable locale n'est connue qu’a l’intérieur d’une fonction.
Ainsi, il peut exister une variable float a ;dans une fonction et une

variable int a ; dans une autre fonction sans qu’il y ait conflit.

Exemple : la fonction suivante n’a pas d’effet lors de son appel depuis main
void permut(int a, int b) {
int c ;
c = a ; a = b ; b = c;
return ; }
Lors de l’appel de cette fonction depuis main, les valeurs des arguments

réels vont être copiés dans les variables de permutet ce sont ces variables
locales qui vont être modifiées, pas celle de main.

Ainsi, dans main, un appel de type permut(n, p) ; laissera n et p inchangés.
On dit que ces arguments sont passépar valeur.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

10

Pour que permutpuisse changer les valeurs de ses arguments lors de
son appel depuis unmain, il faut que ses arguments soient les adresses
des variables a et b et donc des pointeurs.

void permut (int *a, int *b) {
int c ;
c = *a ; * a = *b ; *b = c;
return ; }

Lors de l’appel de la fonction, les pointeurs locaux reçoivent les adresses
des variablesi et j qui sont des variables demain. Donc travailler sur ces
pointeurs revient à travailler sur les variables i et j de main.

L’appel de cette fonction se fait ainsi : permut(&a, &b) ;

D’une façon générale, on utilise des pointeurs avec les fonctions quand
on veut qu’une fonction modifie des variables du programme appelant.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

11

Pointeurs et tableaux :
soit la déclaration suivante : int tab[10] ;
Le nom seul du tableau est une constante qui contient l’adresse du

premier élément du tableau. Ainsi, tabest égal à&tab[0] et donc*tab est égal
tab[0]. L’élément tab[i] est équivalent à*(tab+i). On a donc les
correspondances suivantes :

tab � tab[0], tab+1 � tab[1], … tab+9 � tab[9]

Exemple :
int tab[6] ;
int pta, ptb ;
pta = tab ; ptb = pta + 2 ;
L’ordinateur a réservé en mémoire 6 fois par 4 octets pour le tableau tab

de trois entiers. La variable constante tabet donc ptacontient l’adresse du
premier élément du tableau. L’opération ptb = pta + 5n’ajoute pas 5 à la
valeur de pta, mais ajoute 5 fois le nombre d’octets correspondant à un int. Donc

ptb est n pointeur qui pointe sur le dernier élément du tableau. Il
contient donc l’adresse de tab[5].

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

12

L’opérateur sizeof : Cet opérateur fournit la dimension d’un objet en octet.

Remarque :Le nom d’un tableau ne peut pas être assimilé à un pointeur.
En effet, l’adresse que représente le nom du tableau est imposé par le
compilateur au moment de la déclaration et ne peut pas être changé par la
suite.

int t[10], *pe ;
pe = t ;
sizeof(t)et sizeof(pe)ne donne pas la même chose.
sizeof(t)donne la taille du tableau c’est 40 et sizeof(pe)donne 4 la taille

d’une adresse.

sizeof(int) donne 4
sizeof(double) donne 8
sizeof(char) donne 1
sizeof(int *) donne 4
sizeof(double *) donne 4
sizeof(char *) donne 4

int i ; sizeof(i) donne 4
double x ; sizeof(x) donne 8
char c ; sizeof(c) donne 1
int *pe ; sizeof(pe) donne 4
double pr ; sizeof(pr) donne 4
char *pc ; sizeof(pc) donne 4
double t[4] ; sizeof(t) vaut 32
int m[4][5] ; sizeof(mat) vaut 80

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

13

Pointeurs et tableaux à plusieurs dimensions:

Un tableau à plusieurs dimensions est un tableau dont les éléments
sont eux même des tableaux.

Ainsi, le tableau défini par intt[4][5] ; contient 4 tableaux de 5 entiers
chacun. t donne l’adresse de 1er sous tableau {t[0][0], t[0][1], t[0][2], t[0][3],
t[0][4]}, t+1 celle de 2èmesous tableau {t[1][0], t[1][1], t[1][2], t[1][3], t[1][4]}
et ainsi de suite.

Ici, l’opération t+3 n’ajoute pas 3 à la valeur de t mais ajoute 3 fois le
nombre d’octets correspondant à un tableau de 5 entiers ; à savoir 3*4*5 =
60 octets.

Tableaux de pointeurs:

int tab[3] ;
int *ptab[3] = {tab, tab+1, tab+2} ;/* ptab est un tableau de 3 pointeurs
d’entiers */
Les valeurs de ptabsont des adresses de données. ptabest donc un

pointeur de pointeur car ptabpointe sur l’adresse de son 1er élément, qui
est lui même une adresse.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

14

Allocation dynamique de mémoire

Int tab[4][3] ; /* déclaration d’un tableau de 4*3 entiers */
Si on veut que le tableau change du taille d’une exécution à une autre,

cela nous oblige à modifier le programme et le recompiler à chaque fois.
Sinon, on déclare un tableau 1000*1000 entiers et n’utiliser que les
premières cases. C’est du gâchis!.

Pour éviter cela, on fait appel à l’allocation dynamique du mémoire : au
lieu de réserver de la place lors de la compilation, on la réserve pendant
l’exécution du programme.

La fonction malloc()
Pour l’utiliser il faut inclure la bibliothèque <stdlib.h>.
malloc(n) ; renvoie l’adresse d’un bloc de mémoire de n octets libres ou la
valeur 0 s’il n’y a pas assez de mémoire.

int *p ;
p = malloc(50) ; /* fournit l’adresse d’un bloc de 50 octets libres */

/* et l’affecte au pointeur p */

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

15

Utilisation de l’opérateur sizeof():
D’une machine à une autre, la taille réservée pour un type change. Nous

avons toujours besoin de la taille effective d’une donnée de ce type. C’est
l’opérateur sizeofqui nous fournit ce renseignement.

int a[8] ;
printf(‘’taille de a : %d \n’’, sizeof a) ;
printf(‘’taille de 4.52 : %d \n’’, sizeof 4.52) ;
printf(‘’taille de Bonjour! : %d \n’’, sizeof ‘’Bonjour!’’) ;
printf(‘’taille d’un float : %d \n’’, sizeof(float)) ;

Allocation dynamique pour un tableau à 1 dimension :
On veut réserver de la place mémoire pour un tableau de n entiers ou n

est lu au clavier :
int n, *tab ;
printf(‘’taille du tableau : ‘’) ; scanf(‘’%d’’, &n) ;
tab = (int *)malloc(n*sizeof(int)) ;
malloc(n*sizeof(int)) : renvoie juste l’adresse d’un bloc de n fois sizeof(int).

L’adresse retourné n’a pas de type. malloc()est dite de type générique.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

16

C’es pourquoi il est nécessaire de préciser le type de données pour
lesquelles l’adresse retournée est réservée.

(int *)malloc(n*sizeof(int))est une adresse de typeint.
tab = (int *)malloc(n*sizeof(int)); /* initialisation de tabpar cette adresse*/
tabcontient donc l’adresse de début d’un bloc de n entiers et on accède à

la iièmevaleur du tableau par tab[i] ou *(tab+i).
*(tab+i) est une variable de typeint.

Remarque : Pour libérer l’espace mémoire réservé quand on en n’a plus
besoin on utilise simplement l’instruction : free(p) ; Si on ne le fait pas cet
espace mémoire reste inutilisable jusqu’à la fin d’exécution du programme.
Ce qui peut conduire à une saturation de mémoire.

Allocation dynamique pour un tableau à plusieurs dimensions :
On veut réserver de la place mémoire pour un tableau de n*m entiers, ou

n et m sont lus au clavier: On va utiliser des tableaux de pointeurs (i.e. des
pointeurs de pointeurs).

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

17

int i, j, m, n ;
float **tab ; /* (a) */
scanf(‘’%d%d’’, n, m) ;
tab = (float **)malloc(n*sizeof(float *)) ; /* (b) */
for (i=0 ; i<n ; i++){

tab[i] = (float *)malloc(m*sizeof(float)) ; /* (c) */
for (i=0 ; i<n ; i++){

for (j=0 ; i<m ; j++){
tab[i][j] = 5*i+j ; /* (d) */

}
}

Explication :
(a) un tableau de pointeur est un pointeur de pointeurs. On peut déclarer

au choix un tableau de pointeur : int *tab[6] ; ou un pointeur de pointeur :int
**tab ;. Dans le cas de l’allocation dynamique de mémoire, comme on ne
connaît pas la taille de du tableau dont on aura besoin, on déclare un ointeur
de pointeurs.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

18

(b) tabétant un tableau de pointeur de réels de type float, on réserve un

bloc pouvant contenir n pointeur de type float. tabcontient alors l’adresse de

ce bloc.

(c) les tab[i] sont des sous tableaux de tab. On réserve donc pour chacun

d’eux de la place pour m réels de type float. Au total, on a bien réservé de la

place pour n*m réels de type float.

(d) Manipulation des éléments de tabcomme ceux d’un tableau ‘’normal’’.

Exemple1 :
/* Fonction qui affiche une matrice quelconque */

void aff_mat(double **A,int l,int c)

{

int i,j;

for(i=0; i<l; i++){

for(j=0; j<c; j++) { printf("%lf ",A[i][j]); }

printf("\n"); }

printf("\n"); }

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

19

Exemple2:

/* Fait le produit de la matrice a(m,n) par la matrice b(n,p) */
/* Le résultat est dans ab(m,p) */

void mat_prod(double **a,double **b,double **ab,int m,int n,int p)
{

int i,j,k;
for(i=0; i<m; i++) {
for(k=0; k<p; k++) {

ab[i][k]=0.;
for(j=0; j<n; j++) { ab[i][k]+=a[i][j]*b[j][k]; }

}
}

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

20

double **Mat_alloc_double(int nl, int nc){
/* nl : nombre de lignes, nc : nombre de colonnes */
double **mat;
int i;
mat = (double **)malloc(nl*sizeof(double*));
if(mat==NULL){
printf(‘’Mémoire insuffisante\n");
exit;

}
for(i=0 ; i<nl ; i++){
mat[i]=(double*)malloc(nc*sizeof(double));
if(mat[i]==NULL){
fprintf(stderr,"Mémoire insuffisante\n’’);
exit; }

}
return mat;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

21

void mat_free(double **mat, int nl, int nc){

/* **mat : pointeur sur la matrice, nl : nombre de lignes /*

/* nc : Nombre de colonnes */

int i;

for(i=0 ; i<nl ; i++) { free(mat[i]); }

free(mat);

return;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

22

Allocation de la mémoire pour un tableau de réels à trois dimensions
double ***Td3_alloc(double ***mat, int n1, int n2, int n3) {
int i,j;
mat=(double***)malloc(n1*sizeof(double**));
if(mat==NULL) {

printf(‘’Mémoire insuffisante\n");
exit; }

for(i=0;i<n1;i++){
mat[i]=(double**)malloc(n2*sizeof(double*));
if(mat[i]==NULL) {
printf(‘’Mémoire insuffisante\n");
exit ; }
for (j=0;j<n2;j++){
mat[i][j]=(double *)malloc(n3*sizeof(double));
if(mat[i][j]==NULL){

printf(‘’Mémoire insuffisante\n");
exit ; }

}
}

return mat;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

23

Structures de Données
Avancées

Partie 2

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

24

Chapitre I : Les piles

1) Définitions et Exemples
Une pile est une liste linéaire dont une seule extrémité (le
sommet) est accessible (Visible).

Exemples : Pile d’assiettes.
Pile de dossiers.

2) Caractéristiques
� L’extraction ou dépilement puis l’ajout se font uniquement
au sommet de la pile.
� Une pile est en théorie un objet dynamique (en opposition
à un tableau qui est statique)

sommet

put push

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

25

Représentation statique:

a) un tableau + une variable globale indiquant le sommet.

b) Un enregistrement avec deux champs

Représentation dynamique: liste

Les piles suivent une discipline LIFO (Last In / First Out) (Le
dernier entré est le premier servi).

Tout Problème utilisant cette démarche peut être donc simulé,
dans sa résolution, par des piles.

tableau

sommet

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

26

De ce fait la manipulation est bien simplifiée puisqu'elle ne nécessite
que deux fonctions :

• Une fonction pour ajouter un élément au sommet de la pile
• Une seconde pour le retirer

3) Les opérations de bases
On suppose que la pile est déclarée de la façon suivante :

typedef type elt ;
typedef struct pile {

elt tab[MAX];
int sommet;

};
pile p ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

27

cette représentation amène des restrictions supplémentaires à la
fonction Insertion : empiler ne pas empiler si la pile est pleine!

Les fonctions sur les piles

#define MAX 100 /*hauteur de pile*/

Création d’une pile vide :

pile creer(){
pile p;
p.sommet = -1;
return p;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

28

Tester si une pile est vide ou non:

int vide(PILE * pp){
* renvoie vrai si la pile pointée par pp est vide*/
return (pp->sommet == -1);

}
Insertion d’un élément :

void empile(elt e, pile * pp) {
/*empile e sur la pile pointée par pp */

if (pp->sommet = = MAX-1) { printf (‘’Stack Overflow \n’’);
exit; }

else { (pp->sommet = pp->sommet+1;
pp->tab[pp->sommet] = e ;}

return ;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

29

Extraction d’un élément : extrait (dépile) un élément du sommet
et le retourne comme valeur de la fonction.

elt depiler(pile *pp) {
/* tester si la pile est vide */

elt c;
if (vide(pp)) { printf(‘’ Stack Underflow \n’’);

halt; }
else { c = pp->tab[pp->sommet] ;

pp-> sommet = pp->sommet – 1 ; }
return(c) ;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

30

4) Exemples d’applications

Traitement des expressions mathématiques
a+b) ,)a+b(-c , ((a+b)-c)
compteur : +1 si on ouvre et – 1 si on ferme
((a+b)-c) expression correcte

Une expression est correcte si et seulement si :

• Le compteur est toujours >= 0 (on ne commence pas par un
délimiteur fermant)
• Le compteur est à zéro à la fin de l’expression.

122221110

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

31

Problème :

Cas ou on a plus d’un délimiteur.
Par exemple : (, {, [, …
On peut utiliser la méthode précédente en gardant la trace du
nombre d’ouvrants et de fermants pour chaque délimiteur.

Dans ce problème :

ouvrir correspond àempiler et fermer correspond àdépiler.
Le dernier délimiteur ouvert est le premier à être fermé, d’où
la politique LIFO .

Ce problème peut donc être simulé par une structure de pile.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

32

Exemple : {x+(y-[a+b])*c-[(d+e)]}

{x+(y-[{x+(y-[a+b])*c-[(
{x+(y-[a+b])

{x+(y-[a+b])*c-[(d+e)

Ainsi l’expression est correcte.

{

(

[

{ {

[

(

{

[

Pile vide

Expression
complète

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

33

Remarque :

� Le problème d’Underflow (pile vide et on essaie de
dépiler) correspond à une fermeture en plus.

� Il faut s’assurer toujours que le délimiteur qu’on ferme
correspond bien (est de même type) à celui qu’on vient
d’ouvrire.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

34

Choix de la structure de donnée

const max = 20 ;

type element = char ;
pile = array[1..max] of element ;

var p : pile ;
s, symb : char ;
valid : boolean ;
sommet, pos : integer ;
expr : string[80] ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

35

Fonction qui associe à chaque symbole fermant le symbole
ouvrant correspondant en le retournant.

function ouvrant(symbf: char): char;
begin

case symbf of
‘]’ : ouvrant :=‘[‘;
‘)’ : ouvrant :=‘(‘;
‘}’ : ouvrant :=‘{‘;

end;
end;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

36

Begin { Programme principal}

valide := true;

initialise ;

pos:=1;

write(‘Donner une expression arithmétique : ‘);

readln(expr);

symb:=expr[pos];

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

37

repeat { début de la boucle repeat }
if (symb in [‘(‘,’[‘,’{‘]) then

begin
if pile_pleine(p) then write(‘Pile pleine’);
halt;

end
else empiler(p,symb);
if symb in [‘]’,’)’,’}’] then

begin
if pile_vide(p) then write(‘ Pile vide’);
halt;

end
else begin

s:= depiler(p);
if s <> ouvrant(symb) then valide := false;

end;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

38

pos:=pos+1;

symb := expr[pos];

until ((pos > length(expr)) or not(valide)); { fin de repeat}

If (not(pile_vide(p)) or (not(valide))) then

write(‘expression incorrecte’)

else writeln(‘expression correcte’);

readln;

end. {fin du programme}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

39

TP1 et devoir à rendre
Traitement des expressions arithmétiques:

Le but de TP est de déterminer si une expression arithmétique
contenant les délimiteurs {, (, [,],), } est correcte ou non. Une
expression est correcte si à chaque délimiteur ouvrant {, (, [
correspond un délimiteur fermant],), } de même type. Le dernier
symbole ouvert doit être le premierà être fermé. Ce qui peut être
simulé par une pile avec les opérations :

empiler : ouvrir un délimiteur d’un type donné
dépiler : fermer le délimiteur ayant le même type que celui au

sommet de la pile.

Énoncé: Écrire un programme faisant appel à des fonctions pour
résoudre ce problème (traduire le programme Pascal en C).

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

40

Chapitre 2 : La récursivité

Définition et exemples
Un objet est dit récursif s’il est défini en fonction de lui même.
Une fonction est dite récursive si elle a la faculté de s’appeler elle même.
La récursivité est une manière simple de résoudre un certains nombre de

problèmes et surtout en mathématiques.

Remarque:
Deux modes de récursivité :

• Direct : la fonction fait appel à elle même d’une façon directe.
• Indirect (croisé) : la fonction fait référence àune procédure
ou une fonction qui lui fait référence.

type F (arguments)
debut

initialisation ;
appel à F avec une condition d’arrêt ;
instruction ;

Fin

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

41

Exemple: Factoriel
n! = n*(n-1)!
0! = 1 (condition d’arrêt)

unsigned long fact(int n)
{

if (n < 0) {
printf(‘’ Un entiers négatif n’a pas de factoriel \n’’);
exit;

}
else if (n == 0 || n == 1) {

return (1) ;
}
return(n* fact(n-1)) ;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

42

Le dernier return est un appel récursif.

A chaque appel, le paramètre de la fonction est diminué de 1 Jusqu’à ce
que n = = 1, ce qui est la condition de sortie.

Ce n’est pas fini là. Lorsque la fonction rencontre la condition de sortie,
elle remonte dans tous les appels précédents pour calculer n avec la valeur
précédemment trouvée !

Les appels des fonctions récursives sont en fait empilées dans une pile
système. Une fonction de ce type possède donc deux parcours: la phase
de descente et la phase de remontée.

Le schéma suivant illustre cela :
On suppose que la fonction est appelée par n = = 4.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

43

RemontéDescente

n == 1

n == 2

n == 3

n == 4

n == 1

n*1 == 2

n*2 == 6

n*4 == 24

Condition de sortie : n == 1

C’est au moment où la condition de sortie est vraie, que les appels
empilés sont dépilés au fur et à mesure de la remontée.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

44

Autrement, voyant de près ce qui se passe dans la pile système.
On considère toujours l’exemple de factoriel avec n = 4

fact fact fact4
3
2
1

4
3
2

4
3

Empilement des
valeurs de n

4

fact(1) fact(2) fact(3)

fact(4)

1 2 6

24
fact

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

45

Précautions :

Les fonctions récursives reste un moyen assez puissant pour résoudre
certains problèmes et de façon élégante. Aussi, elles pressentent des
dangers et ce pour plusieurs raisons :

de c• Dépassement de capacité : Essayer de stocker un nombre plus
grand que ce que peut contenir le type de votre variable.

• Débordement de pile (Stack Overflow) : Ceci l’une des causes les plus
souvent rencontrés dans le plantage de programmes avec des fonctions
récursives. En effet, les appels récursifs de fonctions sont placés dans la pile
du programme. Cette pile est d'une taille assez limité car elle est fixée une fois
pour toutes lors de la compilation.

Dans la pile sont non seulement stockés les valeurs des variables de
retour mais aussi les adresses des fonctions. les données sont nombreuses et
un débordement de la pile peut très vite arriver ce qui provoque des sorties
anormales du programme.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

46

Qu’on rencontre souvent le problème de « ‘Stack Overflow’, une approche
itérative sera préférable qu’une approche récursive. L’approche récursive
demande beaucoup de moyens en ressources alors l’approche itérative, telle
une boucle for, est bien moins coûteuse en terme de ressources et est bien
plus sûre, sauf dans le cas d'un dépassement de capacité bien sûr.

Voyons l’approche itératif pour calculer de factoriel d’un entier.

unsigned long fact_iter (int n) {
unsigned long f = 1;
short int i ;

for (i = 1; i <= n; i++)
{
f *= i;
}

return f;
}

Cet approche est moins lisible que celle
récursive. Un dépassement de capacité est aussi
possible. Le seul avantage ici réside dans le fait
qu’on risque jamais le débordement de la pile.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

47

Devoir et TP

Écrire deux procédures, une itérative et l’autre
récursive, permettant de donner la représentation
binaire d’un entier positif.

Remarque :

la représentation binaire d’un entier n positif
est celle de n div 2 suivi par 0 si n est paire et de 1 si

n est impaire.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

48

Chapitre 3 : Les Files
Définition :

Une file est une liste linéaire ou toute les insertions se font par une
extrémité (queue, arrière) et toutes les extractions se font par l’autre
extrémité (avant, tête).

Principe: ajout à un bout et retrait à un autre

Nombre d’éléments dans la file = = ar – av + 1

Exemple:
File d’attente devant un bus, devant un guichet automatique, etc …

Une file suit la discipline FIFO (First In, First Out), le premier arrivé est
Le premier servi.

extraction insertion…………..
av ar

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

49

Une file est représentée par un enregistrement cont enant les
champs

suivants :

• un tableau
• indice du premier élément
• indice du dernier élément

ou bien par un tableau et deux variables globales i ndiquant les
indices du

premier élément et de dernier élément de la file (la tête et la queue de la
file).

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

50

Opérations sur une file:

Au départ quand la file la file est vide on a : av = = 0 et ar = = -1.
En général file vide est exprimé par : ar < av

B

A

ar

av
B
A

ar

av B

ar

av

C

Insertion de C Extraction de A

C

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

51

#define MAX 100 /*hauteur de la file*/

Création d’une file vide :

file créer_file_vide(){
file f ;
f.av = 0 ;
f.ar = -1 ;
return f ;
}

Tester si une file est vide ou non:

int file_vide(file * pf){
/* renvoie vrai si la file pointée par pf est vide*/
return (pf->ar < pf->av);
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

52

Insertion d’un élément dans la file :

void insert_file (elt e, file * pf) {
if (pf->ar = = MAX-1) { printf (‘’On ne peut pas insé rer dans la file \n’’);

exit; }
elseif (file_vide(* pf)) { pf->tab[0]=e;

pf->ar=0; }
else { pf-> ar = pf->ar + 1 ;

pf->tab[pf->ar] = e ; }
return;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

53

Extraction d’un élément dans la file: extrait (dépile) un élément du
sommet et le retourne comme valeur de la fonction.

elt extract_file(pile *pf) {
/* tester si la file est vide */

elt c;
if (file_vide(pf)) { printf(‘’ File vide \n’’);

exit; }
else { c = pf->tab[pf->av] ;

pf-> av = pf->av + 1 ; }
return(c) ;

}

Remarque : nbr_elt_file == ar-av+1

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

54

Problème:

Du fait que les deux variables av et ar sont toujours incrémentées, on
arrive à un Overflow (dépassement de capacité) même si la file n’est pas saturée.
On ne peut pas insérer un autre élément dans la file.

1) Une première solution serait de modifier l’opération extraire.
Lorsqu’un élément est extrait toute la file est poussée vers l’avant.

Si on ignore la possibilité d’Underflow, on écrit extraire :

c = pf->tab[0] ;
for(i = 0 ; i < ar-1 ; i++) {

pf->tab[i] = pf->tab[i+1] ; }
ar := ar-1 ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

55

Remarque: On a plus besoin, dans cette situation, du premier élément
(tête). Elle est toujours au début de la file (tableau).

Inconvénient : Lorsqu’il s’agit d’un tableau de grande taille, l’extraction
d’un élément nécessite le déplacement de tous les éléments du tableau.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

56

2) Une seconde solution consiste à voir la file (tableau) comme circulaire :
tab[0],tab[1], …,tab[MAX-1] , tab[0]…

Exemple:

Il n’y a pas de perte de place, on exploite tout le tableau.
on a un Overflow lorsque, ar = av-1

E
D
C

ar

av

E
D
C av = 3

E
D av

E
D

G

av

F ar = 1 F ar F
ar

E
D

G

av

F

arH

Insère F extrait C Insère G Insère H

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

57

TP N° 3

Problème: Simulation d’une file d’attente

On désir faire des statistiques sur une station de bus, en
supposant q’une seule ligne passe par cette station.

Les personnes qui arrivent pour prendre le bus forment
ainsi une file d’attente ne dépassant pas 20 personnes.

L’arrivée d’un bus se fait par l’affichage du nombre de
places disponibles.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

58

Questions:

1°) Écrire la fonction qui lit l’heure d’arrivée d ’une
personne et qui l’insère dans la file d’attente?

2°) Écrire la fonction qui enregistre l’arrivée d’un bus et
qui met à jour la file d’attente?

3°) Écrire la fonction qui affiche l’état courant de la file?

4°) Écrire un programme qui appelle les fonctions des
questions précédentes?

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

59

Chapitre 5 : Les listes chaînées

Les files et les piles sont des listes particulières, elles sont ordonnées
linéairement. La représentation séquentielle, dans la mémoire, préservait
cet ordre.

Inconvénients:
1) Overflow
2) Capacité non utilisée au maximum

Supposons que l’ordre est gérer par le programmeur. Pour chaque élément
de la liste on resserve un champs qui contient l’adresse de l’élément suivant
(pointeur).

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

60

Liste : est un pointeur externe qui nous permet d’accéder àla liste.

Exemple: Dans le cas d’une liste chaînée, la représentation en mémoire
n’est pas ordonnée. Une liste de 5 éléments ‘A’, ‘B’, ‘C’, ‘D’ et ‘E’ dans l’ordre
pourra avoir, en mémoire, la représentation suivante :

Nœud

info suivant

• •
Dernier nœud

A 2006 D 2012 B 2008 C 2002 E

2000 2002 2004 2006 2008 2012 2014

2000Liste

Liste

=

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

61

Manipulation des listes chaînées

Structure de donnée définissant un nœud:

typedef type elt;
typedef struct noeud {

elt contenu;
noeud *suivant;

};
noeud *liste; /* Variable globale : pointeur externe sur la liste */

Création d’une liste vide :

noeud *creer_liste_vide(noeud *pl)
{
pl->suivant = NULL;
return(pl) ; /* défini dans <stdio.h> */
}

contenu
suivant

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

62

Tester si une liste est vide:

int liste_vide(noeud *pl) {
return (pl == NULL) ;
}

Ajout d’un élément au début de la liste:

void ajout_debut(elt x) {
noeud *b;
b = (noeud *)malloc (sizeof (noeud));
b->contenu = x;
b->suivant = liste;
liste = b;
}

liste

b

fin

fin->suivant = = NULL
fin est un pointeur externe sur
la fin de la liste

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

63

Insertion en fin de la liste:

Void ajout_fin(elt x){
noeud *save, *b;
b = (noeud *)malloc (sizeof (noeud)); /* construction du nœud à insérer */
b->contenu = x;
b->suivant = NULL;
if (liste == NULL) { liste = p ;} /* liste vide*/
else { /*liste non vide donc recherche de dernier nœud de la liste */

save = liste ;
while (save->suivant <> NULL) {
save = save->suivant ;
save->suivant := b ;} /* fin de while*/
}

return ;
}

save: variable locale pour
sauvegarder le nœud

b : variable local

liste

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

64

Remarque:
Il est plus pratique et efficace pour des insertions répétées d’utiliser deux

pointeurs externes :
• liste : pointeur sur le début de la liste,
• fin : pointeur sur la fin de la liste,

comme ça on n’a pas à parcourir à chaque fois la liste à la recherche du
dernier élément.

Recherche d’un élément x dans une liste:

int recher_liste-rec(elt x) {
noeud *a;
a = liste;
if (a == NULL) { return 0; }
else if (a->contenu == x) { return 1; }

else { return (recher_liste-rec(x)); } /* appel récursif */
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

65

Longueur d’une liste :

int long_liste_rec(noeud *pl) { /* version récursive */
if (a = NULL) { return 0; }
else { return (1 + long_liste_rec(a->suivant));}

}

int long_liste_iter() { /* version itérative */
noeud *a;
int long = 0;
a = liste;
while (a != NULL) {

++long;
a = a->suivant;

}
return long;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

66

Manipulation des liste a simple chaînage
On considère la représentation d’un polynôme en x, y et z.

Exemple: 5 x2 + 3xy + y2 + yz
a) Représentation statique (par tableau).

Grosse perte de mémoire (matrice très creuse).

000000500

000300000

100010000x0

x2

x1

z0z1z2 z0z1z2 z0z1z2
Y0 Y1 Y2

T[i,j,k]

Coefficient de xi yj zk

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

67

b) Représentation par liste chaînée

Un nœud représente un monôme :

typedef struct noeud {
float coeff ;
int px, py, pz ;
noeud *suivant;
};

noeud poly, p;

coeff xi yj zk suivant

Tête queue
poly

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

68

La construction de polynôme peut se faire de la façon suivante :

. Poly NULL

. Poly

. Poly

Initialisation :
Poly = NULL;
Poly = (noeud *)malloc (sizeof (noeud));

Insertion en tête d’une liste :

1 0 1 1

1 0 2 0
.

11 0 1

y2 yz

poly

p

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

69

Void insert_en_tete(float c, int i,j,k){
noeud *p;

p = (noeud *)malloc (sizeof (noeud)); ;
{charger le nœud pointé par p}
p->coeff = c ; p->px := i ; p->py = j ; p->pz = k ;
p->suivant := poly ;
poly = p ;

}
void main(){

Poly = NULL;
Poly = (noeud *)malloc (sizeof (noeud));
{ creation du polynome : p(x) = 5 x2 + 3xy + y2 + yz }
insert_en_tete(1,01,1);
insert_en_tete(1,02,0);
insert_en_tete(3,1,1,0);
insert_en_tete(5,1,0,0);
return;

}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

70

Insertion en fin de la liste:

void inert_fin(float c ; int i, j, k){
noeud *save, *p ;
p = NULL;
p = (noeud *)malloc (sizeof (noeud));
p->px = i ; p->py = j ; p->pz = k ; p->coeff = c ; p .̂suivant = NULL ;
if (poly == NULL) { poly = p ; } {liste vide}
else {liste non vide, donc recherche de dernier nœud de la liste}

save = poly ;
while (save->suivant != NULL) {

save = save->suivant ;
save->suivant = p ;

} /* fin while*/
return;

} /* fin de la focntion insert_fin*/

poly Save: variable locale pour
sauvegarder le nœud

P: variable local

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

71

Exercice:
Représentation d’une phrase ou d’un texte par une liste chaînée.
Considérant la structure de données suivantes :

typedef struct nœud {
char mot[20] ;
noeud *suivant ;
};

Réaliser les opérations suivante :

1) Créer la liste chaînée (initialisation du premier élément).
2) Insérer de nouveaux nœuds à la fin de la liste.
3) Parcourir le texte en affichant le texte.
4) Afficher les nœuds (mots) dans le sens inverse.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

72

Exemple :

l’affichage à l’envers : tout c’est debut

noeud *nouveau, *liste, *fin;
char ch[20];

void main() {
/* initialisation de la liste */
liste = (noeud *)malloc (sizeof (noeud));
liste = NULL ;
fin = liste ;
printf(‘’Entrer des mots et « stop » pour terminer’’);

debut c’est tout

liste fin

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

73

while (ch != ‘’stop’’) {

scanf(‘’%s’’, ch) ;
insert_fin(ch) ;

}
affichage(liste);
affichage_envers ;

return;
}
void insert_fin(char s[20]) {

noeud *nouveau ;
nouveau = (noeud *)malloc (sizeof (noeud));
Nouveau->suivant = NULL;
nouveau->mot = s ;
fin->suivant = nouveau ;
fin = nouveau ;

return,
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

74

void affichage(noeud *p){
/* affiche tous les mots de la liste à partir du nœud pointé par p */

while (p != NULL) {
printf(‘’%s’’, p->mot) ;
p = p->suivant ;
}

return;
}

Pour écrire une procédure itérative affiche_envers, on a besoin d’au moins 3
pointeurs : p, q, et r.

liste fin

liste
fin

p q r
rp q

p q r

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

75

void affiche_envers() {
neoud *p, *q, *r ;

p = (noeud *)malloc (sizeof (noeud));
q = (noeud *)malloc (sizeof (noeud));
r = (noeud *)malloc (sizeof (noeud));
p = liste ; q = p->suivant ; r = q->suivant ;
p->suivant = NULL ; q->suivant = p ;
do {

p = q ;
q = r ;
r = r->suivant ;
q->suivant = p ;

}
while (r != fin) ;
affiche(fin) ;

return;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

76

L’énumération dans une liste

Consiste à passer en revue tous les nœuds de la liste et à effectuer sur chacun
d’eux une action spécifique :

void enumeration() {
noeud *p ;
p = (noeud *)malloc (sizeof (noeud));
p = liste ;
while (p != NULL) {

action(p) ;
p = p->suivant ;
}

return;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

77

Recherche dans une liste: l’information du nœud à chercher est connue

noeud *recherche(info x) {
int trouver ; /* booléen*/
noeud *p;
p = liste ; trouver = 0 ;
while ((p != NULL) and (trouver == 0)) {

if (p->info = x) { trouver = 1 ; }
else { p = p->suivant ; }

} /* fin while */
return(p);

}

Remarque:
Cette fonction recherche la première occurrence de x, renvoie un

pointeur p sur le nœud trouvé ou NULL sinon.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

78

Retrait d’un élément d’une liste chaînée
1) valeur du nœud connue

void retrait1(info x) {
noeud *p, *pred ;
int trouve ;

if (liste == NULL) { printf(‘‘liste vide’’) ; }
else if (liste->info = x) { /* x se trouve dans le premier nœud */

p = liste ; liste = p->suivant ; free(p) ;
}

else { /* x se trouve au milieu ou à la fin de la liste */

pred = liste ; p = pred->suivant ; trouve = 0 ;

}

x xliste

p pred

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

79

while (p != NULL) and (trouve == 0) {

if (p->info = x) { trouve = 1 ; }
else {

pred = p ; p = p->suivant ;
}

} /* fin de while */
if (p == NULL) { printf(‘’Information inexistant e’’) ;}
else {

pred->suivant = p->suivant ; free(p) ;
}

return;
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

80

2) Pointeur sur le nœud à enlever connu : vue que le lien de chaînage du
prédécesseur de p doit être interrompu, on est obligé de chercher l’adresse du
pointeur pred.

void retrait2(noeud *p){ /*p pointe sur le nœud à supprimer*/
noeud *pred ;
if (p == liste) { liste = liste->suivant ; }
else { pred = liste ; }
while (pred->suivant != p) {

pred = pred->suivant ;
}

pred->suivant = p->suivant;

return;
}

Remarque : Dans le Programme principal, si p == NULL ce n’est pas la
peine d’appeler la procédure, si non retrait2(p); free(p) ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

81

TP

Soit le polynôme suivant :
2x2+5xy+y2+yz

Chaque terme du polynôme est constitué de :
- la puissance de x
- la puissance de y
- la puissance de z
- le coefficient

Pour représenter un polynôme (en x, y et z) sous forme de liste,
on suppose que le terme pointé par p précède le terme pointé
par q si :

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

82

puiss-x(p) > puiss-x(q) Ou puiss-x(p) = puiss-x(q)

Et

puiss-y(p) > puiss-y(q) Ou puiss-x(p) > puiss-x(q)

Et

puiss-y(p) = puiss-y(q)

Et

puiss-z(p) > puiss-z(q)

L’exemple précédent est représenté par :

coefficient puiss-x puiss-y puiss-z lien

noeud

2 0 0 2 1 1 0 5 0 2 0 1 0 1 1 1

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

83

Énoncé:

1- Écrire la fonction d’insertion d’un terme en tête de la liste, pointé par un pointeur
de tête liste.

2- Écrire la fonction d’insertion d’un terme en fin de la liste, pointé par un pointeur de
tête liste.

3- Écrire la fonction d’insertion d’un terme en fin de la liste, pointé par un pointeur de
tête liste et un pointeur de fin fin .

4- Écrire la fonction d’insertion d’un terme dans la liste, pointé par un pointeur de tête
liste, en conservant l’ordre de la liste.

5- Écrire la fonction de suppression d’un terme de la liste.

6- Écrire le programme principal faisant appel aux fonctions précédentes.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

84

Chapitre 6 : Les listes à double chaînage et circulaires
1- Liste à double chaînage

Beaucoup d’applications nécessitent le parcourt de la liste dans les sens.

typedef struct noeud { noued *G ;
type : info ;
noeud *D ; };

Liste à un élément :

Liste vide L == R == NULL

Liste quelconques :

Insertion d’une info X :

informationG D suivantprécédent

informationL R

A B CL R

A B CL

X

R

p

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

85

void insert_ch(nœud *N ; info x) {
/*insertion d’une information x avant un nœud d’adresse N*/
noeud *pred , *p ;
p = (noeud *)malloc (sizeof (noeud));
p->info = x ;
if (R == NULL) and (L == NULL) {

L = p ;
R = p ;
p->D = NULL ;
p->G = NULL ;

}
else if (L==N) {

/*insérer avant le premier nœud*/
p->G = NULL; L = p ; p->D = N ; N->G = p ;

}
else {

pred = N->G ; pred->D = p ; p->G = pred ;
N->G = p ; p->D = N ;

}
}

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

86

2- Les listes circulaires

• Le dernier nœud contient un pointeur sur le premier plutôt

que la valeur NULL.
• les listes circulaires permettent comme les listes à double

chaînage d’accéder au prédécesseur d’un nœud donné.
• Elles permettent aussi de simplifier les opérations d’insertion

et de suppression.
Remarque:

1) Le test de liste vide sera éliminé par l’adjonction d’un nœud
en tête.

P(x) = 3x5 + 7x2 + 2x

-1 5 2 1? 3 7 2
liste

-1? Polynôme vide

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

87

2) Le cas des nœuds d’extrémité sera éliminé (implantation en liste
circulaire)

Les opérations deviennent :

Insertion :
{

pred = N->G ;
pred->D = p ;
p->G = pred ;
p->D = N ;
N->G = p ;

}

IIII A B C

pred N

tête X

P

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

88

Retrait d’un nœud d’adresse M :

(On ne peut pas supprimer le nœud d’entête)

if (M != tete) {
pred = M->G ; succ = M->D ;
pred->D = succ ;
succ->G = pred ;
free(M) ;

}
else printf(‘’Suppression du nœud d’entête’’) ;

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

89

Chapitre 7 : Les structures de données non linéaires

(SDNL)

Les structures de données non linéaires permettent de réaliser des liens

autre que l’adjacence : arbres, graphes…

I- Les graphes
Un graphe fini est un ensemble de points appelés sommets (nœuds) et

d’arrêtes reliant ces sommets.

Exemple :

- Réseau Routier

Sommets : nœuds du réseau (croisements, rond-points)

Arrêtes : axes de communication.

- Graphe d’ordonnancement qui exprime les contraintes d’antériorité
entres les différentes taches d’un projet.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

90

façade

Définition :

• Un graphe est orienté si le sens des arrêtes (appelés arcs) est
important.
• Degré d’un nœud V:

- degré d’entrée : nombre d’arrêtes aboutissant à V.
- degré de sortie : nombre d’arrêtes partant de V.

• un chemin reliant deux sommets i et j est une suite d’arcs qui
commencent en i et qui se terminent en j.
• La longueur d’un chemin est le nombre d’arcs qui le constituent.
• Un cycle est un chemin dont l’extrémité est égale à l’origine.

murs

toiture

fondation cloison

plomberie

peinture

Espace vert

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

91

II- Les Arbres
• Adaptés à la représentation naturelle d’informations homogènes organisés.
• On les rencontre :
- Algorithmique (méthode de tri performant, gestion d’informations en
table).
- intelligence artificielle (Décisions, Démonstrations)
- Compilation (arbres syntaxiques)

Dans un arbre binaire un nœud est représente par :

• Un arbre binaire est un ensemble d’un nœud particulier appelé racine et
d’un certain nombre de nœud qui y sont reliés et ayant la représentation
précédente.

ARBG ARBDinformation

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

92

- Nœud terminal (feuille) : tout nœud qui n’as pas de fils gauche et de fils droit.
- les arbres binaires

Déclaration :
typedef struct nœud {

nœud *G ;
type info ;
noeud *D ;

}

A

FB

E D

C

A

B
F

DE

C

père

Fils G

Fils D

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

93

Implantation en tableau
Exemple : Implantation d’un lexique.
Les mots qui commencent par une même
chaîne de caractères sont regroupés sous
celle-ci.

coude, coudre, coulage, coulant,
couler, couleur, couleuvre

cou

l
e

d

ree
r

ge

ua

rnt vre

00vre13

00r12

1312u11

00r10

1110e9

00nt8

00ge7

87a6

96l5

00re4

00e3

53d2

42Cou1

DGinfo

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

94

typedef struct nœud {
nœud *G ;
type info;
nœud *D;

} ;
int n ;
nœud arbre[n] ;

on peut utiliser aussi soit un tableau n x 3 soit 3 tableaux de n
éléments chacun.

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

95

Exercices et TP

Une Association scientifique désire automatiser son fichier ‘adhérant’. Pour

cela elle envoie à tous ces adhérents une une fiche de renseignements ayant la
structure suivant :

pays : 10 caractères
ville : 15 caractères
Nom prénom : 30 caractères
Adresse : 40 caractères
Domaine d’intérêt : 2 caractères

1- Donner une structure de données qui permet de répondre d’une manière
performante aux questions suivantes :

a) Édition de la liste classée par ordre alphabétique des noms et prénoms de tous
les adhérents d’une ville donnée d’un pays donné.
b) Édition de la liste classée par ordre alphabétique de tous les adhérents ayant un
domaine d’intérêt donné.

2- Écrire une procédure permettant l’insertion d’un adhérant dans la structure.
3- Écrire une procédure permettant la suppression d’un adhérant de la structure.
4- Écrire les procédures relatives aux question a) et b).

Driss EL Ouadghiri, FSMEK
dmelouad@gmail.com

96

Codes des domaines d’intérêt:

Informatique : 1

Automatique : 2

Physique : 3

Sciences Naturelles : 4

Biologie : 5

Chimie : 6

