

Année Universitaire: 2019/2020

Filière: MIP, Section 2

Module: C121

Département de chimie Pr. Ahmed AIT HOU

TD - Série 3: ATOMISTIQUE

Exercice 1

- Définir les quatre nombres quantiques et les relations entre eux ?
- Soir un électron 3s¹, quels sont les quatre nombres qui le caractérisent ?
- Même question pour un électron 3d¹

Exercice 2

Représentez shématiquement les orbitales atomiques des vélctrpons caratérisés par :

- n = 1 l = 0
- n=3 l=1
- n=3 l=2

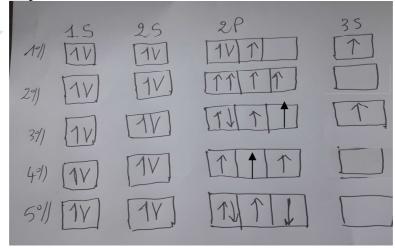
Exercice 3

Quel est le nombre d'électrons qu'on peut associer à:

- une orbitale
- une sous couche
- une couche

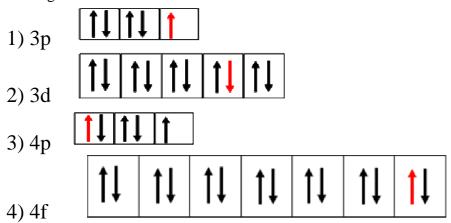
Exercice 4

On considère les états électroniques suivants:


1s, 4p, 3d, 5f, 3s, 1p, 2d, 6s

Quels sont ceux qui ne peuvent pas exister?

Exercice 5


Parmi les configurations suivantes, déterminer :

- celles qui sont impossibles
- celles qui représentent l'état fondamental
- celles qui représentent l'état excité

Exercice 6

Indiquer les ensembles possibles des quatre nombres quantiques (n, l, m, s) pour l'électron montré par la flèche dans les diagrammes ci-dessous. Choisissez les valeurs de m en les numérotant de -1 à +1 de gauche à droite.

Exercice 7

1-Quelles ont les règles à appliquer pour représenter la configuration électronique d'un atome ou ion à partir du nombre d'électrons.

2-Ecrire la structure électronique de: O(Z=8), F(Z=9), S(Z=16), Cl⁻(Z=17), Ca²⁺(Z=20), Mn(Z=25), Cr(Z=24), Cu(Z=29)

Exercice 8

Pour un système poly électronique, l'énergie d'un électron i dans un état n est donnée par la formule :

$$E_{i_{(n,\ell)}} = -13.6 \times \frac{Z_i^{*2}}{n^2}$$
 (eV)

Etant la charge effective

$$\mathbf{Z}^* = \mathbf{Z} - \mathbf{\Sigma} \mathbf{\sigma}$$

2

Calculer le potentiel de la première et de la deuxième ionisation pour le carbone C (Z= 6)

Type d'é	même groupe	groupes n-1	groupes < n-1
(1s)	0,30		
(ns,np)	0,35	0,85	1,00
(nd), (nf)	0,35	1,00	1,00